
PHYSICAL REVIEW A 103, 053518 (2021)

Generalized framework of weak-value amplification in path interference of polarized
light for the enhancement of all possible polarization anisotropy effects
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Using the profound interferometric philosophy of weak-value amplification, we propose a simple, general,
and robust polarization method for the amplification and quantification of small magnitudes of all possible
polarization anisotropy effects in a single experimental embodiment. The approach is experimentally realized
by introducing a weak coupling between the polarization degree of freedom of light and the path degree of
freedom in a Mach-Zehnder interferometer in the presence of a weak anisotropy effect. Real and imaginary
weak-value amplifications of different polarization anisotropy effects are manifested as characteristic changes in
the relevant Stokes vector elements at the exit port of the interferometer, which follow orthogonal trajectories in
the Poincaré sphere. The proof-of-concept experiment demonstrates that by using this scheme, one can faithfully
extract and quantify an anisotropy parameter that is smaller than the typical sensitivity of measurement of a
given Stokes parameter of a traditional polarimeter by a large weak-value amplification factor. This opens up the
possibility of a sample measuring weak-value polarimeter for studying the rich variety of fundamental optical
effects and for materials characterization and precision metrology.
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I. INTRODUCTION

Polarized light measurements have played a vital role
in understanding and developing various advanced concepts
of electromagnetic waves, and in numerous applications in
diverse fields ranging from astronomy, materials characteri-
zation, biomedical imaging, remote sensing, to meteorology
[1–7]. Polarimetry techniques probe the anisotropic polariz-
ability of matter through the so-called birefringence (retar-
dance) and dichroism (diattenuation) parameters [6–9]. These
are traditionally quantified through exhaustive measurements
of the 4×4 sample Mueller matrix or by multiple measure-
ments of the 1×4 Stokes vector elements of sample-emerging
light [6–9]. These conventional polarimetry techniques are,
however, compromised when one needs to measure extremely
small polarization effects desirable for certain applications,
e.g., for the detection of physiological glucose concentration
in human tissue, for the quantification of extremely small
circular dichroism of proteins, for the determination of weak
magneto-optical rotation in nanomaterials, and so on [6–9].
Measurements employing polarization modulation and syn-
chronous detection have thus been developed [6–9]. Despite
the availability of such different advanced techniques, there is
a renewed recent interest in developing polarization methods
that are particularly founded on the rich fundamental principle
of wave optics, are technically simple, can obviate tedious
measurements and calibration procedures, and yet are capable
of providing high accuracy and sensitivity. Such methods are
of both fundamental and applied interests, e.g., for study-
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ing a rich variety of spin (polarization) optical effects and
various intriguing quantum optical phenomena, for the char-
acterization of weakly anisotropic materials, and for precision
metrology [2,4–12].

Despite being developed in the field of quantum me-
chanics [11,13–15], in recent times, weak measurements and
weak-value amplification (WVA) have proven to be funda-
mentally important and extremely useful in the realm of both
classical and quantum physics [16–33] due to their origin
in wave interference [13–16]. The WVA mechanism using
postselected weak measurements [34] has attracted particular
attention in the optical domain for addressing fundamental
questions [5,18,22,27–29,35,36] as well as for potential appli-
cations [18–20,24,25,29–33]. The WVA protocol sequentially
involves the preparation of a system state (preselection), a
weak coupling between the system and a pointer, and a post-
selection [11,13–15]. The near mutual orthogonal pre- and
postselection of states gives rise to near destructive interfer-
ence between the slightly separated pointer profiles leading
to a large deflection of the resultant pointer profile, which is
interpreted as the WVA of an observable [11,13–15]. WVA
has been successfully used in classical optics for numerous
practical applications, e.g., to amplify and detect tiny optical
beam deflections [20] and spin Hall shifts of light [5,17], for
the sensitive estimation of angular rotation [18], for high-
resolution phase and frequency measurements [19,30], for the
measurement of ultrasmall time delays, etc. Weak measure-
ments have also been widely explored in the quantum optics
domain [26–28,37].

In the context of polarization measurements, interesting
weak measurement protocols have been developed for the
determination of the quantum weak values of a single photon’s
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polarization [32,38], for the direct measurement of the general
polarization state of light [29], or to perform polarization state
tomography of light fields [36]. These measurement schemes
are aimed at finding out the weak values of the Stokes po-
larization operators of single-photon or classical light beams
[32,38]. While several weak measurement protocols have
been developed for the characterization of the polarization
state of light, a relatively lesser amount of research has been
done for the extraction and quantification of small polarization
anisotropy properties of a sample [30,31,33,39]. In a recent
study, the optical activity of a sample was probed by high-
precision measurements of the changes in the amplitude and
the phase of a light beam via the measurement of both real and
imaginary (respectively) weak values using different polariza-
tion state postselections [30]. In another weak measurement
protocol, the optical rotation signal of a chiral sample was
amplified and detected by introducing a weak coupling be-
tween the polarization and the spectral degree of freedom of
light and by the subsequent pre- and postselection of states
using appropriate polarizations [31]. Similarly, the optical
polarization rotation was successfully amplified by adopting
an angular version of the von Neumann measurement scheme
[33]. Another useful technique that is worth mentioning here
is the so-called quasi-null-polarization-detection method to
amplify small optical rotatory dispersion signals from chiral
samples [39]. Even though this is not a WVA scheme per se, in
this method also, the chiral sample is illuminated with weakly
elliptically polarized light and subsequent postselection is
done in near orthogonal linear polarization. This essentially
results in a large increase of the ratio of the chiral to the achiral
signal intensity, leading to the amplification of the optical
rotatory dispersion signal.

In this paper, we introduce a polarization measurement
technique capable of amplifying and quantifying small mag-
nitudes of all the polarization anisotropy effects of a sample
based on the interferometric philosophy of postselected weak
measurements [11,13]. In this approach, the near destruc-
tive interference of two paths in an interferometer serves
the purpose of near orthogonal pre- and postselection of
states [20] unlike conventional optical schemes of WVA. A
weak polarization anisotropy effect introduced in one path
of the interferometer provides the desirable weak coupling
between the path degree of freedom and the polarization de-
gree of freedom of light. The real and the imaginary WVAs
of different anisotropy effects are manifested in different
characteristic Stokes vector elements (acting as the pointer
here) [8,9] at the exit port of the interferometer, enabling
the quantification of all the anisotropy effects in the same
experimental embodiment without involving any additional
anisotropy effect-dependent postselections. Note that inter-
ferometric arrangements have also been used previously for
obtaining weak-value amplification [20,40]. However, in most
of those schemes the spatial degree of freedom of light (spatial
mode) has been used as a pointer whereas the paths of the
interferometric setup have been given two different polar-
izations. The WVA in such a scenario manifests as a large
change in the pointer beam profile either in the spatial or in
momentum space. In contrast, our scheme incorporates the
polarization state of light itself as a pointer enabling the WVA
of polarization anisotropy effects.

The paper is organized as follows. In Sec. II, we provide
the theoretical framework for interferometric WVA of all the
polarization anisotropy effects along with its corresponding
classical field-based formalism. Section III provides the ex-
perimental details of interferometric WVA. In Sec. IV, the
experimental and simulation results are presented and dis-
cussed. Section V concludes with an outlook on this type
of weak-value polarimeter, its possible extension towards
imaging and spectroscopic polarimetry, and its potential ap-
plications.

II. THEORETICAL FORMALISM OF INTERFEROMETRIC
WVA OF POLARIZATION ANISOTROPY EFFECTS

In this framework, the weak value of a given polarization
anisotropy is realized through the near destructive interfer-
ence of polarized light in an interferometer [see Fig. 1(a)].
Here, near destructive interference refers to the destructive
interference of two fields having a phase difference π with
a small amplitude offset εa = tan−1( 1−a

1+a ) (a is the ratio of
amplitudes of the two fields) or the interference of two fields
having equal amplitude (a = 1) but with a phase difference
of π ± 2εp where εp is a small phase offset. The former
generates real WVA and the latter imaginary WVA. The εa/p

parameters are equivalent to the overlap of near orthogonal
pre- and postselection states in weak measurements. We de-
fine the generalized polarization anisotropy parameter α in
terms of the difference in the refractive index RI (n) between
orthogonal linear or circular polarizations as 2α = 2π

λ
(nr/i

L/C −
nr/i

L′/C′ )t . Here, t is the path length, and the superscripts r/i
correspond to real/imaginary parts of RI, and the subscripts
L/C and L′/C′ represent linear/circular polarizations and their
orthogonal states, respectively. The real/imaginary parts of
RI generate amplitude/phase anisotropies and are associated
with retardance/diattenuation effects, respectively [8,9]. We
now derive an interferometric WVA framework based on the
postselection-aided weak measurement formalism.

A. Postselected weak measurement formalism

The weak coupling between the path degree of freedom
(system) and polarization state (pointer) of a light beam in the
interferometric arrangement [see Fig. 1(a)] can be expressed
by the unitary evolution U (α) = e−iαGÂ [11,13,41]. Here, the
polarization anisotropy parameter α → 0, and G is the gen-
erator of the polarization effect acting as the pointer variable
[42]. It generates 2×2 Jones matrices corresponding to the
different polarization anisotropy effects. Henceforth, we use
the superscripts a/p to describe amplitude/phase anisotropy
effects in the corresponding generators Ga

j = i
2σ j and Gp

j =
1
2σ j , respectively, where σ j ( j = 1, 2, 3) are the standard 2×2
Pauli matrices. In our context, the subscripts j = 1, 2, 3 are
related to the generator for the Jones matrix corresponding to
the anisotropy effects in the ±45◦ linear polarization, right-
left circular polarization, and horizontal (x)-vertical (y) linear
polarization basis, respectively [42]. The observable Â repre-
senting the opposite polarization anisotropy effects +α and
−α in the two paths (path |1〉 and path |2〉, respectively) of
the interferometer can be expressed as a 2×2 diagonal matrix
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FIG. 1. (a) Schematic of the Mach-Zehnder interferometric arrangement for WVA of polarization anisotropy effects. (P1,P2): polarizers;
QWP: quarter-wave plate; (BS1, BS2): 50:50 beam splitters; (M1, M2): mirrors; ND: variable neutral density filter. WVA of (b) linear
diattenuation and (c) circular diattenuation. (b) Electric field vectors and polarization ellipse undergoing imaginary (I) and real (II) WVA are
illustrated. I: Electric fields corresponding to the +45◦ polarized light in path 1 (red solid line), after experiencing a small linear diattenuation
in path 2 (violet solid line) and the resultant field following near destructive interference with a small phase offset εp (blue dashed line) are
depicted. Enhancement of ellipticity due to imaginary WVA is also displayed and the expression for ellipticity is noted. II: Corresponding
electric fields for real WVA. The resultant field after near destructive interference with a small amplitude offset εa is shown (green dashed
line). The change in the orientation angle of the electric field due to real WVA is also displayed and the corresponding expression is noted. III:
Evolution of the Stokes vectors in the Poincaré sphere for real (green line) and imaginary (blue line) WVA of linear diattenuation. (c) Evolution
of the Stokes vectors in the Poincaré sphere for real (green line) and imaginary (blue line) WVA of circular diattenuation.

Â = |1〉〈1| − |2〉〈2| = [1 0
0 −1] [20]. The preselection (|ψi〉)

and postselection (|ψ f 〉) of states can be obtained by the path
degree of freedom as follows,

|ψi〉 = 1√
2

[|1〉 + |2〉], (1a)

|ψ f 〉 = 1√
1 + a2

[e±iεp |1〉 − ae∓iεp |2〉]. (1b)

In the weak-coupling limit (α → 0), the final pointer state
after postselection is obtained as [11,13–15]

|φ f 〉 ≈ 〈ψ f |ψi〉e−iαGAw |φi〉. (2)

Here, Aw = 〈ψ f |Â|ψi〉
〈ψ f |ψi〉 is the interferometric weak value of the

operator Â. |φi〉 is the initial pointer state, which is the in-
put polarization state represented by the Jones vector. In this
framework, the polarization transformation is determined by
Eq. (2) and accordingly the final state will depend upon the
values of Aw and α.

1. Real weak-value amplification

Real WVA is obtained at the exact destructive interference
position (a phase difference of π , εp = 0) with a small ampli-

tude offset εa. Using Eqs. (1) and (2), the final pointer state
after postselection is obtained as

|φ f 〉 ∼ e−iα cot εaG|φi〉. (3)

Equation (3) implies an enhancement of the polarization
anisotropy effect α by a factor cot εa, which is reflected in
the final Jones vector pointer state.

2. Imaginary weak-value amplification

Imaginary WVA is obtained by the near destructive inter-
ference of two paths with equal amplitude (a = 1) but with
a phase offset εp from the exact destructive interference po-
sition. The final pointer state after postselection, in this case,
becomes

|φ f 〉 ∼ eα cot εpG|φi〉. (4)

Depending upon the anisotropy effect (described by generator
G), the Jones vector pointer state will be characteristically
modified.

For example, in the case of optical rotation α, the pointer
variable is expressed by Gp

2 with an input x-polarized state

(Jones vector) as |φi〉 = [1 0]T . Following Eq. (3), the real
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WVA is obtained in the final pointer state |φ f 〉,

|φ f 〉 ∼ e−iα cot εaGp

2 |φi〉 ∼
[

cos(α cot εa)
− sin(α cot εa)

]
. (5)

Clearly, from Eq. (5), the real WVA of a small optical rotation
α is manifested as a large enhancement in the orientation angle
(=α cot εa) of the output Jones vector [9]. This is valid for the
case εa → 0.

Similarly, using Eq. (4), the final state after postselection
for an imaginary WVA of small optical rotation can be ob-
tained as

|φ f 〉 ∼ eiα cot εpGa
2 |φi〉 ∼

[
cosh(α cot εp)

−i sinh(α cot εp)

]
. (6)

Imaginary WVA, in Eq. (6), is manifested as a large
change in the ellipticity of the output Jones vector [9] with
decreasing εp.

The above formalism is a generalized one where all the
different polarization anisotropy effects, namely, linear and
circular diattenuation, and linear and circular retardance, are
included in the framework. Note that the expressions for
experimentally measurable Stokes vectors corresponding to
the Jones vectors presented above can be easily worked out
using the standard algebra connecting the Jones and Stokes
formalism [9]. In what follows, we complement the above
weak measurement formalism with its corresponding classical
field-based analog. We also provide a more detailed account of
real and imaginary WVAs of different polarization anisotropy
effects and how they are manifested in the characteristic
Stokes vector elements.

B. Classical field-based formalism

1. WVA of diattenuation

Linear diattenuation (x-y). The real and imaginary WVAs
of the linear diattenuation effect can be modeled using
Eqs. (3) and (4) using the generator Ga

3 , and input state
|φi〉 = 1√

2
[1 1]T in the formalism described in the preced-

ing section. In the classical field analog, this scenario can be
mimicked through the interference of +45◦ polarized light
in one path with a slightly changed polarization state after
experiencing a small linear diattenuation effect between the
horizontal (x) and vertical (y) polarization components in the
other path. The corresponding electric fields are

E1 = ξ
x̂ + ŷ√

2
, E2 = ξ

eα x̂ + e−α ŷ√
e2α + e−2α

. (7)

ξ is an arbitrary field amplitude factor. Note that the +α

and −α effects in both paths, respectively (as mentioned in
Sec. II A), are equivalent to the 2α effect in a single path. The
imaginary WVA can be obtained by a small phase offset εp

from the exact destructive interference of E1 and E2 to yield
the resultant field E as [13,16]

E = (cos εp ± i sin εp)E1 − (cos εp ∓ i sin εp)E2. (8)

Equations (7) and (8) can be used to obtain the expression for
the corresponding Stokes vector elements (S = [I Q U V ]T )
[8,9]. In the weak-coupling limit (α → 0) [11,13–15], the

circular (elliptical) polarization descriptor fourth Stokes vec-
tor element (V

I ) [8,9] can be shown to exhibit WVA with
decreasing εp as

V

I
≈ ∓α cot εp. (9)

The corresponding expressions for real WVA can be obtained
by the destructive interference of E1 and E2 with a small
amplitude offset εa (= tan−1 1−a

1+a ) to yield [13,16]

E = (cos εa ± sin εa)E1 − (cos εa ∓ sin εa)E2. (10)

Once again, in the weak-coupling limit (α → 0), the real
WVA is manifested in the linear polarization descriptor Stokes
vector element ( Q

I ) (for εa → 0) as

Q

I
≈ ∓α cot εa. (11)

Complete expressions for the relevant Stokes vector elements
(V, I for imaginary WVA and Q, I for real WVA) are provided
in Appendix A. The electric fields and the polarization ellipse
corresponding to the WVA of linear diattenuation are pictori-
ally illustrated in Fig. 1(b). For real WVA, with varying εa, the
Stokes polarization state evolves in the Poincaré sphere along
the geodesic trajectory connecting the states of the two paths
of the interferometer (the input state and the state after en-
countering the weak anisotropy effect). For imaginary WVA,
the corresponding trajectory with varying εp lies in a plane
that is perpendicular to the geodesic trajectory [Fig. 1(b)(III)].
This appears to be a general rule for all the anisotropy effects.

Circular diattenuation. The real and imaginary WVAs of
this effect can be modeled using Eqs. (3) and (4) with the
generator matrix Ga

2 , and with the choice of the input state
|φi〉 = [1 0]T in the weak-value formalism. In the classical
field-based formalism, the corresponding expressions for the
fields E1 and E2 for input horizontal (x) polarization are
provided in Table I. This leads to imaginary and real WVAs
(respectively) of circular diattenuation in the Stokes vector
elements as

U

I
≈ α cot εp, (12a)

V

I
≈ α cot εa. (12b)

The exact expressions for the above Stokes vector elements
are provided in Appendix A. The corresponding polarization
state trajectories in the Poincaré sphere for varying εa/p are
shown in Fig. 1(c).

2. WVA of linear and circular retardance

The above framework for WVA can be generalized for
retardance properties also (shown in Table I). Full expres-
sions for the relevant Stokes vector elements are provided in
Appendix A. From a fundamental point of view, it is inter-
esting to note that the real and the imaginary WVAs of a
given polarization anisotropy effect are manifested in differ-
ent Stokes vector elements (Q,U,V ), which act as conjugate
variables. It is interesting to note the quantum mechanical
equivalence where the corresponding quantum Stokes opera-
tors satisfy commutation relations and the respective variances
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TABLE I. Real and imaginary WVAs of all the polarization anisotropy effects. The four different polarization anisotropy effects (first
column), the corresponding input electric field and the electric field after experiencing a small anisotropy effect (second column), and the
Stokes vector elements carrying signatures of real and imaginary WVAs of the respective anisotropy effects (third column). The polarization
optical components used to experimentally realize the WVAs of the respective anisotropy effects are listed in the fourth column.

Electric fields Stokes vector elements

Anisotropy effects E1
ξ

E2
ξ

Real WVA Imaginary WVA Polarization optical component

Linear diattenuation
Linear polarizer oriented

(x − y) x̂+ŷ√
2

eα x̂+e−α ŷ√
e2α+e−2α

Q
I

V
I at a small angle from +45◦

+45◦ linear polarization
x̂ = r̂+l̂√

2
Quarter-wave plate with its optic

Circular diattenuation Horizontal linear eα r̂+e−α l̂√
e2α+e−2α

V
I

U
I

axis oriented at a small angle

polarization from horizontal polarization

x̂+ŷ√
2

Liquid-crystal variable retarderLinear retardance eiα x̂+e−iα ŷ√
2

V
I

Q
I

+45◦ linear polarization with small retardance

x̂ = r̂+l̂√
2 Chiral sample or half-wave plate

Optical rotation Horizontal linear cos αx̂ + sin αŷ U
Q

V
I oriented at small angle with respect

polarization to horizontal polarization

are also restricted by uncertainty relations [43]. From a prac-
tical point of view, the manifestation of real and imaginary
WVAs of various polarization anisotropy effects in charac-
teristic Stokes vector elements open up the possibility of a
weak-value polarimeter for the amplification and quantifica-
tion of all the polarization anisotropy effects using a single
experimental embodiment with relative experimental ease. We
experimentally demonstrate this subsequently.

III. EXPERIMENTAL REALIZATION OF
SAMPLE-MEASURING WEAK-VALUE POLARIMETER

In our experiment, the 632.8-nm line of a He-Ne laser
is passed through a rotatable polarizer (P1) and is used to
seed the interferometer [see Fig. 1(a)]. The small polarization
anisotropy effect is introduced in one arm using standard
polarization optical elements noted in the fourth column of
Table I. The light beams in the two arms with slightly dif-
ferent polarization states then interfere at the exit port and
the resulting fringes are imaged into a CCD camera. The spa-
tially resolved Stokes vector elements across the interference
fringe are measured using a combination of a quarter-wave
plate (QWP) and a linear polarizer (P2) [8,9]. The standard
Stokes vector measurement procedure [8,9] was adopted for
this purpose by performing six linear and circular polarization
intensity measurements using QWP and P2, respectively; IH :
P2 at 0◦ and QWP at 0◦; IV : P2 at 90◦ and QWP at 90◦;
IP: P2 at 45◦ and QWP at 45◦; IM : P2 at 135◦ and QWP at
135◦; IR: P2 at 0◦ and QWP at 45◦; IL: P2 at 0◦ and QWP
at 135◦ [8,9]. For the quantification of the imaginary WVA,
the intensities in the two arms are kept equal (amplitude ratio
a = 1) and the spatial variation of the relevant Stokes vector
elements around the position of the destructive interference
intensity minima (corresponding to phase π ) are recorded.
Here, a single set of measurements of the spatial variations

of the relevant Stokes vector element is sufficient. This spatial
variation is used to generate its variation as a function of the
small phase offset parameter (a phase shift of εp from π ),
which increases gradually as one moves away from the de-
structive interference point. Probing the real WVA, on the
other hand, involves multiple sets of measurements of the spa-
tial variation of the relevant Stokes vector elements. In order
to quantify the real WVA, the relative intensities (or amplitude
ratio a) of light in the two arms are varied using a variable
neutral density filter (ND) [see Fig. 1(a)]. For each value of a,
the measured Stokes polarization parameters corresponding to
the spatial position of the destructive interference (intensity
minima) are used to generate the variations of the relevant
Stokes parameters with the small amplitude offset parameter
εa. The calibration procedure of our experimental system is
discussed in Appendix B.

IV. RESULTS AND DISCUSSION

First, we illustrate the WVA concept through the simula-
tion of the interference experiment taking a small linear re-
tardance (α = 0.017 rad) as the weak polarization anisotropy
effect and the corresponding results are shown in Fig. 2.
For the simulations of the interference fringes and the cor-
responding imaginary and real WVAs of linear retardance,
the electric fields E corresponding to Eqs. (8) and (10), re-
spectively, are used by taking the expressions for E1 and E2

from the fourth row of Table I. The amplitude factor ξ was
taken to be a Gaussian (width = 1 mm) to mimic the light
beam for the simulation of the interference fringes. The Stokes
vector elements corresponding to these interfering fields were
generated using standard Stokes algebra [8,9] and the corre-
sponding expressions are provided in Eqs. (A10) and (A11)
and Eqs. (A12) and (A13) of Appendix A for real and imagi-
nary WVAs, respectively. As is apparent from Fig. 2(a), the Q

I

053518-5



MODAK, B S, SINGH, AND GHOSH PHYSICAL REVIEW A 103, 053518 (2021)

FIG. 2. Simulation of real and imaginary WVAs of linear retardance (α = 0.017 rad). (a) Typical fringe profile of the interference of +45◦

polarized Gaussian beam (width = 1 mm) with another beam having a slightly changed polarization state due to the weak linear retardance
effect. The intensity profile (left axis, black line) and the spatial variation of the Q

I Stokes parameter (right axis, magenta line) along the y axis
of the fringe are displayed. The color bar represents the magnitude of intensity. The Q

I parameter exhibits imaginary WVA. (b) Corresponding
results for real WVA. The intensity profile (left axis, black solid line) and spatial variations of the V

I Stokes parameter (right axis, blue dashed
line) are shown for three different values of the amplitude offset parameter εa = 0.010, 0.050, 0.145. (c) Variation of Q

I with the phase offset
parameter εp (red solid circles) and corresponding theoretical fit to imaginary WVA (∼α cot εp) (red dashed line). (d) Variation of V

I with εa

(blue solid circles) and the real WVA fit (∼α cot εa, blue dashed line). The regions where the WVA approximation breaks down (εa/p,min � α

2 )
are also marked.

Stokes parameter exhibits a prominent enhancement at close
vicinity of the intensity minima of the destructive interfer-
ence position. Accordingly, Q

I increases rapidly as ∝α cot εp

with a decreasing small phase offset parameter εp [Fig. 2(c)],
implying the manifestation of the imaginary WVA of linear
retardance α. The corresponding real WVA of α is manifested
in the V

I Stokes parameter [see Figs. 2(b) and 2(d)]. The
variations of the V

I parameter across the fringe are shown
for three different values of the small amplitude offset εa in
Fig. 2(b). The V

I parameter also increases rapidly with de-
creasing εa and varies as ∝α cot εa [Fig. 2(d)], implying a real
WVA. However, as opposed to the approximate expressions,
the exact magnitudes of the WVAs [obtained using Eqs. (A10)
and (A11) and Eqs. (A12) and (A13) of Appendix A] saturate
and start decreasing below a certain value of the εp/a param-
eters (ε < εmin), which are universal characteristics of WVA
[11,13–15]. In accordance with this and as is evident from
Figs. 2(c) and 2(d), there is a limiting value of amplification
and a corresponding minimum value of εp/a (εmin ∼ α

2 ) as in
the conventional WVA. Here, the limits are set by the funda-
mental limit of degree of polarization (�1). These limiting
values of the εp/a parameters in both the regions εp/a > 0
and εp/a < 0 for imaginary and real WVAs are marked in
Figs. 2(c) and 2(d), respectively. As εp/a approaches zero, the
WVA approximation breaks down and the shift of the pointer
profile also approaches zero, illustrating the nondiverging na-
ture of WVA [Figs. 2(c) and 2(d)] [11,13–15].

The experimental results for linear (x-y) diattenuation
(Fig. 3) reveal the role of the Stokes parameters V

I and Q
I in the

imaginary and real WVAs of linear diattenuation, respectively,
as opposite to the case of linear retardance. Accordingly, the V

I
parameter approaches its maximum value near the destructive
interference intensity minima [see Fig. 3(b)]. The variation
of V

I with εp [Fig. 3(c)] shows good agreement with the
corresponding imaginary WVA of linear (x-y) diattenuation
(α = 0.051) as predicted in Eq. (9) (∝α cot εp). Similarly,
the Q

I parameter also varies as ∝α cot εa [see Fig. 3(d)], as
predicted by Eq. (11) for real WVA of linear diattenuation
(α = 0.017). While the imaginary WVA results [Fig. 3(c)]
are extracted from a single spatial map of V

I , the real WVA
results [Fig. 3(d)] are derived from multiple measurements
of Q

I for varying intensity ratios at the two arms. This makes
the latter more prone to experimental errors. Theoretical
predictions [using Eqs. (A2)–(A5) of Appendix A] of the
imaginary and real WVAs of linear (x-y) diattenuation are
shown in the insets of Figs. 3(c) and 3(d), respectively. Once
again, the limiting behavior of the WVA is apparent when
εp/a approaches the limit (εmin ∼ α

2 ). In the experiments, the
values for εp/a were always greater than this limiting value
εmin. The calibration procedure of the experimental system to
extract the imaginary and real weak values (presented above)
is discussed in Appendix B.

Figure 4 provides experimental results of WVA of circular
diattenuation (α = 0.012). The imaginary WVA is manifested
as an increase of the U

I Stokes parameter with decreasing εp

[Fig. 4(a)] showing good agreement with the corresponding
prediction [∝α cot εp, Eq. (12a)]. The real WVA [Fig. 4(b)]
is manifested as the (∝α cot εa) variation of the V

I Stokes
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FIG. 3. Experimental results of real and imaginary WVAs of
linear diattenuation. (a) Recorded fringe profile of the interference
of a +45◦ polarized Gaussian beam with another beam having a
42◦ polarization state due to the weak linear diattenuation effect
α = 0.051. (b) The intensity profile (left axis, black dashed line) and
spatial variation of the V

I Stokes parameter (right axis, red solid line)
along the magenta dashed line mark in (a). The rapid variation of
V
I around the destructive interference position, shown in the black
dotted box, is a manifestation of imaginary WVA. (c) Variation of
V
I as a function of εp (black circles) and theoretical fit to imagi-
nary WVA (α cot εp) (red line). For real WVA, we took α = 0.017
by placing the linear polarizer at an angle 44◦ with respect to the
horizontal axis in one arm of the interferometer. (d) Variation of Q

I
as a function of εa (black circles) and the corresponding real WVA
fit (α cot εa, blue line). Error bars in (c) and (d) represent standard
deviations. Corresponding theoretical predictions of imaginary and
real WVAs along with the maximum enhancement limit (minimum
εp/a, i.e., εmin) are depicted in the insets of (c) and (d), respectively.

parameter as predicted by Eq. (12b). Experiments were also
performed for a WVA of a small optical rotation effect [44].
The results confirmed imaginary and real WVAs of optical
rotation α, which were reflected in the (∝α cot εp/a) variation
of the V

I and U
Q Stokes parameters, respectively (not shown

FIG. 4. Experimental results of real and imaginary WVAs of cir-
cular diattenuation (α = 0.012). (a) Variation of U

I Stokes parameter
with εp (black circles) and corresponding theoretical fit to imaginary
WVA (α cot εp) (red line). (b) Variation of V

I as a function of εa (black
balls) and the corresponding real WVA fit (α cot εa, blue line). Error
bars represent standard deviations.

here) [44]. The above results demonstrate real and imaginary
WVAs of all the polarization anisotropy effects.

As we proceed further, it is worth noting that even though
at first sight it may appear that WVAs of different polarization
anisotropy effects are sometime manifested in the same Stokes
vector elements, multiple polarimetry effects are in fact per-
fectly discernible through the real and imaginary weak-value
measurement procedure and by a clever choice of the input
polarization states, as is evident from Table I.

It is also pertinent to note that when multiple polarization
effects are exhibited, the extraction and quantification of indi-
vidual anisotropy parameters using conventional methods get
confounded and necessitate cumbersome measurements such
as the full 4×4 Mueller matrix measurement and its inverse
analysis models that are often based on various assumptions
and conditions. This interferometric WVA approach is poten-
tially advantageous in this regard as it reduces the number
of measurements and also obviates the need for the use of
empirical inverse models for polarimetric quantification [7].

The experimental WVA curves and their weak-value fit for
a given anisotropy effect provide the calibration curve for the
quantification of any small anisotropy effect α of an unknown
sample, which was validated by performing measurements
for varying α (see details on calibration in Appendix B). We
emphasize that in conventional polarimeters the sensitivity for
the quantification of α is typically of the order of or lower
than the sensitivity of the individual Stokes vector or Mueller
matrix elements [8,9]. The most promising aspect of this
interferometric WVA protocol, in this regard, is that one can
achieve an amplification of the anisotropy parameter (α) by
a large WVA factor ∼ cot ε. This essentially implies that one
can, in principle, quantify an anisotropy parameter (α) from
the measurement of ∼ cot ε times larger Stokes parameters
(∼α cot ε). In other words, for a given sensitivity of a Stokes
polarimeter, using this interferometric WVA scheme, one can
extract and quantify the polarization anisotropy parameter
which is ∼ε times smaller than the sensitivity of measurement
of a given Stokes parameter (Q/I,U/I,V/I). Since the WVA
parameter ε is a small parameter (ε � 1), this is equivalent to
an enhancement of the sensitivity of a conventional Stokes po-
larimeter, which is used in our WVA experiments. We would,
however, like to note that akin to all other WVA approaches,
here also the large amplification of the polarization anisotropy
parameter α comes at the expense of the intensity signal,
which may also limit polarimetric sensitivity [34,45]. Thus,
the actual benefit of this approach in terms of the enhancement
of sensitivity of a conventional Stokes polarimeter remains
to be rigorously evaluated. Here, we provide initial evidence
of a sensitivity enhancement albeit for a relatively moderate
magnitude of anisotropy α.

For this purpose, we determine the sensitivity of mea-
surement of the intensity normalized Stokes polarization
parameters ( Si

I , Si = Q,U,V ) used in our interferometric
WVA scheme, as this is relevant for the quantification of the
polarization anisotropy parameter α. The sensitivity here is
limited by the corresponding intensity noise or uncertainty

( Si

I ) (see Appendix C for the estimation of polarimetric
sensitivity) [46]. As an illustrative example, in Fig. 5, we
have shown the variation of the uncertainty in the intensity
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FIG. 5. Variation of the uncertainty in the intensity normalized
Stokes parameter 
( V

I ) with a varying εp parameter. Here, 
( V
I )

is an indicator of the the sensitivity of V/I . The results are shown
for the imaginary WVA of optical rotation (α = 0.035). Black solid
circles depict experimental sensitivity data and the corresponding
theoretical prediction is shown by the solid red line.

normalized Stokes V parameter 
V
I with a varying phase

offset parameter εp for the imaginary WVA of optical rotation.
The results are shown for a value of α = 0.035 rad. The
theoretical values (shown by the red solid line) are generated
using Eq. (C1). For this purpose, Eqs. (A16) and (A17) for
the imaginary WVA of optical rotation are used. The corre-
sponding experimental values of 
(V

I ) are shown by the black
solid circles in Fig. 5. Figure 5 implies that as εp → 0, the
sensitivity of the determination of (V

I ) deteriorates, i.e., un-
certainty in 
(V

I ) increases, which is expected, since overall
the intensity falls as εp approaches zero. As noted above, this
is a generic feature of any WVA approach [34,45]. It is per-
tinent to note here that WVA is not a null intensity detection
technique as it uses the near orthogonal pre- and postselection
of states corresponding to a small overlap εa/p between the
pre- and postselection states [11,13]. Therefore, in WVA,
there is an additional handle to optimize the amplification
of any small physical parameter and the signal-to-noise ratio
(SNR or sensitivity) by a judicial choice of the εa/p parameter.
It has been earlier demonstrated that due to this and other
related advantages, in general WVA outperforms comparable
standard strong measurements [45]. Our interferometric WVA
scheme of polarimetry is no exception in this regard. As is
evident from Fig. 5, even though the sensitivity in the deter-
mination of (V

I ) deteriorates [the uncertainty 
(V
I ) increases]

with decreasing εp, the deterioration is not as drastic as the
weak-value amplification factor ∼ cot εp. Thus, an optimal
range of εp (0.2–0.8) can be be worked out where one can
obtain significant amplification with an acceptable level of
SNR. Using the sensitivity analysis of Appendix C, a typical
uncertainty (sensitivity) in the intensity normalized Stokes
vector elements was determined to be ∼0.07. Using this, the
typical sensitivity in estimating the optical rotation 
α was
determined to be 0.008 rad for the range of εp (0.2–0.8). The
sensitivity of the measurement of the same optical rotation
(α ∼ 0.035 rad) using just the traditional Stokes polarization
measurement was obtained to be ∼0.02 rad. These results
provide evidence of the potential advantage and polarimetric
sensitivity enhancement for the determination of optical ro-
tation (α) through the imaginary WVA of (V

I ) by using the

same Stokes polarization parameter measurement system in
the interferometric WVA experimental embodiment.

We emphasize that this proof of concept of polarimet-
ric sensitivity enhancement using the interferometric WVA
approach is demonstrated using a dc Stokes polarimeter in
our experimental configuration, which has an inherently low
sensitivity (we could not go below α ∼ 0.01 rad due to this
limitation). The principle is, however, expected to be valid
for any conventional Stokes polarimeters irrespective of the
specifics of the polarimeter. The initial results presented above
on the enhancement of sensitivity are therefore quite promis-
ing and warrant further exploration towards the detection of
polarization anisotropy below the conventional limit through
the integration of this WVA scheme with relatively high-
sensitivity Stokes polarimeters [7].

V. CONCLUSION

In summary, using a simple yet profound philosophy of
the interferometric realization of weak-value amplification of
the polarization anisotropy effect, we have introduced and
experimentally demonstrated an interesting and useful con-
cept of a sample-measuring weak-value polarimeter. In this
interferometric WVA approach, the pre- and postselection of
states are obtained by the near destructive interference of two
paths of an interferometer with slightly different polarization
states of light due to the presence of a weak anisotropy effect
in one path.

This approach enables the amplification and subsequent
quantification of small magnitudes of all the sample polariza-
tion anisotropy effects in a single experimental embodiment.
As other WVA protocols, this amplification is obtained at
the cost of the intensity of the output signal. But the WVA
approach also provides a handle to optimize the amplifica-
tion of the polarization anisotropy effect and the polarimetric
sensitivity by judiciously choosing the parameter εa/p that
quantifies the overlap of pre- and postselected states. Real and
imaginary WVAs of a given sample anisotropy effect manifest
themselves in different characteristic Stokes vector elements,
which evolve in orthogonal trajectories in the Poincaré sphere.
This manifestation of the WVA of polarization anisotropy in
the conjugate Stokes parameters has an intriguing quantum
mechanical equivalence in the commutation relations of the
analogous quantum Stokes polarization operators and in their
uncertainty relations [43]. This WVA protocol may thus bear
useful and interesting consequences in the studies of non-
trivial polarization properties of light in quantum theory and
in nonclassical polarization states. On practical grounds, the
possibility of a significant enhancement of the sensitivity of
polarization measurements using traditional Stokes polarime-
ters in the experimental embodiment of this WVA protocol
is of general relevance for studying a wide range of weakly
anisotropic materials and weak spin polarization optical ef-
fects for diverse applications [9]. Finally, the extension of this
proposed sample-measuring weak-value polarimeter concept
to other established domains of polarimetry such as in spec-
troscopic and imaging polarimetry remains to be explored. We
are currently expanding our investigations in these directions
by integrating interferometric spectroscopy and imaging and
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microscopy methods [47,48] within the framework of a weak-
value polarimeter.
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APPENDIX A: MANIFESTATION OF WVA OF DIFFERENT
POLARIZATION ANISOTROPY EFFECTS IN

CHARACTERISTIC STOKES VECTOR ELEMENTS

Here, we provide full expressions for the variations of
the relevant Stokes vector elements with the small amplitude
(εa) and phase (εp) offset parameters for real and imaginary
(respectively) WVAs of linear and circular diattenuation and
retardance effects. We define four parameters as listed below,

p1 = 1√
2

+ eα

√
e2α + e−2α

, (A1a)

p2 = 1√
2

− eα

√
e2α + e−2α

, (A1b)

p3 = 1√
2

− e−α

√
e2α + e−2α

, (A1c)

p4 = 1√
2

+ e−α

√
e2α + e−2α

. (A1d)

1. Stokes parameters for linear diattenuation (x-y)

As listed in Table I, the real and imaginary WVAs of a
small linear diattenuation (x-y) effect are manifested in the
Stokes vector elements Q

I and V
I , respectively. The full ex-

pressions of the dependence of these Stokes parameters on εa

and εp parameters are given as follows [8,9].

a. Real WVA

I = [cos εa p2 + sin εa p1]2 + [cos εa p3 + sin εa p4]2, (A2)

Q = [cos εa p2 + sin εa p1]2 − [cos εa p3 + sin εa p4]2. (A3)

The expressions given in Eqs. (A2) and (A3) in the limit 0 <

εa � 1 lead to the WVA equation Q
I ∼ α cot εa [Eq. (4)].

b. Imaginary WVA

Similarly, for imaginary WVA, the relevant Stokes param-
eters (I,V ) are given as, respectively,

I = cos2 εp p2
2 + sin2 εp p2

1 + cos2 εp p2
3 + sin2 εp p2

4, (A4)

V = 2 cos εp sin εp p2 p4 − 2 cos εp sin εp p1 p3. (A5)

Equations (A4) and (A5) yield the familiar WVA equation as
V
I ∼ α cot εp in a straightforward way in the limit 0 < εp � 1.

2. Stokes parameters for circular diattenuation

In a similar manner to the real and imaginary WVA of
linear diattenuation (x-y), the electric fields corresponding to
the circular diattenuation effect (provided in Table I) can be
used to generate the Stokes parameters relevant to its WVA.
The corresponding expressions are noted below [8,9].

a. Real WVA

I = [cos εa p2 + sin εa p1]2 + [cos εa p3 + sin εa p4]2, (A6)

Q = [cos εa p2 + sin εa p1]2 − [cos εa p3 + sin εa p4]2. (A7)

b. Imaginary WVA

I = cos2 εp p2
2 + sin2 εp p2

1 + cos2 εp p2
3 + sin2 εp p2

4, (A8)

U = 2 cos εp sin εp p2 p4 − 2 cos εp sin εp p1 p3. (A9)

3. Stokes parameters relevant to linear retardance

a. Real WVA

I = 4

(
sin2 α

2
cos2 εa + cos2 α

2
sin2 εa

)
, (A10)

V = 4

(
sin α cos α cos εa sin εa − sin α sin2 α

2
cos2 εa

− sin α cos2 α

2
sin2 εa

)
. (A11)

b. Imaginary WVA

I = 2(1 − cos 2εp cos α), (A12)

Q = 2 sin 2εp sin α. (A13)

4. Stokes parameters relevant to circular retardance

a. Real WVA

Q = (cos εa + sin εa)2 + (cos εa − sin εa)2 cos 2α

− 2 cos α cos 2εa, (A14)

U = sin 2α(cos εa − sin εa)2 − 2 sin α cos 2εa. (A15)

b. Imaginary WVA

I = 2(1 − cos α cos 2εp), (A16)

V = 2 sin α sin 2εp. (A17)

APPENDIX B: CALIBRATION
OF THE EXPERIMENTAL SYSTEM

Two different sets of calibrations are involved in this inter-
ferometric WVA scheme: (i) calibration of the interferometric
WVA parameters, namely, the phase offset (εp) and the am-
plitude offset (εa) parameters in the interferometric setup, and
(ii) calibration of the WVA curve of the different characteristic
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Stokes vector elements encoding information on the different
polarization anisotropy effects. Here, we briefly outline the
procedure.

(1) For generating the experimental imaginary WVA curve,
the values for the phase offset parameter εp at different spatial
positions in the CCD image plane are calculated from the pix-
elwise spatial variation of the phase of the interference fringe.
For this purpose, the phase difference of 2π between two
consecutive destructive spatial positions of the fringe profile
on the CCD plane was marked and the pixel corresponding
to the destructive interference point was assigned a value of
εp = 0. The values of εp corresponding to consecutive CCD
pixels away from the destructive interference point were sub-
sequently obtained. For the given pixel dimension of 3.45 μm,
the maximum resolution of the phase offset parameter (the
minimum value of εp that can be used in the WVA scheme) in
our experimental system was determined to be 
εp ∼ 0.0132
rad. The flatness in the spatial variation (or variation as a
function of εp) of the different characteristic Stokes vector
elements in the absence of anisotropy effects (α = 0) was
ensured by performing blank (without sample) measurements.
For generating the experimental real WVA curve, the ampli-
tude offset parameter εa is determined by taking the ratio of
intensity in the two arms of the interferometer. If the intensity
is equal in both arms, then εa = 0. Tuning the ND (see Fig. 1),
we varied the intensity in one of the arms and determined εa in
each case. For a given sensitivity of ∼0.001 μW of the detec-
tor used, the minimum value of the amplitude offset parameter
in our experimental system is found to be 
εa ∼ 0.01. Once
again, the flatness of the variation of the Stokes parameters
with varying εa in the absence of the anisotropy effects was
ensured by performing blank measurements.

(2) The variations of the different characteristic Stokes vec-
tor elements with varying εp/a parameters for imaginary and
real WVAs (respectively) were generally fitted with the func-
tion Aα cot εp/a + B. Note that in an ideal case, the parameters
A and B are expected to be unity and zero, respectively. These
parameters were therefore determined by performing mea-
surements on known magnitudes of the different polarization
anisotropy effects (α). The typical values for the A and B
parameters of our experimental system were found to be in
the range 0.80–1.08, and 0.002–0.010, respectively. Several
factors contribute to these variations, e.g., due to nonideal
polarization optical components (polarizers and wave plates),

slight misalignments, and other experimental imperfections,
etc. Thus, the above-mentioned WVA fits (with known A and
B experimental parameters for respective anisotropy effects)
provide the calibration WVA curve of the experimental system
for the measurement of any unknown anisotropy parameter
α. The linearity of the values of α estimated from the WVA
fitting, with a varying magnitude of the input anisotropy
parameter, was also confirmed by performing multiple mea-
surements.

APPENDIX C: SENSITIVITY ESTIMATION

In the context of the quantification of polarization
anisotropy α, we are interested in the sensitivity of deter-
mining the intensity normalized Stokes parameters ( Si

I , Si =
Q,U,V , and I is the total intensity, the sum of intensities
of any two orthogonal polarizations). The sensitivity of mea-
surement of ( Si

I ) used in our interferometric WVA scheme is
limited by the noise or uncertainty 
( Si

I ), i.e., a smaller 
( Si
I )

corresponds to better sensitivity. In this regard, the signal-to-
noise ratio (SNR) of the normalized Stokes parameters can

be formally defined as ( Si
I )SNR =

Si
I


( Si
I )

. Here, the uncertainty


( Si
I ) primarily arises due to the photon shot noise and the

readout noise of the detector. For an un-normalized Stokes
parameter S, the corresponding noise or uncertainty is 
Si ∼√

I + 2R2, where R is the readout noise [46]. The readout
noise of our experimental detector was determined from the
recorded images in the camera in a dark condition and the
value was estimated to be 0.2. Thus, in our case, the overall
noise was mainly shot-noise limited, i.e., 
Si ∼ √

I . Based
on these definitions and by using a standard error propagation
method, the uncertainty of the normalized Stokes parameters

( Si

I ) can be obtained as [49]




(
Si

I

)
=

Si
I( Si

I

)
SNR

= 
Si(I + Si )

I2
. (C1)

The above equation was used to determine the sensitivity of
normalized Stokes parameter measurements 
( Si

I ) and the
resultant sensitivity of determination of all the sample po-
larization anisotropy effects 
α of our interferometric WVA
polarimeter. Illustrative results of the sensitivity analysis for
the imaginary WVA of optical rotation are presented in Fig. 5.
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