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Exploring the physics and potential applications of vectorially structured light with propagation-invariant
transverse structures has benefited many areas of modern optics and photonics. In this paper, we investigate
the noneigenvector modes of paraxial light fields, focusing on the propagation variations and revivals of their
transverse structures, including both spatial and polarization structures. We show that the physical mechanism
behind the variations and revivals of their transverse structure is linked to the evolution of the intramodal
phases between the constituting spatial modes. Such evolution originates from fractional Gouy phases, or rather,
geometric-phase difference between spatial modes with different orders under a same unitary transformation.
This underlying principle provides a general guideline for shaping vectorially structured light with custom
propagation-evolution properties, and may also inspire a wide variety of new applications based on structured
light.
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I. INTRODUCTION

Paraxial light fields with specific transverse structures, in-
cluding both their complex amplitude and polarization, are
generally known as structured Gaussian modes or structured
light for short, which have become a very active topic in
modern optics [1–3]. The transverse structure of a paraxial
light field and its corresponding evolution upon propagation
can fully be described by a solution of the paraxial wave equa-
tion, which can be regarded as an analog of the Schrödinger
equation for free particles [4]. Except for an ideal plane wave,
any eigensolution of the wave equation corresponds to a phys-
ically realizable “eigen” spatial mode, whose transverse struc-
tures are propagation invariant apart from an overall change of
size. For instance, the Laguerre-Gauss (LG) and the Hermite-
Gauss (HG) modes, well known in laser physics [5], are eigen-
solutions of the wave equation in cylindrical and Cartesian co-
ordinates, respectively; similarly, the Ince-Gauss (IG) modes
are analogs in elliptical coordinates [6]. These Gaussian mode
families have their own special features in transverse struc-
tures (but have the same fundamental TEM00 mode), and
each can independently constitute a unique and unbounded
2D Hilbert space. Thus, in principle, one can define other
new Gaussian mode families on demand by designing a series
of coherent superpositions (i.e., complex series) of LG, HG,
or other accessible eigenmodes with identical modal orders
[7], such as the intermediate Hermite-Laguerre-Gauss modes
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[8]. Moreover, due to the vector nature of light, the superpo-
sition can also be realized in a vector form and to generate
nonseparable superpositions of orthogonal polarizations and
spatial modes, which are known as optical spin-orbit coupled
(SOC) modes [9]. These special vector superpositions with
well-defined modal orders can, in fact, be regarded as eigenso-
lutions of vector wave equation having features with spatially
variant polarization, such as cylindrical vector modes [10].

Beyond the (scalar or vector) eigenmodes, more general
cases are noneigenmodes with nonidentical modal orders,
whose transverse structures would no longer remain con-
stant upon free-space (or focusing) propagation. Importantly,
the propagation variations of the transverse structures in
these cases provides the physical basis required to build 3D
structured light [1,11]. The 3D-tailored paraxial light in am-
plitude and polarization will provide the means to shape and
control (both linear and nonlinear) light-matter interactions
[12–15]. Noteworthy, the propagation evolution of non-eigen-
structured light is usually regular and even sometimes displays
periodicity. In the scalar regime, for instance, Courtial et al.
reported that the patterns of second-harmonic waves of some
high-order LG modes varied upon propagation but can finally
reproduce their original structures in the far field [16], and
this self-imaging in the far field was attributable to a varied
intramodal phase induced by nonsynchronous Gouy-phase
accumulation [17]. Recently, Khoury’s group discussed, in
a more general way, the pattern (intensity profile) variations
and revivals of scalar structured Gaussian modes, which were
enabled by the fractional Gouy phase [18,19]. Importantly,
they unified the physics behind the pattern revivals and the
well-known Talbot effect [20]. In the vector regime, the
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generation and application of vector-structured light with
custom propagation-variant transverse structures have also
attracted increasing interest in recent years [21–25].

In this paper, a systematic study on the evolution of the
transverse structure of vector-structured light upon free-space
(or focusing) propagation is presented. Particularly, the in-
tramodal phase variations and revivals in SOC space and
spatial mode subspace mediated by the fractional Gouy phase
are revealed. In addition, a detailed analysis of the associated
influence on the transverse structure of vector-structured light
is given. The structure of the paper is as follows: a theoret-
ical background and experimental methods are presented in
Sec. II and following this we proceed to analyze the in-
tramodal phase variation (IPV) and the intramodal phase
revival (IPR)-induced propagation variations and revivals of
vector profiles in various vector-structured light in Sec. III.
Finally, in Sec. IV we provide a conclusion and final remarks.

II. THEORETICAL AND EXPERIMENTAL METHODS

A. Theory

Throughout this paper, we will use the term vector-
structured light to refer to a nonseparable superposition state
with respect to a pair of orthogonal polarizations ê± and asso-
ciated polarization-dependent (scalar) spatial modes ψ±(r, z),
which at the beam waist (z = 0) can be mathematically ex-
pressed as

E(r, z0) = √
αψ+(r, z0)ê+ + eiθ

√
1 − αψ−(r, z0)ê−

ψ±(r, z0) = u±(r, z0)eiv±(r,z0 ), (1)

where α ∈ [0, 1] and θ are the weight coefficient and initial in-
tramodal phase, respectively, and r denotes the transverse co-
ordinates. Given that ψ±(r, z) are orthogonal to each other, if
α �= 0 or 1, E(r, z0) describes a spatially variant polarization
state with an intensity profile of αu2

+(r, z0) + (1−α)u2
−(r, z0).

Except for some special cases, such as cylindrical vector
modes, the transverse structure (or vector profile) of E(r, z0)
usually cannot remain constant upon propagation (z > 0). The
focus of this study is to reveal underlying principle of the
transverse-structure evolution of E(r, z0) from z0 to z∞.

Unlike an infinite plane wave eikz having a pure on-axis
wave vector kz = k = ω/c, according to the uncertainty prin-
ciple concerning the transverse position and momentum, any
paraxial light field with a finite aperture inevitably has a
transverse-momentum component given by k2

r + k2
z = k2. As

a result, since c2 = vgvph, the group velocity of paraxial light
along the z direction should be slower than c, while the prop-
agation of the wavefront should be ahead of an ideal plane
wave, leading to a pair of complementary expressions [26–29]

τ (z) = −
∫ z

0

(〈
k2

r

〉/
2k2

)
dz

φ(z) =
∫ z

0

(〈
k2

r

〉/
k
)
dz, (2)

where τ (z) and φ(z) represent the group velocity delay and
the wavefront acceleration of a paraxial wave compared with
an ideal plane wave, respectively, and the expected value can
be calculated by using the transverse Laplacian operator, i.e.,

〈k2
r 〉 = −〈ψ |∇2

r |ψ〉. The two complementary terms codeter-
mine the group and phase velocities of the paraxial Gaussian
modes. Specifically, the first term governs the subluminal
propagation features of paraxial light and, recently, the arrival
delays of various structured Gaussian pulses and photons have
been successfully observed [26–28]. The second expression
gives rise to the well-known Gouy-shift effect, which was
first observed by Gouy and has been overserved in various
wave systems [30–37]. Noteworthy, both τ (z) and φ(z) may
make a profound impact on the transverse structure of the
paraxial light fields via mediating temporal-spatial overlap
and intramodal-phase structures, respectively. However, in
this study we only consider monochromatic waves and thus
focus on the IPV and IPR mediated by Gouy phase.

For a general propagating wave, the accumulated Gouy
phase at a given propagation plane can be obtained via Kirch-
hoff diffraction integral (or the Collins version for a lens
system), contributed by the phase factor in front of the integral
[29], while for a propagation-invariant structured Gaussian
mode with a well-defined modal order N, there is a concise
and elegant expression developed by [5]

φN (z) = (N + 1) arctan(z/zR), (3)

where zR = kw2
0/2 denotes the Rayleigh distance. Based on

this, we analyze the propagation evolution of E(r, z). The
modal order N is defined as 2p + |�| and m + n for LG and
HG modes, respectively. Note that the profiles of u±(r, z) may
be propagation variant, that is, they may be superpositions
of eigenmodes with different modal orders. For simplicity,
we first assume ψ±(r, z) represents a pair of propagation-
invariant eigenmodes with identical modal orders of N±,
respectively. Even under this simplified assumption, however,
the initial transverse structure of E(r, z0) usually still cannot
remain constant after leaving the beam-waist plane. More
specifically, according to Eqs. (1) and (3), we have

E(r, z) = √
αψ+(r, z)ê+ + ei[θ+δ(z)]

√
1 − αψ−(r, z)ê−

δ(z) = 
N arctan(z/zR), (4)

where 
N = N+ − N− can be both positive or negative inte-
gers. Note that the appearing z-dependent exponential term,
that is, δ(z), gives rise to a propagation-varied effective
intramodal phase [θ + δ(z)]. Thus, for 
N �= 0, the effec-
tive intramodal phase will no longer remain constant since
ψ±(r, z) carry different modal orders. This IPV phenomenon
occurring in SOC space leads to a variation in the transverse
polarization profiles as a function of z. However, it is worth
noting that, first, the intensity profile given by αu2

+(r, z) +
(1−α)u2

−(r, z) remains constant apart from a
√

2 overall en-
larging per zR, and second, the spatial “concurrence,” given
by C = √

1 − s̄3(r), is still unchanged. Here s̄3(r) denotes the
average of the third Stokes parameter, defined by ê±, over the
transverse plane.

Figure 1 shows δ(z) as a function of the propagation
distance for the cases 
N = 0, 4, and 8, respectively. It is
important to note that the IPV is a periodic function, or rather,
θ = [θ + 2πn], n ∈ Z , thus the initial intramodal phase in
SOC space is reproduced as δ(z) = 2πn. Due to the fact that
arctan(z/zR) ∈ [0, π/2], the precondition for IPR is 
N � 4.
This IPR phenomenon leads to revivals of the polarization
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FIG. 1. Normalized Gouy-phase difference φ
N (z) and δ(z) as
functions of propagation distance, for cases 
N = 0, 4, and 8, re-
spectively, where Rn denotes the nth IPR point.

profile; in other words, it provides a mechanism to realize a
periodic 3D paraxial vector structure.

In addition, usually ψ±(r, z) may be noneigenmodes com-
posed by n eigenmodes with different orders N1, N2, …, Nn,
leading to their beam profiles, i.e., u2

±(r, z), being not propa-
gation invariant and intensity-profile revivals may occur [18].
In these complicated cases, where the IPVs and the IPRs occur
in both SOC space and spatial-mode subspace, the vector pro-
file of E(r, z) would experience a more intense evolution with
respect to both polarization and intensity profiles, as well as
the spatial concurrence or s̄3(r) defined by ê±, being changed
upon propagation. These complicated cases are discussed later
through specific examples.

B. Experimental setup

Before considering the detailed analysis based on spe-
cific vector modes, the experimental setup used is discussed
briefly to verify the theoretical analysis. In the experiments,
a compact and robust device was used for the genera-
tion and manipulation of vectorially structured light [38].
Figure 2 shows a schematic representation of the device,
where the core component is the self-stable polarization
Mach-Zehnder interferometer. To generate a desired vector
mode at the beam-waist plane, that is, E(r, z0), a laser beam
(780 nm) with the TEM00 mode enters the Mach-Zehnder
interferometer from the left polarizing beam displacer (BD-1).
After that, the two parallel beams were directed simultane-
ously to two different sections of a spatial light modulator
(SLM) and were independently controlled. Two complex-

FIG. 2. Schematic representation of the experimental setup
and where the key components include the polarizing beam dis-
placer prisms (BD), a spatial light modulator (SLM), a camera
(CCD), a quarter-wave plate (QWP), half-wave plates (HWP), and
mirrors (M).

amplitude modulation holograms designed for producing
u±(r, z0) exactly were loaded on the two sections [39].
Then, another polarizing beam displacer (BD-2) combined
u±(r, z0), and outputted the desired vector mode E(r, z0). To
characterize the transverse structure of the vector-structured
light, a camera (CCD) combined with polarizers was used to
perform spatial Stokes tomography on the generated modes
[40]. Besides, to realize fine control of the propagation
distance, that is, z/zR, the digital propagation phases were
superposed on the holograms [39]. In this way the camera
fixed at the back focal plane of the Fourier lens can record
exactly the 3D vector structures of incident light without any
mechanical movement [41].

III. RESULTS

In this section, various types of variations and revivals
for the specific vector-structured light are further examined,
which are categorized by evolution types, i.e., full propa-
gation invariant, only polarization profile variant, and full
vector profile variant, respectively. Without loss of generality,
we can represent and analyze structured Gaussian modes in
cylindrical coordinates, i.e., r → {r, ϕ}, and the associated
eigenmodes carrying orbital angular momentum (OAM) are
denoted as (LG)±�

p , where � and p are the azimuthal and
radial indices, respectively, and the mode order is defined as
N = 2p + |�|.

A. Propagation invariant

Before studying the various transverse evolutions upon
propagation, we first examine the principle for design and
generation of propagation-invariant vector modes, which, in
theory, would correspond to certain eigensolutions of vector
wave equation in specific coordinates. By this principle we
consider a general four-order vector mode in elliptic coordi-
nates, and given by [42][

(IG)e
44(r, z; ε)êH + (IG)o

44(r, z; ε)êV
]/√

2, (5)

where e (o) denotes even (odd) parity, and ε ∈ [0,∞) defines
the ellipticity of the coordinates. In particular, IG modes be-
come the LG and HG modes with same the orders as ε = 0
and ε → ∞ [6], respectively, in which the vector mode shown
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FIG. 3. General propagation-invariant vector-structured Gaussian modes, where (a) shows the theoretical and observed vector profiles of
fourth-order general vector mode in elliptic coordinates with different ellipticity, and (b) shows two examples of propagation-invariant FP
modes; the transverse unit is given in r/wz, for compensating the beam divergency upon diffraction.

in Eq. (5) is transformed into[
(LG)−4

0 (r, z)êH + i(LG)+4
0 (r, z)êV

]/√
2

[(HG)40(r, z)êL + (HG)31(r, z)êR]
/√

2. (6)

It can be seen that all vector modes shown in Eqs. (5) and
(6) have the same modal order of N = 4, and their theoretical
vector profiles and the corresponding observations from the
beam-waist plane to the far field are shown in Fig. 3(a),
which confirmed that the transverse structures are propagation
invariant. In the vector profiles, the transverse unit is r/wz,
where wz = w0

√
1 + (Z/ZR)2, so that the beam enlarging

upon propagation is compensated. Notes that both the HG and
IG modes can be represented as a coherent superposition of a
series of LG modes with the same order; for instance, the IG
modes in Eq. (5), as ε = 1, can be represented as [6,43]

(IG)e
44 = 0.036(LG)0

2 − 0.17(LG)±2
1 + 0.985(LG)±4

0

(IG)o
44 = −0.16(LG)±2

1 + 0.987(LG)±4
0 , (7)

where one can note that all the LG components have an
identical modal order, given by N = 2p + |�| = 4. Thus, be-
sides exploring eigensolutions of vector wave equation, a
more straightforward way to design a propagation-invariant
vector mode is to define on-demand a pair of orthogonal
spatial modes that are composed of LG (or other accessible
eigen-) modes with the same modal order, that is, mak-
ing 
N = 0 in both SOC space and spatial-mode subspace.
For instance, full Poincaré (FP) modes are well known for
their unique and propagation-rotational polarization profiles
[44], and according to the above principle it is possible
to realize a propagation-invariant FP mode. Figure 3(b)
shows two typical examples ((LG)0

1êL + (LG)2
0êR)/

√
2 and

((LG)3
0êL + (LG)1

1êR)/
√

2.

B. Variation in polarization profile

We now demonstrate the simplified case described by
Eq. (4), that is, assuming ψ±(r, z) are a pair of propagation-

invariant eigenmodes with different orders of N± (i.e.,

N = N+ − N− �= 0); and, moreover, for simplicity, all the
initial intramodal phases were set as θ = 0. For the two modal
indices of the LG modes, it was assumed that ψ±(r, z) carry
different azimuthal indices and modal orders, i.e., �1 �= �2.
Specifically, the FP mode, ((LG)0

0êL + (LG)0
2êR)/

√
2, whose

polarization profile would rotate 180° from z0 to z∞ was
first considered. In Fig. 2(b) it is shown that, by adding
radial mode into the lower-order mode ((LG)0

0), its polar-
ization profile can become propagation invariant as making

N = 0. Here we focus on the IPV and IPR phenomena
in the cases where 
N � 4, and we consider a FP mode
((LG)0

0êL + (LG)2
2êR)/

√
2, whose δ(z) and the correspond-

ing vector profiles upon propagation are shown in Fig. 4(a).
According to the simulation, the IPR phenomenon and the
associated polarization-profile revival should occur at z =
1.732zR, which were confirmed by experimental observations
shown in the second line. Then, the cylindrical vector mode,
given by ((LG)1

2êL + (LG)−1
0 êR)/

√
2, was considered, as

shown in Fig. 4(b). Compared with a standard radial-polarized
mode, its polarization profile (inner ring) shows an oscillation
from the radial (at z0) to the azimuthal (at zR) and finally revive
the radial polarizations (at z∞). These propagation-rotation
cylindrical vector modes have also been observed in the vector
Bessel-Gauss beams [21], and the principle is the same: that
is, making 
N � 4 between the two OAM conjugated modes.
Now it is assumed that ψ±(r, z) carries the same azimuthal
index (or OAM per photon) but a different radial index, i.e.,
p1 �= p2, and we consider such a type mode with 
N = 8,
given by ((LG)0

0êL + (LG)0
4êR)/

√
2. Figure 4(c) shows the

corresponding theoretical and experimental results; as ex-
pected, two IPRs and associated polarization-profile revivals
occur at zR and z∞, respectively. Unlike the two previous
examples shown in Figs. 4(a) and 4(b), whose polarization
profiles varied along azimuthal direction, here the variation
occurs in a radial direction. Additionally, the intensity profiles
in all the above examples have not changed, because the
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FIG. 4. Vector-structured modes with propagation-variant polarization profiles, where Rn denotes nth. IPR and polarization-profile revival.
The transverse unit is given in r/wz.

IPVs and the IPRs only occurred in SOC space. That is, all
variations in the vector profile originate from the rotation of
the local polarization orientation, while the C or s̄3(r) of each
location (or pixel on CCD) has not changed.

C. Variation of vector profile

In this section, we demonstrate more complicated cases
where ψ±(r, z) are not simple eigenmodes, that is, at least one
of them is composed of n eigenmodes with different modal
orders, leading to IPVs and IPRs occurring in both SOC space
and spatial-mode subspace. We first consider a vector mode
composed of three LG modes with different orders N1 = 1,
N2 = 5, and N3 = 3, respectively, and described by

1

2

([
(LG)0

0(r, z)+(LG)0
2(r, z)

]
êL + 1√

2
(LG)1

0(r, z)êR

δn(z) = 
Nn arctan(z/zR), n = 1, 2, 3. (8)

Here δ1(z) and δ2,3(z) denote the IPVs which have accu-
mulated in the spatial-mode subspace and the SOC space,
respectively. Their corresponding modal-order differences are
defined as 
N1 = N2 − N1 = 4, 
N2 = N3 − N1 = 1, and

N3 = N3 − N2 = −3, respectively, indicating IPR can only
occur in the spatial-mode subspace at the far field. Therefore,
as shown in Fig. 5(a), both the intensity and the polarization
profiles of this mode change upon propagation, but only the
intensity profile can be revived at z∞. We then consider an-
other complex vector mode, given by

1

2

[
(LG)2

1(r, z)+(LG)2
3(r, z)

]
êL + 1√

2
(LG)0

0(r, z)êR, (9)

where the modal-order difference in the spatial-mode sub-
space is 
N1 = N2 − N1 = 4 (a 2π IPV) while in the SOC
space are 
N2 = N1 − N3 = 4 (a 2π IPV) and 
N3 = N2 −
N3 = 8 (a 4π IPV). In contrast to Eq. (8), the IPRs in this
mode can occur in both the spatial-mode subspace and the
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FIG. 5. Vector-structured modes with propagation-variant vector profiles, where Rn denotes nth. IPR and polarization-profile revival and
Rsub denotes IPR in spatial-mode subspace. The transverse unit is given in r/wz.

SOC space and, particularly, δ1,2,3(z) would be synchronized
at the far field. Figure 5(b) shows the evolution of δn(z) and
the associated vector profiles upon propagation, and where
the initial vector profile at the z0 plane is revived at the far
field (z∞). In the two above examples, it is important to note
that because the variations and revivals of vector profiles in-
volved both the intensity and polarization structures, thus the
local polarization ellipticity, measured by concurrence, was
changed upon propagation as well.

Noteworthy, the evolution of vector profiles shown in
Eqs. (8) and (9), in fact, is not rare. For instance, the FP modes
used in most experiments were generated by using phase-only
modulation, such as setting a q plate as a 1/4 vortex wave plate
by control voltage, in which the OAM carrying mode were not
the eigen LG modes but the hypergeometric Gaussian (HyGG)
modes, and the corresponding FP modes can be expressed as

[
(HyGG)�(r, z)êL+(LG)0

0(r, z)êR
]/√

2. (10)

This HyGG mode carrying a well-defined OAM but un-
defined radial index, or rather, it can be represented as an
infinite series of LG modes with same � but different p [45].
In consequence, the OAM carrying mode in Eq. (10) is not
propagation invariant and the corresponding evolution of vec-
tor profile would be much stronger than those in Eqs. (8) and
(9). In this case, it is impossible to predict easily the IPVs and
IPRs upon propagation via using a concise toolkit shown in

Eq. (4). But, we still can obtain a numerical result by using
diffraction integral, in specific, using Collins (or Kirchhoff)
diffraction integral to predict the transverse structure at a
given propagation plane, which in cylindrical coordinates is
given by [4,46]

E (r, ϕ, z) = i

λz
exp(−ikz)

∫
r0dr0

∫
dϕ0E (r0, ϕ0, 0)

× exp

{
− ik

2z

[
r2

0 − 2rr0 cos(ϕ − ϕ0) + r2]},

(11)

where the effective Gouy phase originates from the phase fac-
tor before the integral [29]. Figure 6 shows the theoretical and
experimental results for the FP modes shown in Eq. (10) with
� = 1 and � = 2, respectively. We see that, unlike the ideal
FP modes based on LG modes, here the transverse plane only
contains various linear polarizations at the z0 plane, that is,
‘C = 1’, while the well-known FP-type polarization profiles
gradually appear on their way to the far field. Interestingly, for
� = 2, a familiar cylindrical vector-type polarization profile
occurred at the beam-waist plane.

IV. DISCUSSION AND CONCLUSION

Based on the above demonstrations, now it is clear that the
propagation variations and revivals of the transverse structure
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FIG. 6. Propagation evolution of FP modes based on HyGG modes with (a) � = 1 and (b) � = 2, respectively. The solid yellow lines in
spatial concurrence correspond to simulated results for LG-based FP modes, while solid and dashed blue lines correspond to simulated and
observed HyGG-based FP modes, respectively. The transverse unit is given in r/wz.

presented above are governed by the IPVs and IPRs within
noneigenvector Gaussian modes. It can be intuitively under-
stood the IPVs as the accumulated nonsynchronous Gouy
phase during propagation, i.e., δ(z) = 
Nπ/2 from z0 to z∞.

FIG. 7. Schematic of the geometric phase of spatial modes ac-
companying a 4 f imaging transformation.

Furthermore, because the propagation of paraxial fields in free
space or a lens system belong to a unitary transformation,
from this perspective, the Gouy-phase-mediated IPVs and
IPRs can therefore be regarded as a kind of geometric phase
effect. Figure 7 shows the “motion path” (or parallel transport)
of a spatial mode on the unitary sphere (or parameter space)
of a 4 f lens transformation [31,32]. Specifically, the red and
blue traces denote propagations from z0 to z∞ and vice versa,
respectively. This motion encompasses a 2π solid angle on the
sphere, and thus acquires an accompanied geometric phase of
(N+1) π . Namely, the fractional Gouy-phase phenomenon,
in fact, is the geometric phase difference between the spatial
modes with different modal orders under the same unitary
transformation.

In summary, we have systemically studied the evolution of
transverse structure of noneigenvector Gaussian mode upon
propagation. The Gouy-phase-mediated IPVs and IPRs in the
noneigenvector modes, as well as the associated influence on
the 3D vector structure, are revealed. Our results provide a
general principle for shaping vector-structured light having
propagation invariant, on-demand variations, or periodic-
revival structures, and the corresponding underlying principle
may inspire many photonic applications based on vectorially
structured light.
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