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Modulational instability in optical fibers with randomly kicked normal dispersion
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We study modulational instability (MI) in optical fibers with random group-velocity dispersion (GVD)
generated by sharply localized perturbations of a normal GVD fiber that are either randomly or periodically
placed along the fiber and that have random strength. This perturbation leads to the appearance of low-frequency
MI side lobes that grow with the strength of the perturbations, whereas they are faded by randomness in their
position. If the random perturbations exhibit a finite average value, they can be compared with periodically
perturbed fibers, where parametric resonance tongues (also called Arnold tongues) appear. In that case, increased
randomness in the strengths of the variations tends to affect the Arnold tongues less than increased randomness

in their positions.
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I. INTRODUCTION

The combined effect of nonlinearity and group-velocity
dispersion (GVD) may lead to the destabilization of the sta-
tionary states (plane or continuous waves) of a given physical
system. This phenomenon, known under the name of mod-
ulational instability (MI), consists in the exponential growth
of small harmonic perturbations of a continuous wave [1]. MI
has been pioneered in the 60s in the context of fluid mechanics
[2,3], electromagnetic waves [4] as well as in plasmas [5], and
it has been observed in nonlinear fiber optics in the 80s [6]. In
uniform fibers, MI arises for anomalous (negative) GVD, but
it may also appear for normal GVD if polarization [7], higher-
order modes [8], or higher-order dispersion are considered
[9]. A different kind of MI related to a parametric resonance
mechanism emerges when the dispersion or the nonlinearity
of the fiber are periodically modulated [10-13]. Many studies
were published to address generalizations to high-order dis-
persion [14,15], birefringence [16], fiber cavities [17-23], and
the nonlinear stage of MI [24].

The effect of a random variation of GVD on MI has been
studied extensively [25-29] for the particular case where the
GVD is perturbed by a Gaussian white noise, which is ex-
plicitly solvable. Under these conditions a deformation of the
conventional MI gain profile due to the random perturbation
was found when the unperturbed fiber has an anomalous
dispersion. In the case of normal dispersion, the generation
of MI sidebands as the result of the random perturbation
was reported as well. White noise, however, which implies
arbitrarily high variations of GVD on arbitrarily small scales,
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constitutes an idealization that does not always provide a rel-
evant modeling of the randomness that may occur in physical
GVD fibers [30]. An attempt to consider a GVD perturbed by
a Gaussian noise with a finite correlation length was reported
in Ref. [31], but the analysis was not conclusive, and the
problem was solved only with numerical simulations [32].

The question then arises for which type of random GVD
processes does MI occur and how do the characteristics of
such instabilities depend on the statistical properties of the
process? In such generality, the question seems, however, out
of reach and it is consequently of interest to study the problem
in a class of random fibers that is both experimentally accessi-
ble and theoretically tractable. Our focus here will therefore
be on homogeneous fibers with a normal GVD perturbed
by a set of random “kicks.” More specifically, the fibers we
consider, described in more detail in Sec. II, have a GVD
given by

-7,
B2(2) = Prser + A ana(z ~ ) (1)

nez ref

In our previous work [33], we investigated such fibers with
a periodic modulation of the fiber dispersion induced by a
Dirac comb, in which the Z, = nZ.s are periodically placed
along the fiber and the strengths A, of the § functions are
all equal. Such GVD was shown to be well approximated in
experiments by a periodic series of short Gaussian-like pulses.
In this work, the Z, are chosen to be random points along the
fiber, and the X, are independent and identically distributed
centered random variables and Z. is a reference length. We
limit our analysis to perturbations of fibers with a normal
GVD because in that case the unperturbed fibers show no MI,
and consequently any MI observed in the randomly perturbed
fibers is entirely due to the randomness.

©2021 American Physical Society
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The perturbations of the GVD considered in Eq. (1) result
in a nonautonomous nonlinear Schrodinger equation (NLSE)
[see Eq. (2)] determining the evolution of the wave profile as
a function of the longitudinal coordinate z along the fiber in
which the perturbation can be interpreted as a succession of
kicks taking place at points z = Z,. These systems therefore
bear an analogy to the paradigmatic problem of the kicked
rotor in classical and quantum mechanics [34-36], which is
why we refer to them as randomly GVD kicked fibers.

We show that MI occurs in such fibers through a mech-
anism that is familiar from Anderson localization theory
[37,38]. The MI gain can indeed be computed in terms of
a random product of transfer matrices in the same way as
the localization length of the stationary eigenfunctions of the
random Schrodinger operator in the Anderson model. We are
then able to analyze how the properties of this gain depend on
the features of the random process 8,(z) and on the frequency
of the harmonic perturbation of the continuous wave.

The rest of the paper is organized as follows. In Sec. II
we precisely describe the randomly kicked fibers under study,
then we derive a general expression for the mean MI gain in
Sec. III. In Sec. IV, we develop a perturbative estimation of
the mean MI gain in the case where the random perturbations
of the GVD vanish on average (% = 0) and compare it with
numerical results. We establish in this manner the existence
of MI at low frequencies of which we characterize the proper-
ties. We finally compare the MI gain with the gain computed
from the solution of the nonlinear Schrédinger equation and
observe a good correspondence. In Sec. VI we consider MI
in a randomly kicked homogeneous fiber of normal GVD in
which the random perturbation does not vanish on average
(An # 0). The situation is very different since, depending on
the nature of the point process Z, determining the positions of
the kicks along the fiber, there may or may not be a remnant of
Arnold tongues, a signature of MI in periodic fibers. In Sec. V
we show how GVD kicked fibers can approximate fibers with
a white noise GVD. Conclusions are drawn in Sec. VII.

II. MODULATIONAL INSTABILITY IN RANDOMLY

KICKED FIBERS
We consider the NLSE
id.u — 1B2(2)d7u + y |ul*u =0, )

where y > 0 is the fiber nonlinear coefficient, and B,(z) its
GVD. We are interested in the modulational (in)stability of the
stationary solution u(z) = VP exp(iPyz) of Eq. (2). We con-
sider a perturbation of uy(z) in the form u(z,t) = [v(z, t) +
1]uo(z), where the perturbation v(z, t) satisfies |v| < 1. Writ-
ing v = g+ ip, with ¢ and p real functions, inserting this
expression into Eq. (2) and retaining only the linear terms,
we obtain a linear system for g and p. Writing x(z,t) =
(g(z,1), p(z, 1)) and X(z, ®) = \/%7 [ x(z, t)e™*"dt, one finds

0 B(2)

>
0.X(z, w) = (5 @ 2 )f(l, w). 3)
2Ta)2 +2yP 0

Note that this is, for each @, a nonautonomous linear
Hamiltonian dynamical system in a two-dimensional phase
plane with canonical coordinates (g, p). We wish to study

the (in)stability of its fixed point at the origin § = 0 = p as
a function of the frequency w and of the properties of 8,(z).
Since, for general B,(z), its explicit solution cannot be com-
puted analytically, this is not straightforward. We concentrate
on random fiber profiles, as detailed below.

Note that if y =0, Eq. (3) is reminiscent of a har-
monic oscillator with random frequency k = @wz (also
called multiplicative noise) for which a vast literature exists
[30,39-43]. The focus of the present work is to study a “gen-
eralized” random oscillator (including the term 2y P) which
accounts for the nonlinear effects, where the random fre-
quency is modeled by the nonstationary stochastic processes
described by Eq. (1). The study of stationary colored noise,
where classic perturbative techniques apply [30], will be the
subject of a future work [44].

The modulational instability of the fiber is expressed in
terms of the sample MI gain G(w), defined as follows:

N S
G(w)= lim —In|X(z, o)l “)
z—+400 7
where || - || designates the Euclidean norm. Here sample

stands for a single realization of the random perturba-
tion. When G(w) > 0, this indicates ||X(z, w)|| =~ exp[G(w)z],
meaning that the stationary solution is unstable for perturba-
tions with frequency w. One is interested in establishing for
which w, if any, this occurs, and how large G(w) is in that
case.

Dispersion-kicked fibers are characterized by the expres-
sion of B,(z) given in Eq. (1). Here § is a sharply peaked
positive function satisfying [ 8(z)dz = 1; in our theoretical
analysis below, we take § to be a Dirac § function; A, are in-
dependent, identically distributed real random variables with
mean A > 0, and Zs > 0 is a characteristic length associated
with the random sequence of points Z,. We write

An = A + €8A,, ®)

with 84, = 0 and ¢ > 0 a dimensionless parameter. We think
of this as a fiber with irregularities in its diameter of random
area, giving rise to effective dispersion kicks |A,|ABrZs,
placed at the points Z, along the fiber. These fibers can be
physically fabricated by means of the state-of-the-art fiber-
drawing techniques. Indeed, some examples of uniformly
dispersion-kicked fibers have been reported in Ref. [33] with a
period Z.s = 10 m and a kick width w = 0.14 m and relative
large kick strength max | 82(2)|/Ba.ret = 35.

To compute the MI gain in such fibers, we proceed as fol-
lows: We first note that, due to the presence of the § functions,
the left and right limits fcf (w) = (Q(Zflt, w), ﬁ(Zf, w)) around
z = Z, of the solution X(z, w) at Z, are different and are
related by £ (w) = K&, (w), where the random matrix K,, is
defined as

_ (COS (AﬂZZrefkn %2)
. =

—sin (A,Bzzref)‘n %2) (6)
sin (AIBZZref)\n %2) |

cos (AIBZZref)\n %2)

On the other hand, for Z, < z < Z,41, (3) is autonomous and
straightforwardly solved; the solution X(z, w) is smooth in this
range. One finds %, = Lnfcj[ , where now

L — ( cos (kAZ,) — L sin (kAZn))

wlsin (kAZ),) cos (kAZ,) 0
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with

ﬁZ,ref 2

Boret of Boret o y @
k== = 2yP ), = . 8
T G +2y w k ®)

Note that k is real for all @ when B, ref > 0 (normal dispersion
or defocusing NLSE), and that it is imaginary for small @
when B f < 0 (anomalous dispersion or focusing NLSE).
To sum up, we can now describe the evolution of this system
between z =7, and z = Z__, as follows. For all » € R and

+
neN,
X1 = LaKuX, = .8, ®
Considering an initial condition Xy =
Gz, , w), plZ;,w)) € R? with IX; Il = 1, one then finds
1
G(w) = lim —In|®,®,_;--- D% |- (10)
ref N>+ n
Note that
2y P 4 .
O0<u<l, ux~xl- >+ O0(™), Iim w=1.
ﬂZ,refa) ®—>+00

Hence it follows that for large w, both K, and L, are rotation
matrices and consequently their product ®,, is also a rotation
matrix. Consequently, for large w, the MI gain tends to zero.

We finally describe the models we will consider for the
random positions Z, of the § functions, and for their strengths
A,.. For the Z,,, we set

Zo=0VneN, Z. =27+ Zetjn (11)

where Z.s > 0 and j, is a sequence of independent and identi-
cally distributed positive random variables with values in R™
and with probability density p(j,). We assume that

400
Ui = [ detindi= 1. (12)
0
so that (AZ,) = ((Z,+1 — Z,)) = Zies > 0. Hence Z,, =
Z, + AZ, is a random walk with drift. We will principally
consider two cases. First, introducing a new parameter &z > 0,
we consider

jn =1+ EZSjn)a (13)

where now §j, is a sequence of independent, identically, and
uniformly distributed random variables in (—1, 1) and &z €
[0, 1]. In this random walk model the mean position of Z, is
nZ.r and their variance

((Zy — nZeet)?) = ne3Z2((8))7),

grows with n. The increments are independent and identically
distributed and their variance is given by

(AZy — Zeet)?) = Z2:65((8))%).

We refer to this as the simple random-walk model.

Second, we consider the Poisson model where the AZ, =
Zet ju are independent and identically distributed with expo-
nential density,

p(j) = exp (=) (14)

The Z, are now the arrival times of a Poisson process with

parameter ngfl. We refer to this as the Poisson fiber.

When all 1, = 0 the above fibers are homogeneous. We
concentrate here on the defocusing regime, in which no mod-
ulational instability occurs when A, = 0.

Some examples of realizations of the random-walk and of
the Poisson fibers are reported in Fig. 1, where the kicks are
modeled by sharp Gaussian functions. Here and in all numer-
ical examples we take ABy = oyt = Y = P = Zper = 1.

In Secs. III and IV we consider random kick strengths A,
that vanish on average. Our focus is therefore on the question:
what kind of random inhomogeneities of the GVD can pro-
duce MI in an otherwise modulationally stable homogeneous
fiber?

In Sec. VI we then briefly discuss the case A > 0: in that
situation, MI occurs in the form of Arnold tongues in the
limiting case when ¢ = 0, resulting in a periodic GVD. We
investigate the stability of these Arnold tongues under the
random perturbations of the Z, and/or X, which occur when
gz # 0and/or e # 0.

III. THE MEAN MODULATIONAL INSTABILITY GAIN OF
A RANDOMLY KICKED FIBER

Since the random-walk process Z, in Eq. (12) has indepen-
dent and identically distributed increments, the Furstenberg
theorem [45] (see Ref. [38] for a textbook treatment) asserts
that the limit in Eq. (10) exists for almost every realization
of the fiber; that is, for almost every choice of the A, and the
Jns it is in addition strictly positive and independent of the
realization. As a result, in such random fibers, there is always
MI at all values of w. However, it is notoriously difficult to ob-
tain analytical expressions for G(w) as function of the model
parameters, and hence to assess the strength of the sample MI
gain G(w). We will therefore follow Ref. [28] and introduce a
suitable mean MI gain based on moments of Eq. (9) which we
will refer to as G, (w).

To determine the gain, we need to determine the second-
order moments of the components of the vector £, in Eq. (9).
For that purpose, let

®, = L,K, = (‘c’ Zﬂ),
n n

It is then straightforward to check that, for alln € N,

4(Z ) 4z, )?
Xov1:= | §Z, . )PZ ) | =M, | 4Z)HpZ;) ), (15)
P2y, Pz,
where
a’ 2a,by, b?
M, = \|a,c, a,d,+b,c, b,d,]. (16)
cﬁ 2¢,d, d,f

Since 14(Z)P(Z)] < HIGEZ)P + [p(Z)P), we have
12, 11> < 1Xalli < 31I%, |I%, and it readily follows that

Glw) =

lim —In X[,
ref con
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FIG. 1. Realization of a simple random-walk fiber (left panel) and a Poisson fiber (central panel) with zero-mean kick strength A = 0, and
of a simple random-walk fiber with A = 1 (right panel). The kicks are modeled with Gaussian pulses §(z) = 1/(2mw?)"/? exp(—z?/ 2w?) of
width w = Z.¢/20. The position of the kicks is indicated by the vertical dotted lines; A, are uniform random variables in [—1, 1].

where now ||(x,y, z)|l1 = |x| + |y| + |z|. From Jensen’s in-
equality [46], it follows that

l—
lim —In || X,
£ n—-+oon

!
Glo) =37

|
< gz Jim S nIX T = Ga@). (17)

We refer to G(w) as the mean MI gain. It is worth pointing
out that this corresponds to one half the growth rate of the
average power of the perturbations.

Equation (17) shows that the mean MI gain G, (w) is larger
than the sample MI gain G(w) itself. However, it has the
distinctive advantage that it can be readily computed. For that
purpose, note that, since |§(Z,;)p(Z;)| < |4(Z,;)p(Z; )| and
9Z)PZH < 3U19Z,)1 +1p(Z,)I7} we have

Xl < Xl < 3%l

is independent of n. Hence

1 . 1 _
Gr(w) = ) lim —In |1 X,[

ref n—+oo n

1 . 1 —n
= Iim —In|M Xyl =

= In x|, (19)
2Zef n—>+o n 2Z et

where x is the eigenvalue of M with largest modulus.

The matrix M depends on the parameters of the model, in
particular on w, the laws of 1,, j,, € and &z. It follows that
G>(w) can be computed from the spectrum of M, which is
easily determined numerically. The explicit analytical compu-
tation of closed formulas for its spectrum remains however
complicated. As we show below, a perturbative treatment
yields an analytic expression provided that the perturbation
is not too large.

Dropping the index n on A, Z,, we introduce

2

10}
Since the M, are identically distributed and mutually indepen- 0 = APrZreth 5 (20)
dent, one has moreover X, =M, X,_1 =M nXo, where . . .
which corresponds to the phase acquired by the perturbation
2 Yab. 2 ?(w) at each kick, and write
— n __—mvn 0 T
M =\ @ ¢, andy +bucy  budy |, (18) M = M, cos’> 0 + Mysin (20) + M_sin*6,  (21)
c2 2¢,d, d? where
|
cos?(kAZ) —usin(2kAZ)  p’sin*(kAZ)
M+ _ sm(il;AZ) COS(ZkAZ) . sm(gkAZ) ’
sinszzAZ) sin(2lleZ) cos? (kAZ)
wsin?(kAZ)  usin(RkAZ)  cos2(kAZ)
in(2kAZ) sin(2kAZ
M. = —% —cos(2kAZ) % ,
cos2(kAZ) _sin(2kAZ) sin?(kAZ)
uw u?
and
—snGAZ) 2 6in%(KAZ) — cosP(kAZ)  LSnGRAZ)
MO — cos(22kAZ) _(M + i) sm(2£<AZ) _ cos(22/<AZ)
sm(il;AZ) COSZ(]CAZ) _ sm‘l(lkZAZ) _ sm(%I;AZ)

Note that all information on the randomness in the strengths
of the kicks is contained in 6, whereas the randomness in

(

the spacings between the kicks is encoded in the matrices

My, M. From the independence of the random variables A,
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FIG. 2. Comparison of numerically computed MI gains in randomly kicked homogeneous fibers with A = 0; &, and ¢ are indicated in each
panel. The random kicks are located at Z, as in Eq. (13) (random walk). The §1, and §j, are taken to be uniform in [—1, 1]. Shown are the
numerically simulated sample MI gain G(w) (dashed blue line), the mean MI gain G,(w) computed directly from the largest eigenvalue of M
(dotted red line), the perturbative approximation of the mean MI gain (dash-dotted black line), and the perturbations’ growth rates (black stars)

calculated from numerical solutions of the NLSE.

and Z, it follows that

M = M cos? 6 + Mysin 20 + M _sin 6. (22)
The expressions of the coefficients of the matrix M are
reported in Appendix B; the (in)stability depends on its
spectrum.

For a homogeneous randomly kicked fiber with average
normal GVD and vanishing mean kicking strength (A = 0) we
resort to a perturbative analysis, presented below in Sec. IV.

IV. ZERO AVERAGE KICK AMPLITUDE

We consider in this section randomly kicked fibers as in
Eq. (1) with A, as in Eq. (5) and A = 0 and with Z, a random
process as in Eq. (11), so that the random fiber can be seen as
a perturbation of a homogeneous defocusing fiber (see Fig. 1).
We recall that the latter is known to be modulationally stable.

The MI gains of such random fibers with Z, as in Egs. (13) and
(14) are illustrated in Fig. 2 (for the random-walk model) and
in Fig. 3 (for the Poisson model) for various parameter values
¢ and ¢z as indicated. It is worth reminding the reader that
the sample MI gain is independent of the sample if calculated
at infinite z. In the numerics we calculated an approximation
of the sample MI gain from Eq. (10) for n = 250 kicks and
averaged over 500 realizations (dashed blue curves in the fig-
ures). To check that the sample MI gain correctly predicts the
growth rate of the perturbations we computed the latter from
a numerical solution of the NLSE using the same procedure
(black stars in the figures). One observes a good agreement.
One notices that the random perturbation produces modu-
lational instabilities that we now further analyze, for a given
distribution of the AZ, and the ),, and at fixed w. This can
be done perturbatively in . Indeed, since A =0, we have
A = &8, which is small. We can therefore compute the largest

0.08 0.08 0.08
P
e=0.25 e=0.5 ;“ Y €=09
0.06 0.06 0.06 /" ‘%
/ kY
2 2 2 / 3
5 0.04 ‘7 0.04 ‘= 0.04 / ot ‘\
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FIG. 3. Same as Fig. 2, but with Z, as in Eq. (14) (Poisson model). The parameter ¢ is indicated in the panels.
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eigenvalue of M perturbatively in ¢; its logarithm will yield
the mean MI gain G,(w). The details of the computation are
given in Appendix A.

To set up the perturbation problem, we proceed as follows:
For ¢ =0, M = M so that the first ingredient we need are
the eigenvalues and eigenvectors of M . It is easy to check
that M, has the eigenvalue xo = 1. The corresponding right
and left eigenvectors are

P = 0 D' andy@ =1 0 wA, (23

with @7 p© = 2,2,
We always suppose w # 0 so that  # 0. The two remain-
ing eigenvalues of M, are easily determined to be

e +00
Xt = exp (£i2kAZ) = f exp (£i2kZeer )p(j)dj. (24)
0

Since the exp(i2kZ.¢ j) lie on the unit circle, clearly |x4| <
1. To apply nondegenerate perturbation theory, we need that
x+ # 1. To investigate this condition in the two models that
we investigate here for the Z,,, let us first consider the random-
walk model (13) and assume that the distribution of §; is given
by a density o so that

Xt = exp (£i2kAZ) = ¢*2kznt / T2z 5 (5)ds.  (25)

We can then compute x4 perturbatively in & as follows: Not-
ing that, when ¢; = 0, x3. = exp(£i2kZ.¢) and remembering
that (§j) = 0, one sees

Xy = exp (£i2kZer)[1 — 2(kZerez)* (%) + O(e3)], (26)

so that, with increasing &z, the eigenvalues x, move radially
inward, towards the origin. Hence |x1| < 1 and, a fortiori,
x+ # xo = 1 for ¢z £ 0. For a Poisson fiber, where the Z,
form a Poisson process, the eigenvalues x+ can be computed
explicitly:

1
Tl Fi2kZes

so that [x1| < 1 forall w # 0.

We can therefore use, in the above cases, a nondegenerate
perturbation expansion to compute xy as a function of . We
will establish that x is real and a growing function of ¢, giving
rise to a strictly positive mean MI gain.

Recalling that A = ¢§A [see Eq. (5), with A = 0], we con-
sider the case where the probability distribution v(6A) of 6\
satisfies v(—8A1) = v(81) so that not only A = ¢ fsv(s)ds =
0 but also sin(26) = 0, since sin 6 is an odd function of §A.
Hence, we can write

M =M, + AMn, (28)

where 1 = c0s(20) — 1 = V27 [D(e AByZesw?) — D(0)] and
AM = %(A_L_ —M_). Here designates the Fourier trans-
form of v.

Finally, for small ew?,

~ — 1 (eABrZier” ) 512, (29)

27)

X4

Therefore, the eigenvalue x, of M in Eq. (28) that emanates
from xy = 1 can be expanded for small 7 as

xy ~ 1+ 4 pPx @) (30)

where
22
OB (1 —p”) ’
4pu?
1 2528 — 1)+ 52
@ =——0-pt 2525~ D+ % );L 2, 31)
16u* 482 + 83
with

S =sin®(kAZ) = $(1 — cos(2kAZ)), S, = sin(2kAZ).

(32)
The corresponding mean MI gain is then, using Eq. (19),
1 1
Gr(w) = — Inx, ~ In(1 + nxP 4+ n%x@).  (33)
? 2Zref ! 2Zref

To lowest order in ew?, we therefore find that, approximately,
for small w,

1ABSZEyP

(ew)?SA2.
:32,ref

1 (1—p?)?
G ~ =gl =
2(@) e?<1 2|’I| 4u o<1 4

(34)

The mean MI gain G;(w), computed by evaluating the
spectral radius of M numerically, as well as its approximation
from Eq. (33), are shown in Fig. 2 for the simple random-walk
model and in Fig. 3 for the Poisson model. Note that the term
in n? in (33) is crucial to obtain a good approximation of G,
for values of w in the range considered. There is, in both cases,
a MI side lobe. The perturbative approximation works well
for the Poisson model, for all w in the range considered (see
dashed black curves in Fig. 3). It does not, however, capture
the vanishing of the MI that occurs at a specific value of w for
&z = 0 or small in the random-walk model (see Fig. 2). There
is indeed a marked difference between the shape of these side
lobes, depending on which of the two random processes are
chosen for the Z,, which we now explain.

For that purpose, first consider the leftmost column of
Fig. 2. There, e = 0, which means the Z, = nZ,s are dis-
tributed periodically along the fiber. The GVD is nevertheless
not periodic, since the kick strengths A, are random. One
notices on the figure that, in that case, both the sample MI gain
and the mean MI gain show a characteristic zero at a precise
value of w. This phenomenon can be explained as follows:
If w = wy is such that kZ.s = wf for some £ € Z, then the
matrices L, in Eq. (7) are all equal to the identity matrix,
and one immediately sees from Eq. (10) that G(w;) = 0, for
all ¢. Indeed the propagation through the constant dispersion
segments of the fiber does not change the perturbation and the
kicks act as random rotations, which only change the phase
of the perturbation ¥, giving as a results a vanishing MI gain.
Using Eq. (8), one sees that this corresponds to the specific
values of w given by w = w,, where

2
(yP)? + <”Z) —wp|. 33

W} =
Zref

2
IBZ,ref

One furthermore readily checks that the eigenvalues of M
in this case are given by 1, cos 6, sinf, which are less than
or equal to one in absolute value. Therefore the mean MI
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gain G,(wy) also vanishes for all ¢ at w = wy. Again, this is
apparent from Fig. 2 at v = w;.

Interestingly enough, the frequencies determined from
Eq. (35) fulfill the parametric resonance condition kZ..s = 7 ¢
[12,24,33]. These frequencies correspond to the location of
the tips of Arnold tongues for any periodic fiber with pe-
riod Zs and whose average GVD over one period equals
Ba.ref- Quite surprisingly, for kicks with random amplitudes
and zero-mean, the situation is reversed and the system be-
comes stable under perturbations precisely at these same
frequencies.

It is finally clear from Fig. 2 that the perturbative treat-
ment of the mean MI gain does not function well when
w approaches w; or w,. This is as expected since, when
w = wy, the three eigenvalues of 1\_/IJr coincide: x4 = 1 = xp.
The nondegenerate perturbation theory used above does not
then apply. When w # wy, this degeneracy is lifted and the
perturbation theory yields increasingly good results as &z
increases, even at w = wy. As can be seen in the second
column of Fig. 2, both the sample and mean MI gains are
still diminished in the neighborhood of w; and w, when €7 is
small, and this is well captured by the perturbative analysis
above. This phenomenon can be seen as a remnant of the
underlying periodic structure of the random points Z, that is
only partially destroyed when ¢ is nonzero, but small. It com-
pletely disappears when e, approaches its maximal possible
value, which is 1, as can be seen in the third column of the
figure.

Since for the homogeneous fiber [82(2) = Borer, £z = 0 =
] there is no MI at all, it is clear that all MI is created by the
randomness. Note, however, that, whereas increased fluctua-
tions in the kicking strengths A, increases the MI, increased
fluctuations in the Z, tends to decrease it.

In Fig. 3 the MI for the Poisson model is illustrated. One
sees that, as for the simple random-walk model, there is a MI
side lobe starting at low frequencies, but the frequencies wy
now no longer play a special role. The gain of this side lobe
is comparable in width and height for the same value ¢ = 0.5
of the strength of the kicks, as in the random-walk fiber with
gz = 0.9. Note that, in the latter, this means successive Z, can
be close, as in the Poisson fiber. The perturbative treatment

V. APPROXIMATING WHITE-NOISE GROUP-VELOCITY
DISPERSION WITH RANDOMLY KICKED
GROUP-VELOCITY DISPERSION

Previous work on MI in random fibers has concentrated on
GVD perturbed by white noise [26—28]. As pointed out above,
white noise is not necessarily physically pertinent since it re-
quires arbitrarily large variations of the GVD over arbitrarily
short distances. In this section we show that the kicked fibers
considered here can, in an appropriate parameter regime de-
termined below, and for sufficiently low frequencies, produce
a similar MI gain as white-noise GVD. Figure 4 illustrates our
findings.

For that purpose, we compute the two-point function
[B2(2) — Baretl[B2(z) — Baret] Of a kicked GVD as in (1),
with A, as in (5) and A = 0.

Using that the X, are independent and denoting by 0,(z)
the probability distribution function of Z,,, one finds

[B2(2) — Bo,refl[B2(z') — B2, ref]

= (Aﬁzzrefefa?(Z pn(z)>5(z -2).

Note that the fiber is therefore delta correlated in z, but it
is not stationary, since ), p,(z) is not a constant function.

Nevertheless, one finds

lim
z—>+00

Y o) =7,
n

so that it does becomes stationary for large z. To show
this last statement, one can proceed as follows: Introducing
the random variable N(Z) = #i{n | Z, < Z}, which counts the
number of Z, below Z, one sees that N(Z) ~ sz since the
mean distance between two successive values of Z,, is Zr. On
the other hand, N(Z) = fOZ n(z)dz, where n(z) =), 8(z —
Z,). So, since

dN _._dN
n(z) = d_z(Z)’ n(z) = d_z(Z)’

it follows from 71(z) = ) _,, pm(2) that

of the previous section reproduces the mean MI gain quite . .- . dN 1
p p gan q lim Y pu(e) = lim 7iz) = lim —(2) = ——.
accurately. z—>+00 - 7—>+00 —>+o00 dz Zref
012 0.12 0.12 ‘
=08 e €=0.25 e =09 e e=025 | | e € =0.25
01+ A 4 =1 0.1 e=1 0.1 €=
i ----g =2 T = e= A e =2
0.08 b —e=10 0.08 ! —=10 0.08 \ — =10
é 0.06 ; o White noise é 5166 ‘,l o White noise é 506 \‘\\ o White noise
&0 i 50 & \
0.04 3 0.04 0.04 X
N\
0.02; #7% R 0.02 ¢~ R 0.02 ¢ N
e, o - o S i, .§‘\.~.
G . O\ O\ """ -
0 2 4 8 10 0 2 4 6 8 10 0 2 4 6 8 10
w w w

FIG. 4. Comparison between the mean MI gain of the white-noise model (black dots) and the mean MI gain of the random-walk (left and
center panels) and Poisson models (right panel). MI gain for white-noise model is calculated from Eq. (29) from Ref. [25] withA = 1 (A = JP
in our notation) and 6> = 0.1. Parameters € and ¢ as indicated and Z as in Eq. (37) with A2 = 1/3.
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In conclusion, for z large, one has

[B2(2) = Brret][Ba (@) — Pareil = 20°8(z — 2),

where
202 = (ABre)*ZuetSA2. (36)

One recognizes here the two-point function of Gaussian
white noise. In a kicked fiber, the fluctuations take place on
a length scale comparable to Z..; and have a strength propor-
tional to €. This suggests that, if Z.¢ is small and ¢ large, with
a scaling given by

Zeet = 207 [ (AB3E7622), 37)

then the kicked fiber will be statistically close to a white-noise
fiber and the resulting MI will therefore be similar in both
fibers. This is indeed illustrated in Fig. 4. The mean MI gain
of a white-noise fiber is plotted there (black circles) using
an explicit formula for this gain obtained in Ref. [25]. It is
compared with the mean MI gain of randomly kicked fibers,
with parameters ¢ and €7 as indicated and with Z¢ as in (37),
computed from the largest eigenvalue of M. As suggested by
the above argument, for sufficiently large ¢, the MI gain of
the kicked fibers converges to the one of the white-noise fiber.
The agreement is best for small w, a reflection of the fact that
the low-frequency perturbations are less sensitive to the rapid
variations of the white noise.

We make two further comments: First, the value of o2 =
0.1 is chosen in the numerics because it is the right order of
magnitude for the fibers used in the experiments described in
Ref. [33] in which both & and Z,¢ are of order 1. Note that
this means that the mean spacing between the kicks in these
fibers is of the same order of magnitude as the nonlinear length
Zyi = (yP)~'. Second, for higher but intermediate values of
&, the MI lobe of the randomly kicked fibers can be higher and
wider than the one of the white-noise model. Third, it would
be a challenge to make fibers with a considerably larger value
of ¢ since they correspond to a small value of Z.¢. This means
that one would need to be able to put the sharp peaks and dips
in the fiber diameter very closely together.

VI. NONZERO AVERAGE KICK AMPLITUDE

In this section we briefly discuss the effect on MI of ran-
domly placed kicks with random strengths A, that are not
vanishing on average, so that A # 0. We separately consider
the two cases where the Z, form a simple random walk or a
Poisson process and that lead to different phenomena.

We first consider the simple random walk, as in Eq. (13), an
example of which is reported in Fig. 1, rightmost panel. In the
first column of Fig. 5 the numerically computed sample and
mean MI gains are displayed for such a fiber for which ¢z = 0,
so that Z,, = nZ., i.e., the § kicks are placed periodically. The
An are chosen as in Eq. (5) with average A = 1. Note that,
if in addition ¢ = 0, then this fiber is actually periodic: this
is the situation in the top-left panel of the figure. It is well
known that periodic fibers display MI through a parametric
resonance mechanism, whose gain in shaped in the form of
so-called Arnold tongues [12,16,47-50], which have been
experimentally shown in periodically kicked fibers [13,33].
Arnold tongues are a well-known feature of parametrically

driven systems. The tongues appear as a sequence of expand-
ing unstable regions in the parameter space of the forcing
frequency and amplitude. The first such Arnold tongue can
be observed in the top-left panel of Fig. 5. In the other panels
of the first column, ¢ # 0 so that the kick strengths are now
random, while the Z, remain periodic. The corresponding
fibers can therefore be viewed as random perturbations of a
periodic fiber. It appears from these data that the fluctuating
kick strengths only weakly affect the position and strength of
the Arnold tongues. In the other columns of Fig. 5, on the
other hand, MI gains are shown for fibers for which there
is randomness in both kick positions Z, and kick strengths
An. It appears from these data that randomizing the positions
of the kicks has a much stronger effect than randomizing
their strengths. As the randomness increases, one observes a
marked decrease in the MI gain, with a widening of the Arnold
tongue, while its position is less affected. Note that the MI is
considerably larger in these fibers with A = 1 than with those
having A = 0 as can be seen by comparing the vertical scale
of Fig. 5 with that of Figs. 2 and 3. In the first case, we are
dealing with random perturbations of a periodic fiber, which
displays MI due to parametric resonance. In the second, the
Ml is, on the contrary, generated by the randomness.

In Fig. 6 the numerically computed sample and mean MI
gains are displayed for a Poisson fiber with values of ¢ as
indicated. For ¢ = 0 one observes the identical vanishing of
these gains at w =~ 2.5. This is actually a more general phe-
nomenon, not related to the distribution of the kicks, that is
easily understood as follows: Let us consider a defocusing
fiber with, for all n, A, = A > 0 and with arbitrary values
for Z,,. They could in particular be periodic, quasiperiodic, or
random. If we now choose w, as

_ w?
nw = )‘A.BZZreana (38)

then we immediately see from (6) that K, = £/I,. In other
words, for these values of w, the kicks have no effect on the
linearized solution of the equation of motion. One therefore
has @, = +L, and so the sample MI gain is equal to the
sample MI gain of the unperturbed fiber. Since the latter is de-
focusing, the sample MI gain vanishes. When n = 1, one finds
w = /27 ~2.5. That the mean MI gain must also vanish
follows from observing that, if the above condition is satisfied,
then 6 = n in Eq. (20). Hence, Eq. (21) implies M = M.
and consequently M = M . But we saw that the eigenvalues
of ]\_/I+ are 1, x4, with |x4| < 1. Hence the mean MI gain also
vanishes.

Let us stress that this phenomenon is not limited to the
Poisson fiber, for which it can be observed in Fig. 6. In fact,
for the simple random-walk fiber it is visible in the top panels
of Fig. 5. The phenomenon also appears in periodically kicked
fibers where

— 7 — Nyef
B2(2) = Barer + AP Z 5<—et),
" Zref

so that the spatial average of the GVD is

Zref

ﬂZ,av = Ba(2)dz = ﬁz,ref + A,Bzx.

Zref 0
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FIG. 5. Sample and mean MI gains for a simple random-walk process and A = 1 and 8, uniform in [—1, 1]. Color code is the same as in

Fig. 2.

It is then well known that the Arnold tongues for such a fiber
occur at values w), defined by

w?
ﬂZ,aerean = \/(VPZref)z + (I’UT )2 - VPZref-

Comparing this to Eq. (38), one observes that, for all n, ), <
wy. Note that both w, and w), depend on A

Condition (38) is complementary to condition (35). The
former arises when the spacing between the kicks is constant,
whereas the second appears when the amplitude of the kicks
is constant. The two conditions show that, whenever either
the position or the amplitude of the kicks are determinis-
tic, particular values of the frequency exist where the gain
vanishes.
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e=0 e=0.25 e=09
01} 1 0.1 01
-, v o \\ P N
0.05 ¢ e Vi 0.05 e \ 0.05 i T
’ Vi ’ S/ N
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K4 \ X 8 e 2
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FIG. 6. Sample and mean MI gains for a Poisson model with A = 1. Color code is the same as in Fig. 2.
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VII. DISCUSSION AND CONCLUSIONS

We reported on the modulation instability phenomenon in
optical fibers where the GVD is a random process. Most stud-
ies of such random fibers have concentrated on the case when
a homogeneous GVD is perturbed by stationary white noise.
In that case various methods exist to compute the MI gain.
White noise is, however, very particular and not always ade-
quate to model physically relevant scenarios. In this paper we
investigated the behavior of the MI gain in random fibers for
which the GVD is of a very different nature. More specifically,
we considered a class of experimentally realizable [33] ran-
dom fibers in which a constant normal GVD is perturbed by a
sequence of § kicks with random positions and amplitudes.

The main result of our analysis is fourfold. First, we show
that, in this situation, low frequency MI lobes always arise as
a result of such random perturbations, independently of the
statistical distribution of the position and amplitudes of the
kicks. We trace the occurrence of MI in random fibers to a
mathematical mechanism familiar from the study of Ander-
son localization and of the occurrence of positive Lyapunov
exponents in chaotic dynamical systems, namely, the growth
of the product of random two-by-two matrices, as described
by the Furstenberg theorem [45]. Second, we show that the
specific shape of these side lobes depends on these statistical
properties and we provide expressions to determine them. In
particular, we find that, if either the positions or the amplitudes
of the kicks are deterministic, then at special frequency values
the MI gain is identically zero. At these same points, the MI
remains suppressed when the random fluctuations of the con-
trol parameter remain small enough. Third, we show that the
randomly kicked fibers considered behave, in a suitable pa-
rameter regime that we identify, as a fiber with a white-noise
GVD. Finally, we have observed that, for comparable param-
eter regimes, the MI produced through parametric resonance
in fibers with a periodic GVD is considerable larger than the
MI gain obtained from random perturbations of the fibers.
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APPENDIX A: PERTURBATIVE ANALYSIS

The eigenvalue x, of M in Eq. (28) that emanates from 1
can be expanded as

xy =14+ +0°x® + 0(), (AL)
and the corresponding eigenvectors of M and M,
on =0+ e +170® + 0,
U =¥+ 0y + Py @ + 0@,

where @, @ are defined in Eq. (23). Expanding the eigen-
value equation in powers of 1 leads in the usual manner to the
first correction to the eigenvalue:

T J— —
0 — 1y O (M, —M_)p”
2 Y07 O

(1 — u?)?

4u?

Note that this correction does not at all depend on the distri-
bution of Z, nor of A,,.

To obtain a satisfactory expression for the mean MI gain
G, (), we need to obtain the second-order correction x.
For that purpose, we need the first correction ¢! to the
eigenvector corresponding to x,, which is given by

= -t =
= g2 = (] =

|
oV = —— (WMo + W leM)e_],
I;0-t,-90+

where

o _ VLM
+ 1-— X+ ’

Yy =0. (A2)

. — —T .
Here ¢ are the eigenvectors of M, and of M, corresponding
to the eigenvalues x4, given by

pr=(—p> +ip 1),

Yo = £2ip —p?), (A3)
with ¥ Lo, = —4u?. Finally, the second-order correction to
the eigenvalue is

OT AVRAM 9©
@ = v et ¢ ’ (A4)
vOle
with
R L [wwi w_llff]: 2 Re“’“ﬁ.
1/f1g0+ l—xp  1—x W1¢+ 1 —xy
Hence
o__ 2 YO AMg, L AMp®
YOTeOylep, 1—xy
1 OTH7 T3 o©
S v prYiMo (AS)
2y OTpOy o, 1 —xy

Here we used in the last line that YOTM o, =0 since
Yy OTp, =0 and similarly 7'M, ¢® = 0. One finds

YoM g, =1 —ph), YiM_o© =1 — pu'x,.

Hence
2 = ] (1 —pu*?*(1+Re :
16u* xp—1
1 2528 — 1) + §2
= | — by~ =2 A6
16M4( w) 457 1 52 (A6)
where

S, = sin(2kAZ).
(A7)

S =sin*(kAZ) = 3(1 — cos(2kAZ)),
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APPENDIX B: COMPUTATION OF M

We describe here how to calculate the coefficients of the
3 x 3 matrix M in Eq. (22). They depend on the following
averages of trigonometric functions: For the three terms in-
volving the kicks we have

_ 1! o —
cos2 6 = 3 / cos’ |:A,32Zref7()\. + sx):|dx
—1

1 N 1 coS(AABrZres@?) sin(e A BrZyes ?)

B 2 2 gAﬁZZrefw2
sinZ 6 = l _ 1 COS(XA,BZZrer)Z) sin(e Aﬁzzrefa)z)
2 2 eABrZre? ’
and
- SiN(AA BoZier ) sin(e A B Zyer %)
sin 20 = .

EA B Zres w?
For the four terms involving AZ, we have for the random-
walk model
sin(Zerefsz)

-1 1
2(kAZ) = — + — cos(2kZ,
cos*( ) > + 3 coS(2kZyer) K Zore,

’

SN2 (kAZ) = § — § cos(2hZyer) TYEte2),
- sin(2kez Zrer)
cos(2kAZ) = cos(2kZyet) —————,
2ngZref
and
- in(2keZ,
SNKAZ) = sin(2kZy ) CkezZrer)
2kezZret

For the four terms involving AZ, we have for the Poisson
model

1 1
21 +4k2Z2°

ref

1
cos2(kAZ) = 3 +

——— 1 1 1
Sin2(kAZ) = = — - —————,
2 2144272,

cos(RkAZ) = ————,
cos( ) 1+ 4k2Zr2ef
and

2k Zref

N(kAZ) = ——tt
SNCRAD) = ez,
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