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Optical instabilities in Fabry-Perot resonators
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We start from the Maxwell-Bloch equations that govern the dynamics of Fabry-Perot lasers and, considering a
doubled cavity, generalize our traveling wave formalism to the case in which the two-level medium does not fill
the cavity but occupies only a portion of it. We linearize these equations and focus on the adiabatic elimination
of both atomic fluctuations. Next, we restrict our attention to free running lasers under resonant conditions
and analyze amplitude and phase instabilities. The examination of the unstable domain leads to the conclusion
that the multimode Fabry-Perot instability arises near threshold only when the ratio of the longitudinal to the
transverse atomic relaxation rate is substantially smaller than unity. This result agrees with our previous study
in the limit of adiabatic elimination of the atomic polarization fluctuations only. We describe the self-pulsing
behavior that arises from the multimode instability, and exhibits hysteretic behavior when the pump parameter is
swept forward and backward. Finally, we investigate the single-mode instability and show that in the Fabry-Perot
case there is no longer the correspondence between single-mode and multimode instabilities that is well known
in the case of ring lasers. We confirm that in the case of resonant Fabry-Perot lasers the single-mode amplitude
instability arises very far from threshold.
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I. INTRODUCTION

The topic of instabilities and pattern formation in nonlinear
materials contained in optical cavities represents a classic
area of investigation in the vast domain of the dynamics of
nonlinear systems, since the 1960s [1–6]. Presently, it is still
a focus of attention thanks to the discoveries in the field of
microresonator-based Kerr frequency combs [7–9] and the
recent investigation on frequency combs in quantum cascade
lasers (QCLs) [10–14].

A treatment of optical instabilities in lasers and related
systems which includes coherent effects must be necessar-
ily based on the Maxwell-Bloch equations (MBE). Given
the complexity of such equations, however, the majority
of investigations concern ring cavities because the field
propagation is unidirectional. The case of Fabry-Perot (FP)
cavities is substantially more complex because it involves
two counterpropagating field envelopes. As a consequence,
most of previous studies are purely numerical (see, e.g.,
Refs. [15–19]).

One simplifying assumption which is usually adopted in
the study of mutimode instabilities in a FP cavity consists in
keeping only the lower order spatial harmonics of the material
variables, namely the zeroth- and second-order harmonics for
the population inversion and the first-order (sometimes also
the third-order [20]) harmonics for the polarization [21–25].
This assumption amounts to treating the problem at first order
in the scaled stationary intensity of the single-mode solution,
which limits the validity of the analysis to lasers close to
threshold.
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In a different context, related to the so-called Lugiato-
Lefever equation, an analytic treatment of FP cavities was
recently provided for both a Kerr medium [26] and a
QCL [27].

Recently [28], two of us have introduced a traveling wave
formalism (TWF) that substantially simplifies the problem
of studying the instabilities of a FP cavity even for lasers
well above threshold. Basically, we start from the MBE for
the case of a FP cavity [29,30] and consider a cavity that
occupies the interval −L � z � 0. We show that by consid-
ering the symmetrically doubled cavity in the interval −L �
z � L and appropriately defining the dynamical variables in
the additional interval 0 � z � L, it is possible to formulate
the dynamical equations in terms of the forward-propagating
envelope only.

In Ref. [28], the TWF has been introduced for the case
in which the nonlinear two-level medium fills the cavity;
one of the aims of the present paper is to extend it beyond
this limitation. This generalization is important because that
configuration is common and it is often used to vary the ratio
of the cavity round-trip time to the gain recovery time, which
is a very relevant quantity that determines if a laser is able
to sustain self-pulsing. For instance, in QCLs, which have
both very short recovery time and very short cavity length,
an external cavity is often used to make the cavity round-trip
time larger than the gain recovery time [31,32].

In a recent paper [33], the instabilities of a FP free running
laser were studied in the limit of adiabatic elimination of the
atomic polarization fluctuations only. In the present paper,
we focus instead on the adiabatic elimination of both atomic
fluctuations and present a stability analysis valid both for FP
free running lasers and for FP cavities driven by an external
coherent field.
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Next, we restrict our attention to free running FP lasers
under resonance conditions and study amplitude and phase
instabilities. We analyze the instability domain and solve nu-
merically the dynamical equations in the TWF in order to
describe the self-pulsing behavior that arises in the unstable
region.

The main body of this article concerns multimode insta-
bilities, i.e., instabilities that arise in modes different from
the mode that corresponds to the homogeneous stationary
solutions. The last section, however, is devoted to single-mode
instabilities in FP lasers that correspond to the celebrated
Lorenz-Haken instability in ring lasers. We perform this anal-
ysis basically to show that in the case of FP cavity there is no
longer the correspondence between single- and multimode in-
stabilities that holds in ring lasers [6], and we confirm the fact
that the case of resonant FP lasers the single-mode amplitude
instability is of no practical interest because this instability
arises too far from threshold.

In Sec. II, we derive the modal equations for a Fabry-Perot
cavity within the traveling wave formalism. In Sec. III, we
perform the linear stability analysis of the single-mode sta-
tionary solutions and focus on the adiabatic elimination of
the atomic fluctuations. Section IV is devoted to the analysis
of amplitude and phase instabilities in the resonant con-
figuration. We describe the instability domain and discuss
numerical simulations and self-pulsing. In Sec. V, we ana-
lyze the Lorenz-Haken single-mode instability in FP lasers.
Section VI concerns the conclusions of this paper.

II. MODAL EQUATIONS FOR A FABRY-PEROT CAVITY
WITH THE TRAVELING-WAVE FORMALISM

Let us consider the Fabry-Perot (FP) cavity of length L
shown in Fig. 1. It has mirrors with intensity transmissivity
coefficient T (reflectivity 1 − T ) and contains a two-level
sample of length L̄ much larger than a wavelength. The left
facet of the sample is assumed to be antireflection coated in
order to avoid internal reflections. EI (t ) is the monochromatic
electric field injected into the cavity and ET (t ) is the transmit-
ted field, where t denotes time. In the case of a free running
laser, the incident field is absent and ET (t ) is the emitted field.
The electric field along the cavity can be expressed as

E (z, t ) = 1
2 [EF (z, t ) + EB(z, t ) + c.c.], (1)

FIG. 1. A Fabry-Perot cavity is located in the interval −L�z�0
and includes a two-level atom sample that occupies the portion −L̄ �
z � 0. At z = −L and z = 0, there are two mirrors with intensity
transmissivity coefficient T . EF and EB denote the electric fields that
propagate in the forward and backward directions, respectively. EI

and ET are the input field and transmitted field, respectively.

where EF and EB include the factor e−iω0t and ω0 denotes
the carrier frequency. Since in the range −L � z � −L̄ the
electric field propagates in vacuum, we have at once that

EF (−L̄, t ) = EF (−L, t − �t ), (2a)

EB(−L, t ) = EB(−L̄, t − �t ), (2b)

where �t is the time the light takes to propagate from −L to
−L̄ or vice versa, i.e., �t = (L − L̄)/c, with c being the light
velocity in vacuum. On the other hand, the boundary condi-
tions at the mirrors, i.e., at z = −L and z = 0 are, respectively,

EF (−L, t ) = √
1 − TEB(−L, t ) +

√
T ĒI (t ), (3a)

EB(0, t ) = √
1 − TEF (0, t ), (3b)

ĒT (t ) =
√

TEF (0, t ), (3c)

where ĒI and ĒT are such that

EI (t ) = 1
2 [ĒI (t ) + c.c.], (4a)

ET (t ) = 1
2 [ĒT (t ) + c.c.]. (4b)

By combining Eqs. (2) and (3a), we obtain

EF (−L̄, t ) = √
1 − TEB(−L̄, t − 2�t ) +

√
T ĒI (t − �t ).

(5)

Along the sample (i.e., for −L̄ � z � 0), we can set

EF (z, t ) = EF (z, t )e−iω0t+ik0z, (6a)

EB(z, t ) = EB(z, t )e−iω0t−ik0z, (6b)

where

k0 = ω0

c̃
= ω0nB

c
, (7)

c̃ denotes the light velocity in the sample, with nB being
the background refractive index, and EF (z, t ), EB(z, t ) are
the slowly varying envelopes of the forward and backward
propagating electric fields. We have also

ĒI (t ) = EI (t )e−iω0t−ik0L̄, (8a)

ĒT (t ) = ET (t )e−iω0t , (8b)

where EI and ET denote the slowly varying envelope of the
input and output fields. By inserting Eqs. (6) and (8a) into
Eq. (5), we obtain

EF (−L̄, t ) = √
1 − T EB(−L̄, t − 2�t )eiω0/(c/2�)

+
√

T EI (t )eiω0�t , (9)

where � = L − L̄ + nBL̄ is the optical length of the cavity. In
the same way, by combining Eqs. (3b) and (3c) with Eqs. (6)
and (8), we obtain

EB(0, t ) = √
1 − T EF (0, t ), (10a)

ET (t ) =
√

T EF (0, t ). (10b)

Now we define

δ0 = 2π j̄ − ω0

c/2�
= ωc − ω0

c/2�
, (11)

where the positive integer j̄ is selected in such a way that
the modulus of δ0 is smaller than π , so that ωc is the cavity
frequency closest to the carrier frequency ω0. We introduce
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also the symbols

FF (z, t ) = dEF (z, t )

h̄
√

γ⊥γ‖
, FB(z, t ) = dEB(z, t )

h̄
√

γ⊥γ‖
, (12a)

x(t ) = dET (t )

h̄
√

γ⊥γ‖T
, y(t ) = dEI (t )eiω0�t

h̄
√

γ⊥γ‖T
, (12b)

where d is the modulus of the dipole moment and γ⊥, γ‖ are
the relaxation rates of the atomic polarization and population
difference of the two-level system, respectively. By using
these definitions, we have

FF (−L̄, t ) = √
1 − T FB(−L̄, t − 2�t )e−iδ0 + Ty, (13a)

FB(0, t ) = √
1 − T FF (0, t ), (13b)

x(t ) = FF (0, t ), (13c)

where we have assumed that the amplitude y of the injected
field is time independent. Next, we turn our attention to the
dynamical equations that govern the time evolution, that in the
interval −L̄ � z � 0 are given by (see Eqs. (14.57)–(14.60) of
Ref. [6])

∂FF (z, t )

∂z
+ 1

c̃

∂FF (z, t )

∂t

= g

2π

∫ π

−π

dϕe−iϕP(z, ϕ, t ), (14a)

−∂FB(z, t )

∂z
+ 1

c̃

∂FB(z, t )

∂t

= g

2π

∫ π

−π

dϕeiϕP(z, ϕ, t ), (14b)

∂P(z, ϕ, t )

∂t

= γ⊥[(FF (z, t )eiϕ + FB(z, t )e−iϕ )

×D(z, ϕ, t ) − (1 + i�)P(z, ϕ, t )], (14c)

∂D(z, ϕ, t )

∂t

= −γ‖

{
1

2
[(FF (z, t )eiϕ + FB(z, t )e−iϕ )

×P∗(z, ϕ, t ) + c.c.] + D(z, ϕ, t ) − 1

}
, (14d)

where ϕ = k0z and P(z, ϕ, t ), D(z, ϕ, t ) are the normalized
atomic polarization and population difference, respectively.
The symbol g denotes the atom-field coupling constant and
� = (ωa − ω0)/γ⊥, where ωa is the Bohr transition frequency
of the two-level atoms. In the case of an absorbing medium
instead of an amplifying medium, g must be replaced by
(−α), where α is the absorption coefficient per unit length [6].
Equations (14) are associated with the boundary conditions
(13a) and (13b). At this stage, let us introduce the following
transformations:

F ′
F (z, t ) = e

z
2L̄ [ln(1−T )−iδ0]FF (z, t ) + z

2L̄

Tyei δ0
2√

1 − T
, (15a)

F ′
B(z, t ) = e− z

2L̄ [ln(1−T )−iδ0]

√
1 − T

FB(z, t ) − z

2L̄

Tyei δ0
2√

1 − T
, (15b)

where the transformed normalized envelopes F ′
F (z, t ) and

F ′
B(z, t ) obey the boundary conditions

F ′
F (−L̄, t ) = F ′

B(−L̄, t − 2�t ), (16a)

F ′
F (0, t ) = F ′

B(0, t ), (16b)

and the low transmission limit [6] (also called mean field limit
or uniform field limit in the literature)

T � 1, |δ0| � 1, gL̄ � 1, (17)

with

θ = δ0

T
= O(1), A = 2gL̄

T
= O(1). (18)

In this limit, Eqs. (14) become

L̄

(
∂F ′

F (z, t )

∂z
+ 1

c̃

∂F ′
F (z, t )

∂t

)
= Ty

2
(19a)

−T + iδ0

2
F ′

F (z, t ) + gL̄

2π

∫ π

−π

dϕe−iϕP(z, ϕ, t ),

L̄

(
−∂F ′

B(z, t )

∂z
+ 1

c̃

∂F ′
B(z, t )

∂t

)
= Ty

2
(19b)

−T + iδ0

2
F ′

B(z, t ) + gL̄

2π

∫ π

−π

dϕeiϕP(z, ϕ, t ),
∂P(z, ϕ, t )

∂t

= γ⊥[(F ′
F (z, t )eiϕ + F ′

B(z, t )e−iϕ )

×D(z, ϕ, t ) − (1 + i�)P(z, ϕ, t )], (19c)

∂D(z, ϕ, t )

∂t
= −γ‖

{
1

2
[(F ′

F (z, t )eiϕ + F ′
B(z, t )e−iϕ )

×P∗(z, ϕ, t ) + c.c.] + D(z, ϕ, t ) − 1

}
.

(19d)

FIG. 2. The Fabry-Perot cavity of Fig. 1 is unfolded in a uni-
directional ring cavity of length 2L from −L to L with a two-level
atoms sample that occupies the portion from −L̄ to L̄. At z = −L and
z = 0, there are two mirrors with intensity transmissivity coefficient
T while the other two mirrors are perfectly reflecting. The input
beam enters the cavity at z = −L and the output beams leaves the
cavity at z = 0. The intracavity field F ′

F (z, t ) propagates clockwise,
obeys periodic boundary conditions, and in the region of positive
z coincides with the backward field of the Fabry-Perot cavity for
negative z.
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The traveling wave formalism for the dynamics of optical sys-
tems in nonlinear FP cavities [28] starts from symmetrically
doubling the interval −L̄ � z � 0 to the interval −L̄ � z � L̄,
defining the quantities in play in the additional interval
0 � z � L̄ as follows:

F ′
F (z, t ) = F ′

B(−z, t ), (20a)

F ′
B(z, t ) = F ′

F (−z, t ), (20b)

and
P(z, ϕ, t ) = P(−z,−ϕ, t ), (21a)

D(z, ϕ, t ) = D(−z,−ϕ, t ). (21b)

We note that Eqs. (20) and (21) incorporate the boundary
condition (16b) and are consistent with Eqs. (19) because,
if in these equations we replace z and ϕ by −z and −ϕ,
respectively, and take into account Eqs. (20) and (21), we
recover the starting set of equations (19). A scheme of the
unfolded cavity is shown in Fig. 2.

The main advantage of the steps (20) and (21) is that now
we can drop Eq. (19b), because F ′

B(z, t ) is expressed in terms
of F ′

F (z, t ) using Eq. (20), and we can reformulate the set of
dynamical equations as follows:

L̄

(
∂F ′

F (z, t )

∂z
+ 1

c̃

∂F ′
F (z, t )

∂t

)
= Ty

2
− T + iδ0

2
F ′

F (z, t ) + gL̄

2π

∫ π

−π

dϕe−iϕP(z, ϕ, t ), (22a)

∂P(z, ϕ, t )

∂t
= γ⊥[(F ′

F (z, t )eiϕ + F ′
F (−z, t )e−iϕ )D(z, ϕ, t ) − (1 + i�)P(z, ϕ, t )], (22b)

∂D(z, ϕ, t )

∂t
= −γ‖

{
D(z, ϕ, t ) − 1 + 1

2
[(F ′

F (z, t )eiϕ + F ′
F (−z, t )e−iϕ )P∗(z, ϕ, t ) + c.c.]

}
. (22c)

Grating in population inversion, which is typical of a
FP cavity and causes spatial hole burning effects, is pre-
served even in the doubled cavity thanks to the combination
F ′

F (z, t )eiϕ + F ′
F (−z, t )e−iϕ , which appears in the equations

for the material variables P and D. Next, let us introduce the
independent variable

τ = t + �t
z

L̄
, (23)

in terms of which Eq. (22a) becomes

L̄

(
∂F ′

F (z, τ )

∂z
+ 1

c

�

L̄

∂F ′
F (z, τ )

∂τ

)

= Ty

2
−T + iδ0

2
F ′

F (z, τ )+ gL̄

2π

∫ π

−π

dϕe−iϕP(z, ϕ, τ ), (24)

where we have taken into account the definitions of �t and �

given before. By introducing the field damping constant

k = cT

2�
(25)

and using Eq. (18), we arrive at the final form

c
L̄

�

∂F ′
F (z, τ )

∂z
+ ∂F ′

F (z, τ )

∂τ

= −k

[
(1 + iθ )F ′

F (z, τ ) − y − A

2π

∫ π

−π

dϕe−iϕP(z, ϕ, τ )

]
,

(26)

while the atomic equations (22b) and (22c) become

∂P(z, ϕ, τ )

∂τ
= γ⊥[(F ′

F (z, τ )eiϕ + F ′
F (−z, τ )e−iϕ )

× D(z, ϕ, τ ) − (1 + i�)P(z, ϕ, τ )], (27a)

∂D(z, ϕ, τ )

∂τ
= −γ‖

{
D(z, ϕ, τ ) − 1

× 1

2
[(F ′

F (z, τ )eiϕ + F ′
F (−z, τ )e−iϕ )

× P∗(z, ϕ, τ ) + c.c.]

}
. (27b)

In the case in which the two-level medium fills the cavity, i.e.,
L = L̄, so that �t = 0 and τ = t , Eqs. (26) and (27) reduce
to the dynamical equations (15)–(17) of Ref. [28]. In the
general case, the time t is replaced by the variable τ defined
by Eq. (23). In terms of the time τ , the boundary condition
(16a) becomes

F ′
F (−L̄, τ ) = F ′

F (L̄, τ ), (28)

where we have used Eqs. (20) and (23). Hence, F ′
F (z, τ ) obeys

a periodic boundary condition in the interval −L̄ � z � L̄.
On the basis of the periodic boundary condition, it is natu-

ral to introduce the expansion

F ′
F (z, τ ) =

+∞∑
n=−∞

fn(τ )ei(nπ/L̄)z, (29)

where

fn(τ ) = 1

2L̄

∫ +L̄

−L̄
dz e−i(nπ/L̄)zF ′

F (z, τ ) (30)

and similarly

P(z, ϕ, τ ) =
+∞∑

n=−∞
pn(ϕ, τ )ei(nπ/L̄)z, (31a)

D(z, ϕ, τ ) =
+∞∑

n=−∞
dn(ϕ, τ )ei(nπ/L̄)z. (31b)

Equations (21) imply that

pn(ϕ, τ ) = p−n(−ϕ, τ ), dn(ϕ, τ ) = d−n(−ϕ, τ ), (32)
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and, since D(z, ϕ, τ ) is real, we have also

d∗
n (ϕ, τ ) = d−n(ϕ, τ ). (33)

If we insert Eqs. (29) and (31) into the dynamical equations
(26) and (27) and take into account Eq. (30) and similar
equations for pn(ϕ, τ ) and dn(ϕ, τ ), we obtain the following
set of modal equations:

dfn(τ )

dτ
= −iαn fn(τ ) − k

[
(1 + iθ ) fn(τ ) − yδn,0

− A

2π

∫ +π

−π

dϕe−iϕ pn(ϕ, τ )

]
, (34a)

γ −1
⊥

∂ pn(ϕ, τ )

∂τ
=

∑
n′

[ fn′ (τ )dn−n′ (ϕ, τ )eiϕ

+ fn′ (τ )dn+n′ (ϕ, τ )e−iϕ] − (1 + i�)pn

× (ϕ, τ ), (34b)

γ −1
‖

∂dn(ϕ, τ )

∂τ
= −1

2

∑
n′

[ fn′ (τ )p∗
n′−n(ϕ, τ )eiϕ

+ fn′ (τ )p∗
−n−n′ (ϕ, τ )e−iϕ

+ f ∗
n′ (τ )pn+n′ (ϕ, τ )e−iϕ

+ f ∗
n′ (τ )pn−n′ (ϕ, τ )eiϕ] − [dn(ϕ, τ ) − δn,0],

(34c)

where δn,0 is the Kronecker delta and n and n′ are positive,
null, or negative integers which run from −∞ to +∞ and

αn = πc

�
n. (35)

The parameter αn is the frequency difference between the nth
side mode and the resonant mode, and α1 is the free spectral
range of the cavity. Equations (34) and (35) coincide with
Eqs. (24)–(28) of Ref. [28], but are more general in that they
describe a FP laser where the active medium occupies only a
part of the cavity while in Ref. [28] the medium was assumed
to fill completely the cavity. In that case, � = nBL so that
Eq. (35) coincides with Eq. (27) of Ref. [28].

III. LINEAR STABILITY ANALYSIS
OF THE SINGLE-MODE SOLUTION

Let us now consider a uniform stationary single-mode so-
lution of Eqs. (34). In correspondence with such a solution,
the values of the modal amplitudes are

fn = f δn,0, pn(ϕ) = p(ϕ)δn,0, dn(ϕ) = d (ϕ)δn,0, (36)

where p(ϕ) and d (ϕ) are given by

d (ϕ) = 1 + �2

1 + �2 + 4 cos2 ϕ | f |2 , (37a)

p(ϕ) = 2 cos ϕ(1 − i�)

1 + �2 + 4 cos2 ϕ | f |2 f , (37b)

and f obeys the equation

y = (1 + iθ ) f − A

2π

∫ π

−π

dϕe−iϕ p(ϕ). (38)

Since p(ϕ) is an even function of ϕ, in Eq. (38) we can replace
e−iϕ by cos ϕ. By introducing the expression (37b) of p(ϕ)
into Eq. (38), the integral over ϕ can be performed analytically
(see Eqs. (14.47)–(14.49) of Ref. [6]) and the result is the
stationary equation

y = f

⎧⎨
⎩1 + iθ − A(1 − i�)

2| f |2

⎡
⎣1 − 1√

1 + 4| f |2
1+�2

⎤
⎦

⎫⎬
⎭. (39)

We do not discuss Eq. (39) in the general case; we simply
assume that its stationary solution f has been calculated. If
we write now

fn(τ ) = f δn,0 + δ fn(τ ), (40a)

pn(ϕ, τ ) = p(ϕ)δn,0 + δpn(ϕ, τ ), (40b)

dn(ϕ, τ ) = d (ϕ)δn,0 + δdn(ϕ, τ ), (40c)

the linearized equations read

dδ fn(τ )

dτ
= −iαnδ fn(τ ) − k

[
(1 + iθ )δ fn(τ ) − A

2π

∫ +π

−π

dϕe−iϕδpn(ϕ, τ )

]
, (41a)

γ −1
⊥

∂δpn(ϕ, τ )

∂τ
= −(1 + i�)δpn(ϕ, τ ) + [δ fn(τ )eiϕ + δ f−n(τ )e−iϕ]d (ϕ) + 2 f cos ϕ δdn(ϕ, τ ), (41b)

γ −1
‖

∂δdn(ϕ, τ )

∂τ
= −δdn(ϕ, τ ) − 1

2
{[δ fn(τ )eiϕ + δ f−n(τ )e−iϕ]p∗(ϕ) + [δ f ∗

−n(τ )e−iϕ + δ f ∗
n (τ )eiϕ]p(ϕ)

+ 2 cos ϕ[ f δp∗
−n(ϕ, τ ) + f ∗δpn(ϕ, τ )]}. (41c)

A. Adiabatic elimination of the atomic fluctuations

In order to perform the adiabatic elimination of the atomic
fluctuations δpn and δdn, it is convenient to introduce the
following transformations:

δ fn(τ ) = δ f̃n(τ )e−iαnτ , (42a)

δpn(ϕ, τ ) = δ p̃n(ϕ, τ )e−iαnτ , (42b)

δdn(ϕ, τ ) = δd̃n(ϕ, τ )e−iαnτ , (42c)

so that Eqs. (41) become

dδ f̃n(τ )

dτ

= −k

[
(1 + iθ )δ f̃n(τ ) − A

2π

∫ +π

−π

dϕe−iϕδ p̃n(ϕ, τ )

]
,

(43a)
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γ −1
⊥

∂δ p̃n(ϕ, τ )

∂τ
= −

(
1 + i� − i

αn

γ⊥

)
δ p̃n(ϕ, τ )

+ [δ f̃n(τ )eiϕ + δ f̃−n(τ )e−iϕe2iαnτ ]d (ϕ)

+ 2 f cos ϕ δd̃n(ϕ, τ ), (43b)

γ −1
‖

∂δdn(ϕ, τ )

∂τ
= −

(
1 − i

αn

γ‖

)
δd̃n(ϕ, τ )

− 1

2
{[δ f̃n(τ )eiϕ+δ f̃−n(τ )e−iϕe2iαnτ ]p∗(ϕ)

+ [δ f̃ ∗
−n(τ )e−iϕ + δ f̃ ∗

n (τ )eiϕe2iαnτ ]p(ϕ)

+ 2 cos ϕ[ f δ p̃∗
−n(ϕ, τ ) + f ∗δ p̃n(ϕ, τ )]}.

(43c)

A relevant feature is that some (but not all) of the terms
that originate from the backward field FB(z, τ ) = FF (−z, τ )
display a time-dependent exponential.

In the framework of the linear stability analysis of a
uniform stationary solution, in the regime of adiabatic elim-
ination of the atomic fluctuations, identified by the condition

k � γ⊥, γ‖, (44)

which defines a class-A laser, we consider instabilities which
arise only in modes different from the resonant one and in the
linearized equations (43) we assume n 	= 0. In the limit (44),
the field fluctuations δ f̃n can be considered slow variables,
while the atomic fluctuations δ p̃n and δd̃n can be considered
fast variables and can be adiabatically eliminated by dropping
the derivative term in Eqs. (43b) and (43c). Once this is done,
the atomic amplitudes become functions of the slow variables
and vary in time with the slow temporal scale k−1. Therefore,
if in Eqs. (43b) and (43c) without the derivative term we inte-
grate the right-hand side over a τ interval much smaller than
k−1 but much larger than α−1

1 , all terms remain practically
unchanged, with the exception of the terms that include a
time-varying exponential, which vanish, and Eqs. (43b) and
(43c) without time derivatives reduce to

0 = iαnδ p̃n(ϕ, τ ) − γ⊥(1 + i�)δ p̃n(ϕ, τ ) + γ⊥[δ f̃n(τ )eiϕd (ϕ) + 2 f cos ϕ δd̃n(ϕ, τ )], (45a)

0 = (iαn − γ‖)δd̃n(ϕ, τ ) − γ‖
2

{δ f̃n(τ )eiϕ p∗(ϕ) + δ f̃ ∗
−n(τ )e−iϕ p(ϕ) + 2 cos ϕ[ f δ p̃∗

−n(ϕ, τ ) + f ∗δ p̃n(ϕ, τ )]}. (45b)

In addition to Eqs. (43a) and (45), we must consider the equations

dδ f̃ ∗
−n(τ )

dτ
= −k

[
(1 − iθ )δ f̃ ∗

−n(τ ) − A

2π

∫ +π

−π

dϕeiϕδ p̃∗
−n(ϕ, τ )

]
, (46a)

0 = iαnδ p̃∗
−n(ϕ, τ ) − γ⊥(1 − i�)δ p̃∗

−n(ϕ, τ ) + γ⊥[δ f̃ ∗
−n(τ )e−iϕd (ϕ) + 2 f ∗ cos ϕ δd̃n(ϕ, τ )], (46b)

that are obtained from Eqs. (43a) and (45a) by performing the complex conjugation, replacing n by (−n), and taking Eq. (33)
into account. The algebraic equations (45a), (46b), and (45b) can be solved with respect to δ p̃n(ϕ, τ ), δ p̃∗

−n(ϕ, τ ), and δd̃n(ϕ, τ )
to find the expressions of δ p̃n(ϕ, τ ) and δ p̃∗

−n(ϕ, τ ) as a function of δ fn(τ ) and δ f ∗
−n(τ ). In order to write these expressions,

we note that Eqs. (45a), (46b), and (45b) are identical to Eqs. (20.12)–(20.14) of Ref. [6] with the time derivatives set
equal to zero, provided in the latter equations one replaces δ f̃n by δ f̃neiϕ and x by 2 f cos ϕ. Also, the expressions (37)
of p(ϕ) and d (ϕ) are obtained from the expressions of d̃0,s and p̃0,s, that appear in Eqs. (20.12)–(20.14) of Ref. [6], by
replacing x by 2 f cos ϕ. Therefore, by following the procedure outlined at the beginning of Sec. 20.2 of Ref. [6], we can
write

δ p̃n(ϕ, τ ) = T1(α̃n, | f |2 cos2 ϕ,�, γ̃ )δ f̃n(τ )eiϕ + T2(α̃n, | f |2 cos2 ϕ,�, γ̃ )4 f 2 cos2 ϕδ f̃−n(τ )∗e−iϕ, (47a)

δ p̃∗
−n(ϕ, τ ) = T2(α̃n, | f |2 cos2 ϕ,−�, γ̃ )4 f ∗2 cos2 ϕ δ f̃n(τ )eiϕ + T1(α̃n, | f |2 cos2 ϕ,−�, γ̃ )δ f̃ ∗

−ne−iϕ, (47b)

where

α̃n = αn

γ⊥
, γ̃ = γ‖

γ⊥
(48)

and the symbols T1 and T2 are defined as follows:

T1(α̃n, | f |2 cos2 ϕ,�, γ̃ ) = B
(1 + �2)(1 − iα̃n − i�) − iα̃n(1 + i�)4| f |2 cos2 ϕ

(1 − iα̃n)(1 − iα̃n − 8| f |2 cos2 ϕ) + �2
, (49a)

T2(α̃n, | f |2 cos2 ϕ,�, γ̃ ) = B
(1 − i�)(2 − iα̃n)

(1 − iα̃n)(1 − iα̃n − 8| f |2 cos2 ϕ) + �2
, (49b)

with  and B given by

 = 1

2

γ̃

iα̃n − γ̃
, B = 1

1 + �2 + 4| f |2 cos2 ϕ
. (50)
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By inserting Eqs. (47) into Eqs. (43a) and (46a), we arrive finally at the two equations

dδ f̃n(τ )

dτ
= −k

{
(1 + iθ )δ fn − A

2π

∫ +π

−π

dϕ[T1(α̃n, | f |2 cos2 ϕ,�, γ̃ )δ f̃n(τ ) + T2(α̃n, | f |2 cos2 ϕ,�, γ̃ )

× 4 f 2 cos2 ϕ(2 cos2 ϕ − 1)δ f̃ ∗
−n(τ )]

}
, (51a)

dδ f̃ ∗
−n(τ )

dτ
= −k

{
(1 − iθ )δ f ∗

−n − A

2π

∫ +π

−π

dϕ[T2(α̃n, | f |2 cos2 ϕ,−�, γ̃ )4 f ∗2 cos2 ϕ(2 cos2 ϕ − 1)δ f̃n(τ )

× T1(α̃n, | f |2 cos2 ϕ,−�, γ̃ )δ f̃ ∗
−n(τ )]

}
, (51b)

where, since T1 and T2 are even functions of ϕ, we have re-
placed e±2iϕ by cos(2ϕ) = 2 cos2 ϕ − 1. These equations are
general and allow us to study the stability of active and passive
systems, with or without a driving field, with an atomic and
cavity detuning. In the rest of the paper, however, we focus
on the case of a free running laser (y = 0) and assume perfect
resonance between the lasing mode and the cavity (θ = 0) and
the atoms (� = 0).

IV. THE RESONANT LASER: AMPLITUDE
AND PHASE INSTABILITIES

A. Stationary solution and gain functions

In the case of a resonant laser, we can assume without
loss of generality that the stationary field amplitude f is real.
The stationary intensity X = f 2 can be found by inverting the
relation

A = 2X
√

1 + 4X√
1 + 4X − 1

. (52)

Unlike in a ring laser, the relation between the pump pa-
rameter A and the stationary intensity is nonlinear. It becomes
linear only in the limit X � 1 where A ≈ 1 + 3X . Since in
the following analysis the term

√
1 + 4X appears frequently

in the formulas, we will often use the auxiliary function

R = √
1 + 4X , (53)

instead of X . In terms of R, for instance, the stationary solution
reads

A = R(R + 1)/2. (54)

At the lasing threshold X = 0, R = 1, and A = 1.
In a resonant laser, Eqs. (51a) and (51b) can be decoupled

by defining the new fluctuations

δ fn± = δ fn ± δ f ∗
−n. (55)

The equations for the new variables are

d f̃n±(τ )

dτ
= −k

{
1 − A

2π

∫ +π

−π

dϕ[T1(α̃n, | f |2 cos2 ϕ, 0, γ̃ )

± T2(α̃n, | f |2 cos2 ϕ, 0, γ̃ )

× 4X cos2 ϕ(2 cos2 ϕ − 1)]

}
δ f̃n±(τ ). (56)

The equations can be written as

dδ f̃n±(τ )

dτ
= −k{1 − A[H1(α̃n, X, γ̃ )

± H2(α̃n, X, γ̃ )X ]}δ f̃n±(τ ), (57)

by defining the integrals

H1(α̃n, X, γ̃ ) = 1

2π

∫ +π

−π

dϕ T1(α̃n, X cos2 ϕ, 0, γ̃ ), (58a)

H2(α̃n, X, γ̃ ) = 1

2π

∫ +π

−π

dϕ 4 cos2 ϕ(2 cos2 ϕ − 1)

×T2(α̃n, X cos2 ϕ, 0, γ̃ ). (58b)

If we set

δ f̃n±(τ ) = eλτ δ fn±, (59)

we obtain a simple expression for the two eigenvalues

λ± = k{A[H1(α̃n, X, γ̃ ) ± H2(α̃n, X, γ̃ )X ] − 1}. (60)

A multimode instability arises when the real part of λ+ or
λ− is positive for some values of n different from zero or,
equivalently, when one of the two gain functions

G±(α̃n, X, γ̃ ) = ARe[H1(α̃n, X, γ̃ ) ± H2(α̃n, X, γ̃ )X ] (61)

becomes larger than unity. We can fix X and γ̃ and plot G+
and G− as a function of α̃n treated as a continuous variable.
If there is an interval α̃n,min < α̃n < α̃n,max where G+ > 1 or
G− > 1, a multimode instability is present if for at least one
value of n (or, more precisely, for at least one pair of values
±n, since G+ and G− are even functions of α̃n) α̃n lies in the
interval α̃n,min < α̃n < α̃n,max. Alternatively, we can fix γ̃ and
draw in the (X, α̃n) the boundary of the two instability domain
given by the conditions G±(α̃n, X , γ̃ ) = 1.

The analytic expressions for the integrals H1(α̃n, X, γ̃ ) and
H2(α̃n, X, γ̃ ) can be found in Appendix A. In the following,
we will express the gain functions in terms of R instead of X .

In the limit γ̃ → 0, the two gain functions coincide be-
cause H2(α̃n, X, 0) = 0, and we have

G±(α̃n, R, 0) = R + 1

2

1

1 + α̃2
n

. (62)

The instability condition in this limit reads

0 � α̃n <

√
R − 1

2
. (63)
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The limit γ̃ → 0 with α̃n finite is equivalent to the condition
γ‖ � αn. If we look at Eq. (45b), we see that this condition
amounts to setting δd̃n = 0, i.e., neglecting the so-called pop-
ulation pulsations or else neglecting coherent effects. For that
reason, in Ref. [23] the instability arising in that limit was
named incoherent instability.

We also note that Eq. (63) coincides with the instability
domain found in the case of adiabatic elimination of the
fluctuations of the atomic polarization only in Ref. [33].
The conditions for this adiabatic elimination are k � γ⊥,
γ‖ � γ⊥, γ‖ � αn with k/γ‖ arbitrary, whereas the conditions
for the adiabatic elimination of both atomic fluctuations are
k � γ⊥, k � γ‖ with γ‖/γ⊥ arbitrary. Hence, the parametric
domain k � γ⊥, k � γ‖, γ‖ � γ⊥, γ‖ � αn is common to
both adiabatic eliminations.

As soon as γ̃ is larger than zero, the two gain functions
differ, and they can be written as

G+(α̃n, R, γ̃ ) = F1(α̃n, R, γ̃ ) + F2(α̃n, R, γ̃ ), (64)

G−(α̃n, R, γ̃ ) = −F1(α̃n, R, γ̃ ) − R2F2(α̃n, R, γ̃ )

+F3(α̃n, R, γ̃ ), (65)

where the auxiliary functions F1,2,3(α̃n, R, γ̃ ) are defined as

F1(α̃n, R, γ̃ ) = R

2

(
S+ − 1

R − 1
+ 1

1 + α̃2
n

)
, (66)

F2(α̃n, R, γ̃ )

= RS−
α̃n(R − 1)

+ α̃n(1 − γ̃ )(RS+ − 1) − RS−
(
2 + 2γ̃ + α̃2

n

)
2α̃n(R − 1)

[
(γ̃ + 1)2 + α̃2

n

] , (67)

F3(α̃n, R, γ̃ ) = (R + 1)(RS+ + α̃nRS− + 1)

2(1 + α̃2
n )

, (68)

with

S± = 1√
2p1

√√(
1 + α̃2

n

)(
γ̃ 2 + α̃2

n

)
p1 ± p2, (69)

p1 = (
α̃2

n − γ̃ R2)2 + (1 + γ̃ )2α̃2
n, (70)

p2 = p1 + γ̃ (R2 − 1)
(
α̃2

n − γ̃ R2). (71)

We note that in the limit γ̃ → 0, we have S+ = 1, S− = 0
and therefore F1 = R/[2(1 + α̃2

n )], F2 = 1/[2(1 + α̃2
n )], and

F3 = (R + 1)2/[2(1 + α̃2
n )], and one can check easily that

both Eqs. (64) and (65) reduce to Eq. (62).
The instability associated with G+ is an amplitude insta-

bility, while the instability associated with G− is a phase
instability. The reason for this terminology is clear from the

FIG. 3. Amplitude (solid blue line) and phase (dashed red line)
instability domains in the plane (R, α̃n) for the reported values of γ̃ of
order 0.1. The boundary of the amplitude instability domain always
intersects the axis α̃n = 0 in R = Rc = 1 + √

2. For γ̃ = 0.22532 in
that point the curve has a vertical tangent, displayed as a thin dashed
black line.

definition (55) of the fluctuations δ fn±. When the stationary
solution is unstable against δ fn+ two symmetric in-phase
modes grow. Apart from a global phase, the electric field is
real. Conversely, when the instability is caused by the fluc-
tuation δ fn− the two symmetric modes that grow are out of
phase and the phase dynamics of the total field can no longer
be neglected. In Refs. [22,23,25], the two kinds of instability
were named, respectively, AM and FM instability.

We note that in the limit of adiabatic elimination of atomic
polarization fluctuations only [33], the boundaries of ampli-
tude and phase instability in the (R, α̃n) plane coincide.

B. Instability domains

In Figs. 3 and 4, we show some examples of instability
domains for the amplitude and phase instability in the plane
(R, α̃n) and for various values of γ̃ of order 0.1 (Fig. 3) and 1
(Fig. 4).

In order to understand those graphs, it is useful to study the
behavior of the functions G±(α̃n, R, γ̃ ) in the limit α̃n → 0.
Since the laser is resonant with a cavity mode and with the
atoms, the instability domains are symmetric with respect to
the central mode and the functions G±(α̃n, R, γ ) are poly-
nomials that contain only even powers of α̃n. At the lowest
orders, we can write

G+(α̃n, R, γ̃ ) ≈ R3 − R2 + R + 1

2R2
+

[
(R − 1)

R4(1 − γ̃ ) + R2(4 + 11γ̃ + γ̃ 2) − 5(1 + γ̃ )2

16R6γ̃ 2
− R

2

]
α̃2

n, (72)

G−(α̃n, R, γ̃ ) ≈ 1 +
[

(R − 1)
R4(1 + γ̃ − 10γ̃ 2) + R2(1 − γ̃ )γ̃ − (1 + γ̃ )2

16R4γ̃ 2
+ R

2

]
α2

n . (73)
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FIG. 4. Amplitude (solid blue line) and phase (dashed red line)
instability domains in the plane (R, α̃n) for the reported values
of γ̃ of order 1. The point where the boundary of the phase in-
stability domain intersects the axis α̃n = 0 grows rapidly with γ̃

and both boundaries intersects the axis at R = Rc = 1 + √
2 when

γ̃ = 0.60053. For γ̃ � 1, there is no phase instability.

Let us consider first G+(α̃n, R, γ̃ ). In the exact limit α̃n = 0,
the condition G+(0, R, γ̃ ) > 1 is independent of γ̃ and it is
equivalent to R > Rc, with

Rc = 1 +
√

2 = 2.414 . . . . (74)

According to Eq. (54), this corresponds to the critical value
for the pump parameter

Ac = 2 + 3/
√

2 = 4.121 . . . . (75)

This explains why the boundary of the amplitude instability
domain always intersects the axis α̃n = 0 at the same point
R = Rc, a feature clearly visible in the graphs of Figs. 3
and 4.

Looking at the graphs of Fig. 3, we also see that for small
α̃n the amplitude instability domains extends to the left of Rc

for the smaller values of γ̃ and to the right for the larger. This
depends on the sign of the coefficient of α̃2

n in G+. For R = Rc,
the single-mode stationary solution is unstable for positive
values of that coefficient and stable otherwise. The critical
value of γ̃ which discriminates between the two behaviors
can be found by setting equal to zero the expression for the
coefficient with R = Rc. In that way, we obtain a second-order
equation in γ̃ whose positive solution is

γ̃c = 0.22532 . . . . (76)

As shown in the left lower graph of Fig. 3, for that value of γ̃

the curve of the amplitude instability boundary has a vertical
tangent in R = Rc. It is also interesting to observe that when
approaching γ̃c from below the amplitude instability domain
splits in two parts.

The gain function G−(α̃n, R, γ̃ ) has a different behavior
because it is identically equal to 1 for α̃n = 0. This means
that the single-mode stationary solution is unstable versus the

FIG. 5. This curve establishes the link between the parameter γ̃

and the value of R at which the boundary of the phase instability
domain intersects the axis α̃n = 0. For γ̃ > 1, there is no intersection.

phase instability if the coefficient of α̃2
n in G+ is positive and

stable otherwise.
By setting equal to zero that coefficient, we find an equa-

tion that links γ̃ with the value of R at which the phase
instability domain intersects the axis α̃n = 0. Again, the con-
dition is a second-order equation in γ̃ whose positive solution
gives the desired relationship.

The plot of R as a function of γ̃ is shown in Fig. 5.
At the beginning R grows very slowly with γ̃ , but when γ̃

approaches 1 the curve tends rapidly to infinity. This explains
why the point where the boundary of the phase instability
domain intersects the axis α̃n = 0 grows slowly with γ̃ in the
plots of Fig. 3 and much more rapidly in Fig. 4, and in the
right lower graph of that figure there is no phase instability.
The value of γ̃ in the right upper graph of Fig. 4 is the one
associated with Rc; for that γ̃ both curves intersect the axis
α̃n = 0 in R = Rc. We can also observe that for these values
of γ̃ the amplitude instability essentially does not change as
the phase amplitude instability domain moves to the right and
crosses it.

If we enlarge the view and allow R and α̃n to take larger
values, we observe in Fig. 6 that a second amplitude instability
domain appears in the right upper corner. This new instability
domain exists if γ̃ is sufficiently large, moves to the left as γ̃

increases until γ̃ = 0.73704, and then moves to the right.
Very interestingly, the lower boundary of that domain fol-

lows very closely the line α̃n=√
γ̃ R which, in the limit R�1,

X � 1, is equivalent to α̃n = 2
√

γ̃
√

X = 2
√

γ̃ | f |. Taking
into account that | f | is the Rabi frequency of the resonant
mode scaled to

√
γ‖γ⊥ [see Eq. (12a)] and γ̃ = γ‖/γ⊥, the

product
√

γ̃ | f | represents the Rabi frequency scaled to γ⊥.
Since α̃n is also the frequency of the side mode scaled to γ⊥,
we conclude that this second instability domain is associated
with a resonance between a side mode and twice the Rabi
frequency.

It is well known (see, e.g., Sec. 22-5 of Ref. [6]) that the
Risken-Nummedal-Graham-Haken (RNGH) instability [2,3]
in ring lasers is characterized by similar tongues of instability
limited below by the Rabi frequency and above by the Rabi
frequency multiplied by

√
2; see, e.g., Ref. [6]. Therefore,

these secondary instability domains are the analog for a Fabry-
Perot laser of the RNGH instability. We observe, however,
that they exist only for extremely high values of the Rabi
frequency, that could be achieved only if the laser is pumped
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FIG. 6. Amplitude (solid blue line) and phase (dashed red line)
instability domains in the plane (R, α̃n) for the reported values of γ̃

and up to large values of R and α̃n. These plots show that a second
amplitude instability domain appears with the shape of a narrow
tongue leaning on the straight line α̃n = √

γ̃ R, displayed as a thin
dashed black line.

hundreds times above threshold. Precisely, the minimum in-
stability threshold which is achieved for γ̃ = 0.73704 is
R ≈ 22.26, which corresponds to A ≈ 259. We can then con-
clude that the pure RNGH instability in a Fabry-Perot laser
does not exist.

C. Numerical simulations of self-pulsing

Figures 3, 4, and 6 show the instability threshold of the
single-mode solution with respect to the side mode with fre-
quency α̃n. Depending on the cavity length, the instability will
arise when the instability threshold is crossed by increasing
the pump R for a particular modal index n. The instability is
triggered by a symmetric pair of side modes but then by four-
wave mixing processes it will involve other modes, giving
rise to multimode dynamical regimes. Our analysis suggests
that different kinds of self-pulsing will be observed associated
with amplitude and phase instability.

In order to study the self-pulsing behavior that arises
from the amplitude and phase instabilities and the compe-
tition between the two, we have numerically integrated the
Maxwell-Bloch equations (26) and (27) with γ̃ = 0.1. The
instability domains are those shown in the left upper graph of
Fig. 3. We have then chosen the value α̃1 = 0.5 for the scaled
free spectral range and varied slowly the pump parameter in
such a way that R varies linearly from 1.375 to 1.775 and
returns. In that way, the two boundaries of the instabilities
domain are crossed when they are very close one to the other
and we expect to observe the effects of both instabilities. The
ratio k/γ⊥, which must be small for our analysis to hold,
has been taken equal to 0.01. Only the electric field has
been expanded in modes, and the expansion was truncated
to 21 modes, 10 for each side of the spectrum; the variables
P and D have not been expanded in modes. The total in-

FIG. 7. Evolution of the total output intensity as R is varied from
1.375 to 1.775 (upper plot) and back (lower plot) with γ̃ = 0.1
and α̃1 = 0.5. Correspondingly, the pump parameter varies from
A ≈ 1.63 to A ≈ 2.46.

tegration time, forward and backward, was 2×108 in units
of γ −1

⊥ .
In the upper and lower plots of Fig. 7, we show the evolu-

tion of the output intensity as a function of R in the forward
and backward scan, respectively.

In the forward scan, we see that, according with the sta-
bility analysis of Fig. 3, the single-mode solution becomes
unstable at about R = 1.4 (with a small delay due to the inertia
of the medium). The amplitude of the pulses increases with R
until the self-pulsing solution undergoes a bifurcation at about
R = 1.64 and the amplitude of the pulses increases more
slowly; then, at about R = 1.7, another bifurcation occurs and
the amplitude of the pulses acquires a modulation until it
diminishes abruptly at about R = 1.73.

In the backward scan, the small amplitude self-pulsing per-
sists until about R = 1.5, where there is an abrupt switch to the
large amplitude self-pulsing. Therefore, there is a large range
of R (and of the pump parameter) where the small-amplitude
self-pulsing coexists with the large-amplitude self-pulsing in
its three different forms.

These results can be compared to those of Ref. [32], where
a similar scan forward and backward of the pump was per-
formed. Our choice of the free-spectral range α̃1 = 0.5 is
closer to the case of very short cavity studied in that paper.
While bistability was also found in Ref. [32], we observe that
in Ref. [32] the bistability is between the self-pulsing and
continuous wave (cw) solutions, whereas in our simulations
it is between two types of self-pulsing.

The details of the self-pulsing solutions for different values
of R are illustrated in the four subfigures of Fig. 8. Each
subfigure contains six graphs. The two graphs on the left show
the time evolution of the mode intensities (upper graph) and
of the total output intensity (lower graph); the two numbers
above this figure are the minimum and maximum values of
the intensity. The four graphs on the right show, from left to
right, in the upper row the intensity spectrum and the relative
phase φn(t ) + φ−n(t ) − 2φ0 scaled to π , and in the lower row
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FIG. 8. Steady-state behavior for γ̃ = 0.1, α̃1 = 0.5, and R = 1.60 (A = 2.08) (a), R = 1.68 (A = 2.2512) (b), R = 1.72 (A = 2.3392) (c),
and R = 1.60 (A = 2.08) (d). Panels (a) to (c) refer to the forward scan of Fig. 7, and panel (d) to the backward scan. In each subfigure, the
two graphs on the left show the time evolution of the mode intensities (upper graph) and of the total output intensity (lower graph), and four
graphs on the right show, from left to right, in the upper row the intensity spectrum and the relative phase φn(t ) + φ−n(t ) − 2φ0 scaled to π ,
and in the lower row the intensity profile along the cavity in the final state and the trajectory described by the tip of the electric field vector as
we move along the cavity.

the intensity profile along the cavity in the final state, and the
trajectory described by the tip of the electric field vector as we
move along the cavity.

Figures 8(a), 8(b), and 8(c) refer to the forward scan and
have been obtained, respectively, with R = 1.60, R = 1.68,
and R = 1.72; Fig. 8(d) refers to the backward scan with
R = 1.60. In each figure, the steady-state regime is shown
after the transient evolution.

As we will see from the following analysis, Figs. 8(a) and
8(d) display, respectively, pure amplitude and pure phase self-
pulsing, which are both stable for the same value of R = 1.60.
Although the oscillating regime originated from the phase in-
stability looks more like a smooth intensity modulation rather
than a sequence of pulses, for brevity we speak of self-pulsing,
with large or small amplitude, for both oscillating regimes.

The pure amplitude self-pulsing shown in Fig. 8(a) is char-
acterized by constant mode intensities, deep modulation of
the intensity with period equal to 2π/α̃1, triangular intensity

spectrum, relative phases locked to 0, spatial period of the
intensity profile equal to twice the sample length, and real
electric field.

The pure phase self-pulsing shown in Fig. 8(d) is char-
acterized by constant mode intensities, moderate modulation
of the intensity with period equal to π/α̃1, almost triangu-
lar intensity spectrum but with the three central modes with
comparable intensities, relative phases locked to π for the
odd modes and to 0 for the even modes, spatial period of
the intensity profile equal to the sample length, and complex
electric field.

In Figs. 8(a), 8(b), and 8(d), the relative phases associated
with higher order modes sometimes do not respect the rule
of locking at 0 or π , but this is only due to the fact that
those modes have such small amplitudes that they are strong
influenced by noise.

The differences between the two self-pulsing states can be
understood considering three modes, the resonant one and its
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first neighbors [25]. We can write the three complex ampli-
tudes as fi(t ) = ρieiφi (τ ), i = −1, 0, 1. Since ρ1 = ρ−1 and all
the three real amplitudes are constant as well as the phase φ0,
we can write the total electric field as

F (τ ) = ρ0eiφ0 + ρ1eiφ1(τ ) + ρ1eiφ−1(τ )

= eiφ0{ρ0 + ρ1[eiφ1(τ )−iφ0 + eiφ−1(τ )−iφ0 ]}. (77)

In the presence of an amplitude instability, the side modes are
locked to 0 and we have φ1(τ ) − φ0 = −φ−1(τ ) + φ0 or else
φ1(τ ) + φ−1(τ ) − 2φ0 = 0 and

F (τ ) = eiφ0{ρ0 + ρ1[eiφ1(τ )−iφ0 + e−iφ1(τ )+iφ0 ]}
= eiφ0{ρ0 + 2ρ1 cos[φ1(τ ) − φ0]}. (78)

Since mode 1 has frequency α1 its phase varies approximately
as φ1(τ ) = φ10 + α1τ , if we neglect terms of order k. We can
set φ10 − φ0 = 0 by redefining the time and write the field
intensity as

|F (τ )|2 = ρ2
0 + 4ρ0ρ1 cos(α1τ ) + 4ρ2

1 cos2(α1τ )

= ρ2
0 + 2ρ2

1 + 4ρ0ρ1 cos(α1τ ) + 2ρ2
1 cos(2α1τ ).

(79)

The intensity oscillates with period 2π/α1 between (ρ0 −
2ρ1)2 and (ρ0 + 2ρ1)2. Correspondingly, the spatial period of
the intensity profile is 2L̄.

If instead the single-mode solution is unstable for a phase
instability, the side modes are locked to π and we have
φ1(τ ) − φ0 = −φ−1(τ ) + φ0 + π or else φ1(τ ) + φ−1(τ ) −
2φ0 = π and the electric field is

F (τ ) = eiφ0{ρ0 + ρ1[eiφ1(τ )−iφ0 − e−iφ1(τ )+iφ0 ]}
= eiφ0{ρ0 + 2iρ1 sin[φ1(τ ) − φ0]}. (80)

In this case, the electric field is intrinsically complex and the
field intensity is

|F (τ )|2 = ρ2
0 + 4ρ2

1 sin2(α1τ )

= ρ2
0 + 2ρ2

1 − 2ρ2
1 cos(2α1τ ), (81)

and it oscillates with period π/α1 between ρ2
0 and ρ2

0 + 4ρ2
1 .

Correspondingly, the spatial period of the intensity profile is
L̄. The amplitude of the oscillations is larger in the former
case than in the latter. For instance, if ρ1 = ρ0/2 the intensity
oscillates between 0 and 4ρ2

0 in the case of the amplitude
instability and between ρ2

0 and 2ρ2
0 in the case of the phase

instability.
Figures 8(b) and 8(c) show more complex states that arise

from an instability of the pure amplitude instability state.
In Fig. 8(b), the intensities of symmetric modes are no

longer equal and the spectrum is asymmetric. The modes on
the left side of the spectrum have larger intensities but the
opposite situation is also possible, depending on the initial
fluctuations. The modes are locked to a phase which is close
to 0 but not exactly 0 and the trajectory in the complex plane
resembles an ellipse.

In Fig. 8(c), the intensities of symmetric modes not only
differ but they slowly oscillate in time. The period of these
oscillations is about 15 000 scaled time units and this further
slow modulation produces an alternation between the state
where the modes on the right and left sides of the spectrum

have larger intensities. This also causes a slow modulation in
the total intensity and a rotation and deformation of the trajec-
tory in the complex plane. Here, at difference with Figs. 8(a),
8(b), and 8(d) we have shown the time evolution on a much
longer interval of time.

V. THE LORENZ-HAKEN INSTABILITY
OF THE FABRY-PEROT LASER

In the case of a ring cavity, there is a general connection
between single-mode and multimode instabilities in the sense
that the existence of a single-mode instability implies the
existence of a multimode instability and that the instability
threshold is the same [6,34]. Here we show that this is not the
case for a FP cavity. Let us consider the set of Eqs. (43) for
n = 0 (resonant mode)

dδ f̃0(τ )

dτ
= −k

[
(1 + iθ )δ f̃0(τ )

− A

2π

∫ +π

−π

dϕe−iϕδ p̃0(ϕ, τ )

]
, (82a)

dδ f̃ ∗
0 (τ )

dτ
= −k

[
(1 − iθ )δ f̃ ∗

0 (τ )

− A

2π

∫ +π

−π

dϕeiϕδ p̃∗
0(ϕ, τ )

]
, (82b)

γ −1
⊥

∂δ p̃0(ϕ, τ )

∂τ
= 2 cos ϕ[d (ϕ)δ f̃0(τ ) + f δd̃0(ϕ, τ )]

− (1 + i�)δ p̃0(ϕ, τ ), (82c)

γ −1
⊥

∂δ p̃∗
0(ϕ, τ )

∂τ
= 2 cos ϕ[d (ϕ)δ f̃ ∗

0 (τ ) + f ∗δd̃0(ϕ, τ )]

−(1 − i�)δ p̃∗
0(ϕ, τ ), (82d)

γ −1
‖

∂δd̃0(ϕ, τ )

∂τ
= − cos ϕ[p∗(ϕ)δ f̃0 + p(ϕ)δ f̃ ∗

0

+ f δ p̃∗
0(ϕ, τ ) + f ∗δ p̃0(ϕ, τ )]

− δd̃0(ϕ, τ ), (82e)

where we have considered also the equations for δ f̃ ∗
0 and δ p̃∗

0.
If we set

δ f̃0(τ ) = eλτ δ f0, (83a)

δ f̃ ∗
0 (τ ) = eλτ δ f ∗

0 , (83b)

δ p̃0(ϕ, τ ) = eλτ δp0(ϕ), (83c)

δ p̃∗
0(ϕ, τ ) = eλτ δp∗

0(ϕ), (83d)

δd̃0(ϕ, τ ) = eλτ δd0(ϕ), (83e)

the equations for δp0(ϕ), δp∗
0(ϕ), and δd0(ϕ) are

0 = −λδp0(ϕ) − γ⊥(1 + i�)δp0(ϕ)

+ 2γ⊥ cos ϕ[d (ϕ)δ f0 + f δd0(ϕ)], (84a)

0 = −λδp∗
0(ϕ) − γ⊥(1 − i�)δp∗

0(ϕ)

+ 2γ⊥ cos ϕ[d (ϕ)δ f ∗
0 + f δd0(ϕ)], (84b)

0 = −(λ + γ‖)δd0(ϕ) + γ‖ cos ϕ

×[p∗(ϕ)δ f0 + p(ϕ)δ f0 + f δp∗(ϕ) + f ∗δp(ϕ)], (84c)
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In the ring cavity case, the correspondence between single-
mode and multimode instabilities is a consequence of the
circumstance that the set of algebraic equations for δ p̃0, δ p̃∗

0,
δd̃0 for the single-mode instability coincide with the set of
algebraic equations for δ p̃n, δ p̃∗

n, δd̃n if in the former λ is
replaced by −iα̃n. In the case of an FP cavity, Eqs. (84) with
that substitution do not coincide with Eqs. (45a), (46b), and
(45b), respectively, because of the different dependence on the
fast spatial variable ϕ.

We focus on the resonant case � = θ = 0 and on the
amplitude instability, which in the ring cavity is known as
the Lorenz-Haken instability. Hence, we can set δ f ∗

0 = δ f0

and δp∗
0(ϕ) = δp0(ϕ) and we obtain a simple expression for

δp0(ϕ):

δp0(ϕ) = 2 cos ϕ

1 + 4X cos2 ϕ

× λ̃ + γ̃ − 4γ̃ X cos2 ϕ

(λ̃ + 1)(λ̃ + γ̃ ) + 4γ̃ X cos2 ϕ
δ f0, (85)

with λ̃ = λ/γ⊥ and X = f 2. When we insert the above expres-
sion for δp0(ϕ) in Eq. (82a) with θ = 0, we get an equation
for λ̃,

λ̃ = k̃[AH (λ̃, X γ̃ ) − 1], (86)

with k̃ = k/γ⊥ and

H (λ̃, X, γ̃ ) = 1

2π

∫ π

−π

dϕ
2 cos2 ϕ

1 + 4X cos2 ϕ

× λ̃ + γ̃ − 4γ̃ X cos2 ϕ

(λ̃ + 1)(λ̃ + γ̃ ) + 4γ̃ X cos2 ϕ
. (87)

The integral can be calculated analytically and the result is
given in Appendix B. By a squaring operation, we obtain
finally a characteristic equation of sixth order in λ̃

6∑
n=0

anλ̃
n = 0, (88)

with real coefficients an which depend on R, k̃, and γ̃ and
whose explicit expressions are written in Appendix B.

The boundary of the instability domain can be found by
setting λ̃ = −iω. By equating separately the real and imagi-
nary parts of the equation and eliminating by successive steps
the frequency ω, we obtain the equation

F (R, k̃, γ̃ ) = p2
1 − p2 p3 = 0, (89)

with

p1 = a2
1a6 − a1a2a5 + a0a3a5, (90a)

p2 = a1a2a3 − a0a2
3 − a2

1a4 + a0a1a5, (90b)

p3 = a1a4a5 − a0a2
5 − a1a3a6. (90c)

The Lorenz-Haken instability in an FP laser was studied pre-
viously in Refs. [35,36] but, to the best of our knowledge, an
analytic expression for the boundary of the instability domain
was never given. The condition F (R, k̃, γ̃ ) = 0 can be studied
in the plane of two of the three parameters with the third fixed.
In Fig. 9, we show the instability domains in the plane (γ̃ , k̃)

FIG. 9. Instability domain for the single-mode instability of a
FP laser in the plane (γ̃ , k̃) for the indicated values of the pump
parameter A. No instability exists for A � 33.4.

with R fixed which amounts to fixing the pump parameter A.
The instability domain shrinks to a point as A diminishes.
The point has coordinates γ̃ = 0.583441 and k̃ = 8.95482
and the minimum value of the pump parameter for which the
instability exists is A = 33.3695.

VI. CONCLUSIONS

In this paper, we have extended the traveling wave formal-
ism of Ref. [28] to the case of a Fabry-Perot cavity where
the two-level medium does not fill the cavity. This allows us
to model, for instance, FP lasers with an external cavity. We
observe, however, that in the model the total cavity length
� appears just in the expression for the modal frequencies
[Eq. (35)]. Therefore, two FP cavities with the same � and
different lengths of the active medium are equivalent.

In the limit of population variables much faster than the
electric field, we have derived the linearized equations suitable
to analyze the stability of the single-mode solution for both
active and passive resonators driven by an external coherent
field. We have focused on the active case and we have assumed
that the atomic frequency coincides with one cavity frequency,
so that the instabilities that arise split in a natural way in
amplitude and phase instabilities.

We have considered both the case in which the ratio γ̃ =
γ‖/γ⊥ is substantially smaller than unity and the case that γ̃

is of order unity. It turns out that the multimode Fabry-Perot
instability arises near threshold only when γ̃ is significantly
smaller than unity, a result that joins perfectly with the anal-
ysis of Ref. [33] that was performed in the limit of adiabatic
elimination of the atomic polarization fluctuations only. We
have studied the self-pulsing behavior that arises from the
multimode instability for γ̃ substantially smaller than unity
and have found self-pulsations generated by the amplitude
instability and self–pulsations generated by the phase insta-
bility. It turns out that there is a hysteretic behavior between
the two of them when the pump parameter is swept forward
and backward and the difference between the two regimes has
been analyzed with the help of a simple three-mode model.

Although our model is strictly valid for a two-level
medium, we believe that it gives useful insights also for other
kind of lasers such as QCLs. It is true that two ingredients
typical of those lasers are missing, namely carrier diffusion
and the linewidth enhancement factor [19]. Yet, we observe
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that the linewidth enhancement factor is very often neglected
even in treatments especially devoted to a QCL [21–25] and
that due to the fast recovery time of a QCL carrier diffusion
is not able to wash out completely the grating, contrary to
what happens in diode lasers. As a consequence, the inclusion
of carrier diffusion in models where population inversion is
described by the zeroth- and second-order spatial harmonics
simply implies that the recovery time for the latter is slightly
smaller than for the former. We do not believe that our re-
sults would be strongly modified by the inclusion of carrier
diffusion.

On the other hand, with respect to Refs. [21–25], our
analysis is valid even when the laser is not very close to
threshold, and this discloses new scenarios. For instance, our
instability conditions G±(α̃n, R, γ̃ ) > 1 coincide with those of
Ref. [25] expressed by Eq. (27) of that paper at first order
in the stationary intensity X , but they are valid for any value
of X and of the pump A. This allowed us to discover phe-
nomena such as the existence of a critical value for the pump
above which the amplitude instability exists even in the limit
α̃n → 0 as the phase instability and a critical value for γ̃ above
which the amplitude instability has a lower threshold than the
phase instability. Moreover, we were able to find an instability
tongue which exists for very large values of the pump that we
interpret as the true analog of the RNGH instability in a FP
laser, because it is associated with a resonance between the
side-mode frequency and the Rabi frequency. The amplitude
instability that occurs for smaller pump values is instead due
to spatial hole burning.

Very recently, we have become aware that the procedure of
doubling the length of a Fabry-Perot cavity in order to intro-
duce traveling modes was utilized in Ref. [37]. In that article,
however, the procedure is illustrated in two Appendixes and is
used only to derive a single-mode model, without considering
multimode aspects.
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APPENDIX A

The functions H1(α̃n, X, γ̃ ) and H2(α̃n, X, γ̃ ) defined by
Eqs. (58) can be written as

H1(α̃n, X, γ̃ ) = N1(α̃n, X, γ̃ )

D(α̃n, γ̃ )
, (A1)

H2(α̃n, X, γ̃ ) = i(2 − iα̃n)

2X 2

N2(α̃n, X, γ̃ )

D(α̃n, γ̃ )
, (A2)

with

N1(α̃n, X, γ̃ ) = 2α̃n(1 − iα̃n) + iγ̃ (2 − 3iα̃n)√
1 + 4X

− iγ̃ (2 − iα̃n)S(α̃n, X, γ̃ ), (A3)

N2(α̃n, X, γ̃ )

= α̃2
n + iα̃n(1 + γ̃ ) − γ̃

1 + 2X√
1 + 4X

− [
α̃2

n + iα̃n(1 + γ̃ ) − γ̃ (1 + 2X )
]
S(α̃n, X, γ̃ ), (A4)

D(α̃n, γ̃ ) = 2α̃n(1 − iα̃n)(1 + γ̃ − iα̃n), (A5)

and

S(α̃n, X, γ̃ ) =
√

(1 − iα̃n)(γ̃ − iα̃n)

(1 − iα̃n)(γ̃ − iα̃n) + 4γ̃ X

= S+(α̃n, R, γ̃ ) − iS−(α̃n, R, γ̃ ), (A6)

with S±(α̃n, R, γ̃ ) given by Eqs. (69)–(71).

APPENDIX B

The function H (λ̃, X, γ̃ ) defined by Eq. (87) is given by

H (λ̃, X, γ̃ ) = (λ̃ + 2)(λ̃ + γ̃ )

2λ̃(λ̃ + γ̃ + 1)X

√
(λ̃ + 1)(λ̃ + γ̃ )

(λ̃ + 1)(λ̃ + γ̃ ) + 4γ̃ X
− λ̃ + 2γ̃ + (λ̃ + γ̃ + 1)

√
1 + 4X

2λ̃(λ̃ + γ̃ + 1)X
√

1 + 4X
. (B1)

The coefficients of the sixth-order characteristic equation (88) are

a0 = −4k̃2γ̃ 2 − 4k̃2γ̃ 2R + 8k̃2γ̃ 2R2, (B2)

a1 = 4k̃2γ̃ 2 − 4k̃2γ̃ (2 + γ̃ )R + 4k̃γ̃ (k̃ + γ̃ )R2 + 4k̃2γ̃ (1 + γ̃ )R3, (B3)

a2 = 4k̃γ̃ (k̃ + γ̃ + 1) − k̃2γ̃ 2 + 3k̃2γ̃ 2R − 2k̃γ̃ 2R2 + 4k̃γ̃ (k̃ + γ̃ + 1)R3, (B4)

a3 = −2k̃γ̃ (k̃ + γ̃ − 1) + 4k̃(1 + γ̃ )2R + 4k̃2(2 + 3γ̃ )R − γ̃ (2k̃ + γ̃ + 1)R2 + γ̃ (4k̃ + γ̃ + 1)R3, (B5)

a4 = −k̃2 − (1 + γ̃ )2 − 2k̃(1 + γ̃ ) + 3k̃2R + 8k̃(1 + γ̃ )R + (1 + γ̃ )2R − γ̃ R2 + γ̃ R3, (B6)

a5 = −2(k̃ + γ̃ + 1) + 2(2k̃ + γ̃ + 1)R, (B7)

a6 = −1 + R. (B8)
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