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Suppressing decoherence in quantum plasmonic systems by the spectral-hole-burning effect

Jia-Bin You,1,* Xiao Xiong ,1 Ping Bai,1 Zhang-Kai Zhou,2 Wan-Li Yang,3 Ching Eng Png,1 Leong Chuan Kwek,4,5,6,7

and Lin Wu 1,†

1Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way,
No. 16-16 Connexis, Singapore 138632

2State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
3State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese

Academy of Sciences, Wuhan 430071, China
4Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

5MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore
6National Institute of Education and Institute of Advanced Studies, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616

7School of Electrical and Electronic Engineering Block S2.1, 50 Nanyang Avenue, Singapore 639798

(Received 17 April 2020; accepted 30 April 2021; published 18 May 2021)

Quantum plasmonic systems suffer from significant decoherence due to the intrinsically large dissipative and
radiative dampings. Based on our quantum simulations via a quantum tensor network algorithm, we numerically
demonstrate the mitigation of this restrictive drawback by hybridizing a plasmonic nanocavity with an emitter
ensemble with inhomogeneously broadened transition frequencies. By burning two narrow spectral holes in the
spectral density of the emitter ensemble, the coherent time of Rabi oscillation for the hybrid system is increased
tenfold. With the suppressed decoherence, we move one step further in bringing plasmonic systems into practical
quantum applications.
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I. INTRODUCTION

Plasmonic cavity quantum electrodynamics (QED) at
the nanoscale opens up an unprecedented avenue to ex-
treme light-matter interactions at room temperature and
in ambient conditions [1–3] where plasmonic nanocavities
offer subwavelength, subdiffraction, and significant local
field confinement [4–10]. Recently, plasmonic systems (e.g.,
waveguides and metasurfaces) have emerged as a natural
choice to build compact photonic integrated circuits operating
at the nanoscale for various quantum applications, such as
quantum information processing [11–20] and quantum com-
puting [21–23]. Compared to current noisy intermediate-scale
quantum chips operating in cryogenic temperature and at
the microscale (e.g., superconducting qubits and trapped ions
[24–27]), these nanophotonic circuits potentially enable an
ultimate miniaturization of photonic components for quantum
optics and mark an important step towards the long-term goal
of room-temperature quantum computing [21,22,28].

However, there is a major hurdle for realizing plasmonic
quantum information processing and quantum computing—
the intrinsically large absorption in the metals results in the
fairly large decay rate of plasmonic polaritons. These en-
ergy dissipation processes unavoidably induce decoherence
in the system and limit its performance [19]. One way to
overcome the loss or the decoherence problem is to explore
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quantum plasmonic systems that are strongly coupled to an
ensemble of inhomogeneously broadened quantum emitters
(i.e., a different transition frequency for each emitter). Mod-
ifying the spectral density of the emitter ensemble by a
frequency-selective bleaching technique leads to an increased
transmission at the burned spectral hole of the selected fre-
quency. Such a spectral hole burning (SHB) effect, based on
collective dark states [29–31], was suggested in microwave
cavity QED to reduce the dissipation of the polaritons and
suppress the decoherence of a hybrid system beyond the limit
set individually by the cavity or the emitter ensemble.

In this paper, we investigate the SHB effect in a hybrid
plasmonic system to mitigate the large intrinsic dampings of
the plasmonic system, which is coupled to an emitter ensem-
ble with transition frequencies distributed in a frequency comb
[32]. Different from the microwave cavity [29–31], the plas-
monic cavity operates generally at the nanoscale, and there
is insufficient space for a large number of emitters to effi-
ciently couple to the plasmonic nanocavities (see Appendix
A), thus, the continuum model for the emitter ensemble
in the thermodynamic limit (N → ∞) invalidates. To treat
each emitter discretely and solve this many-body problem
accurately beyond the linear and mean-field approximations,
we perform quantum simulations by employing the quantum
tensor network algorithms—the matrix product state (MPS)
algorithm [33–38] to calculate the transmission spectra and
the time-dependent variational principle (TDVP) [39,40] to
solve the dynamics of the system in the time domain. The
Rabi oscillation of the hybrid plasmonic system is observed,
and the coherent time is obtained to be ten times higher than

2469-9926/2021/103(5)/053517(11) 053517-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7153-8081
https://orcid.org/0000-0002-3188-0640
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.053517&domain=pdf&date_stamp=2021-05-18
https://doi.org/10.1103/PhysRevA.103.053517


JIA-BIN YOU et al. PHYSICAL REVIEW A 103, 053517 (2021)

FIG. 1. Spectral hole burning in the hybrid plasmonic system.
(a) Schematic of the hybrid system consisting of a plasmonic cavity
coupled to an inhomogeneously broadened emitter ensemble. (b) In-
dividual coupling strength between the cavity and each emitter in
the ensemble and the spectral density of the emitter ensemble before
and after SHB. (c) Single excitation spectra of the system before and
after SHB where the population of cavity photon nc is indicated by
the color bar.

the original plasmonic system. To substantiate our experimen-
tal proposal, we combine our quantum simulations with an
electromagnetic-field simulation to study the commonly used
plasmonic nanocavity-gold nanoparticle (AuNP) dimer, tak-
ing into account the temperature effect [41] and laser ablation
effect [42–44] on the AuNPs during hole burning. Some other
practical issues that might impact the SHB effect are also
studied numerically, such as different pumping schemes, non-
ideal frequency comb configurations, randomly distributed
transition frequencies for emitters, and the size of the emitter
ensemble.

II. SPECTRAL HOLE BURNING EFFECT

As illustrated in Fig. 1(a), a plasmonic nanocavity is cou-
pled to an emitter ensemble that contains N quantum emitters,
each modeled as a two-level system with transition frequency
ωi and transition operator σ+

i = |ei〉〈gi| between the ground-
state |gi〉 and the excited state |ei〉. The plasmonic nanocavity
with resonant frequency ωc is second quantized and de-
scribed as a harmonic oscillator with the bosonic creation
(annihilation) operator a†(a) with canonical commutation re-
lation [a, a†] = 1. Each emitter couples to the plasmonic
cavity mode through the Jaynes-Cummings interaction with
a coupling strength gi. A driving laser field EL(t ) with prob-
ing frequency ω pumps the entire system via the dipole
moments of cavity μc and emitters μe with the strengths
�c(t ) = μcEL(t ) and �e(t ) = μeEL(t ), respectively. In a ro-
tating frame with probing frequency ω, the Hamiltonian of
the system can be recast into H = �ca†a + ∑N

i=1[�iσ
+
i σ−

i +
gi(σ+

i a + a†σ−
i )] + �c(t )(a + a†) + �e(t )(S− + S+), where

S−(+) = ∑N
i=1 σ

−(+)
i , and �c(i) = ωc(i) − ω represents the de-

tuning between the driving laser and the cavity (emitter).

Since the energy of the cavity and emitters inevitably dissi-
pates into the surrounding environment, the dynamics of such
an open system is governed by the master equation [45], ∂tρ =
i[ρ, H] + κ

2D[a]ρ + 	i
2

∑
i D[σ−

i ]ρ, where ρ is the density
matrix of the system and D[ô]ρ = 2ôρô† − ô†ôρ − ρô†ô is
the Lindblad term that accounts for the losses from either
cavity or emitter with decay rates κ and 	i, respectively.

To demonstrate the SHB effect, we first consider an ideal
case where the emitters in the ensemble are arranged in a
finite frequency comb [32] with transition frequencies spaced
at equidistant intervals centering around ωe: ωi = ωe − �ω +
2�ω
N−1 (i − 1) in the range of [ωe − �ω,ωe + �ω] with i =
1, 2, . . . , N . The coupling strength between each emitter and
the cavity follows Lorentzian distribution gi = A

1+β(ωi−ωe )2

[29,46]. This leads to the spectral density ρ(ω) of the emitter

ensemble following �2ρ(ω) = ∑
i

g2
i

(	i/2)2+�2
i
	i as shown in

the left panel of Fig. 1(b), where �2 = ∑
i g2

i represents an
effective coupling strength. Throughout this paper, the pa-
rameters ωe = 2, �ω = 0.2 eV, N = 50; gi = 0 ∼ 0.02 eV
(with A = 0.2 eV, β = 0.1); 	i = 0.01, κ = 0.1 eV; μc =
19μe, and constant driving �e = �c/19 = 0.001 eV are used
except where otherwise stated.

Applying an intensive hole-burning pulse with intensity
above a certain threshold on the emitter ensemble, some
emitters of selected frequency will be thermalized into an
equal mixture of their ground and excited states, canceling
out their coherent light-matter interaction [30], resulting in
a zero coupling strength. As exemplified in the right panel
of Fig. 1(b), two spectral holes are symmetrically burned at
ωe ± � (or ωe ± 0.102 eV) in the spectral density ρ(ω) of the
ensemble, which is equivalent to remove the emitters with po-
sition index i = 12–14 and 37–39 in the comb, thus, resulting
in two dips in the coupling strength spectrum with a width
of 0.033 eV. We then restrict the total excitation to single-
excitation subspace and calculate the population of the cavity
photons nc = 〈a†a〉 as a function of the probing frequency ω.
By sweeping the resonant energy of cavity ωc, we plot these
single-excitation energy spectra in Fig. 1(c). Clearly, after
hole burning, two states emerge within the spectral gaps and
are isolated from the remaining subradiant states. These two
states are incorporated with the common ground states of the
system, forming an effective V-level structure that naturally
hosts the dark states [47], which could potentially enhance the
coherent time of the system.

To fully understand the behavior of the long-lived dark
states in this open quantum many-body system, we apply the
variational MPS and the TDVP algorithms (see Appendix B)
to study the steady state and the dynamics of the system.
Note that the MPS approach is different from the mean-
field solutions [29–31], which restricts the Hamiltonian to
the single-excitation subspace (see Appendix C). We discuss
the SHB effect by first plotting the normalized transmission
spectrum of the plasmonic cavity T (ω) in Fig. 2(a), which
is proportional to the scattered photon number 〈a†a〉 from
the cavity. The SHB significantly modifies the emission of
the hybrid plasmonic system. Compared to the spectrum be-
fore SHB, two sharp peaks appear after the hole burning,
which are the direct evidence of the collective dark states
[30]. This pair of dark states is well decoupled from the
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FIG. 2. The SHB effect on the steady state and dynamics of
the hybrid plasmonic system. (a) Normalized transmission spectrum
and (b) Rabi oscillation of the cavity photon before and after SHB.
(c) Normalized transmission spectrum after SHB as a function of the
position of the left hole iL where the right hole is changed symmet-
rically. (d) Tunable Rabi oscillations of the cavity photon for two
different pairs of spectral holes: (iL, iR ) = (13, 38) and (iL, iR ) =
(19, 32). In this paper, ωc = 2 eV, and the cavity (or all the emitters)
is initially prepared in Fock state |1〉 (or in their ground states).

remaining subradiant states so that the broadening of the
peaks (width of 0.011 eV) remains relatively small com-
pared to the background plasmonic polariton before SHB
(decay rate κ = 0.1 eV). Here, the inhomogeneously broad-
ened line-shape ρ(ω) of the emitter ensemble corresponds
to the superposition of many homogeneous line shape of
individual emitter 	i

(	i/2)2+�2
i

weighted by g2
i and shifted with

each other in frequency space. The burning laser will bleach
the emitters that are nearly resonant with the laser (gi = 0)
and create a spectral hole with a line shape corresponding to
the bleaching emitters. Therefore, the decay rate of the dark
states is limited from below by the decay rate of a single
emitter 	i = 0.01 eV. To further interpret the SHB effect,
an analytical solution of the transmission is derived under
linear and mean-field approximations in Appendix D where
we get T (ω) ∝ 1/|�c − �2δ(ω) − i[κ + �2ρ(ω)]/2|2 with
Lamb shift δ(ω). It is evident that the peaks of T (ω) appear at
a probing frequency ωpeak where the denominator gets close to
zero, that is, ωc − ωpeak = �2δ(ωpeak ) and ρ(ωpeak ) = 0. This
confirms that the transmission of the hybrid system can be
tuned by modifying the properties of the emitter ensemble:
Lamb shift δ(ω) and spectral density ρ(ω).

The advantage of the hybrid system can also be remarked
in the time-domain study as shown in Fig. 2(b) where we
initially excite the cavity in the single-photon Fock state |1〉
and deexcite the emitters in their ground states. After a back-
ground short-time Rabi oscillation, a long-lived oscillation
resulting from the SHB gradually emerges. The decay rate
of the long-lived Rabi oscillation, which can be characterized
by the slope, is about one magnitude smaller than that of the
short-time Rabi oscillation. Therefore, the coherent time of
the system is roughly tenfold prolonged by the hole burning.

Interestingly, the pair of dark states is robust against a
change in the hole burning positions as elaborated in Fig. 2(c),
which can be observed widely from 1.8 to 2.2 eV spectrally.
An optimal burning position centered at (iL, iR) = (13, 38)
is found to achieve the most intensive peaks on top of the
background spectrum, where iL and iR are the centers of the
left and right hole positions. Due to the small decay rate
of the dark states, the Rabi splitting can even be observed
in smaller spectral separation of hole positions centered at
(iL, iR) = (22, 29). In Fig. 2(d), we demonstrate the Rabi
oscillations for two hole burning scenarios: (iL, iR) = (13, 38)
and (iL, iR) = (19, 32), which are highlighted in the two white
lines in Fig. 2(c). It is observed that the period of Rabi oscil-
lation is changed, implying that SHB not only suppresses the
decoherence, but also allows us to control the Rabi frequency
by varying the position of the spectral holes.

Despite its simplicity, our quantum many-body model pro-
vides good insights into more complex realistic experiments.
We perform a few more simulations to study the role of ran-
domness in the SHB effect. The detailed results are presented
in Appendix E, including: (i) nonideal frequency comb, (ii)
a Lorentzian distributed ensemble with N = 5000, and (iii)
different decay rates. We find that the SHB effect is generally
robust against the randomness in the emitter ensemble.

III. HEATING EFFECTS ON A PLASMONIC NANOCAVITY

Up to this point, we have focused on the emitter ensemble
and assumed that the plasmonic nanocavity is unaffected by
the hole burning pulse that is intense enough to thermalize
the emitter ensemble. In reality, the burning pulse may induce
local heating on the plasmonic metal nanoparticles, e.g., tem-
perature effect [41] or laser ablation effect [42–44], resulting
in the changed properties of the plasmonic nanocavity (i.e., ωc

and κ) during the hole burning process. We study the heating
effects on the plasmonic nanocavity and their impacts on the
SHB. As indicated in Fig. 3(a) when the plasmon resonance
changes to ω′

c (either redshift or blueshift with respect to orig-
inal ωc = 2 eV), the two SHB peaks become asymmetric. The
clear feature of Rabi oscillation will gradually disappear when
such a shift exceeds 120 meV (see Appendix F), defining
the critical limit to observe the SHB if plasmonic nanocavity
is changed. On the other hand, the impact from the decay
rate κ ′ seems less critical. As expected, increased κ ′ results
in two blunt SHB peaks and reduced Rabi oscillation (see
Appendix F).

In Figs. 3(b) and 3(c), we demonstrate a realistic case study
on a AuNP dimer (diameter = 60 nm and gap d = 5 nm)
with original ωc = 2.331 and κ = 0.287 eV. For such a case,
we select a resonant emitter ensemble (ωe = 2.331, �ω =
0.22 eV) and burn two holes at (iL, iR) = (13, 38). During the
SHB, the AuNP is assumed being partially ablated near the
gap region hosting the emitter ensemble, modifying the shape
of the AuNP and the gap spacing to d ′ = 10 nm. Despite such
a huge change in the geometry of the nanocavity, the resultant
ω′

c = 2.375 and κ ′ = 0.313 eV according to our full-wave
simulation [18] in Fig. 3(b) only leads to a slightly varied SHB
effect (upper red solid) in Fig. 3(c). As compared to the SHB
effect without the heating effect (lower black solid), the two
SHB peaks become blunt. Meanwhile, this ablated plasmonic
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FIG. 3. Heating effects on the plasmonic nanocavity. (a) General
trend on varying ω′

c and κ ′ after the SHB. (b) and (c) Case study on a
AuNP dimer with diameter = 60 nm and d = 5 nm: during the SHB,
the AuNP is assumed being partially ablated near the gap region
hosting the emitter ensemble, modifying the shape of the AuNP and
the gap spacing to d ′. (b) The full-wave simulations (symbols) to
calculate the resonant frequency and the decay rate of the nanocavity
where the plasmon peak is Lorentz fitted with (red solid) or without
(black dashed) considering the heating effect on plasmonic nanocav-
ity. (c) Transmission spectrum and Rabi oscillation of the cavity
photon before and after SHB, with or without considering the heating
effects on plasmonic nanocavity.

nanocavity only has small impact on the Rabi oscillation. This
study further confirms the robustness of the SHB effect in
practical scenarios.

IV. DIFFERENT PUMPING SCHEMES

Finally, we consider different pumping schemes and com-
pare their potential performance. Conventionally, it is usually
to excite the system by a continuous wave that can be modeled
as EL(t ) = EL (also the case in Figs. 1–3). In Fig. 4(a), we
study the quenching dynamics (how the system decays to its
ground state) for the photon population in the cavity after
applying a continuous driving field until the system reaches
the steady state and then turning off the field. Clearly, the
cavity population decays rapidly once the driving is turned
off either with or without the SHB. In other words, the system
is not excited efficiently even with the SHB. Alternatively, we
can pump the system by a sequence of π -phase-switched rect-
angular pulses [29], EL(t ) = ∑∞

n=0(−1)nEL[(t − nT0/2) −
(t − (n + 1)T0/2)] with a strength of EL and a period of

FIG. 4. Different pumping schemes. (a) Under a continuous driv-
ing, the dynamics of the cavity photons before and after the SHB.
(b) Under a sequence of π -phase switched rectangular pulses (op-
timized setting: T0 = 42 fs and ω = 2 eV), the dynamics of cavity
photon with and without the SHB. (c) Contour plot on the ω-T0 plane
to obtain the most efficient rectangular pulses. (d) Contour plot on
the t-T0 plane for fixed ω = 2 eV. In this paper, both the cavity and
the emitters are initially prepared in their ground states.

T0, and (t ) is the Heaviside function. As exemplified in
Fig. 4(b), this procedure efficiently feeds energy into the
hybrid system, leading to enhanced oscillation of cavity pop-
ulation. The maximal population for pulsed driving is a
magnitude larger than that for continuous driving. With the
SHB effect, not only the amplitude of driven oscillation is
profoundly enhanced during the pumping, but also the relaxed
oscillation after turning off the driving is dramatically longer
lived. The amplitude of driven oscillation is found to be pro-
portional to the square of driving strength (see Appendix G).

In Fig. 4(c), we show how we can optimize this maximal
population of the cavity against the driving period T0 and the
probing frequency ω. An optimal population is found when
the period is around the Rabi period 2π/�(= 42 fs), and the
probing frequency is on resonance with the frequencies of
the cavity and the emitters ω = 2 eV. The SHB effect is also
found robust against the driving period T0 and the probing
frequency ω. For instance, the SHB effect with various pulse
periods is plotted in Fig. 4(d). Clearly, the SHB effect can be
observed when the period ranges from 35 to 45 fs.

V. CONCLUSION

We have theoretically demonstrated the SHB effect in hy-
brid plasmonic systems by quantum simulations using MPS
and TDVP algorithms. We show that the dissipation of the
plasmonic polariton and the coherent time for the hybrid
system can be significantly improved by burning two narrow
spectral holes in the spectral density of emitter ensemble with
a frequency comb setup. We also prove that the SHB effect
can survive in randomness in potential experiments, such as
a nonideal frequency comb and Lorentzian-distributed emitter
ensemble. To substantiate the experimental justification of our
proposal, we combine a full-wave electromagnetic field sim-
ulation into the quantum simulation to demonstrate the SHB
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TABLE I. The capacity of hosting emitters in different plasmonic
nanostructures.

Plasmonic nanostructure N of J aggregates Reference

Au nanovoids array 1.6 × 106 [48]
Au nanoslit array 2000 [49]
Individual Au dimer 203–614 [50]
Ag triangular nanoprisim ensemble 174 [51]
Single Ag nanorod 110 [52]
Single Ag triangular nanoprisim 70–85 [53]
Single NPoM nanostructure 1–10 [2]
Single cuboid Au@Ag nanorod 1–7 [3]

in a hybrid system consisting of a AuNP dimer coupled to an
emitter ensemble, taking into account the heating effects of
the hole burning pulse on AuNPs. Finally, we suggest to drive
the system using a sequence of π -phase-switched rectangular
pulses, which can efficiently excite the system and further
prolong the coherent Rabi oscillation.
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APPENDIX A: CAPACITY OF HOSTING EMITTERS

The capacity of hosting emitters depends on what kinds of
plasmonic nanostructure are used (see Table I). Here we give
a brief survey on the number of emitters (J aggregates) N in
the strong coupling hybrid plasmonic nanostructures.

Thus, for plasmonic nanoarrays, we can use a large emitter
ensemble (N ∼ 103) randomly sampled from the Lorentzian
distribution. However, for the single plasmonic nanostructure,
such as the AuNP dimer in Fig. 1(a) in the main text, only a
small ensemble (N ∼ 101−2) can be applied as the hot spot of
the gap mode hosts less emitters.

APPENDIX B: MATRIX PRODUCT STATE ALGORITHM
FOR TAVIS-CUMMINGS MODEL

1. Ground-state search

In this section, we will discuss in details about the im-
plementation of the MPS algorithm for the Tavis-Cummings
model (TCM). In a rotating frame with probing frequency ω,
the plasmonic cavity coupled by an emitter ensemble with N
quantum emitters can be modeled as a TCM model given by

H = �ca†a +
N∑

i=1

[�iσ
+
i σ−

i + gi(σ
+
i a + a†σ−

i )] + �c(a + a†) + �e(S− + S+), (B1)

where a† is the creation operator for the plasmonic mode following canonical commutation relation [a, a†] = 1, σ+
i = |ei〉〈gi|

is the raising operator between ground-state |gi〉 and excited-state |ei〉 of emitter i and S+ = ∑N
i=1 σ+

i . The emitter i couples to
the plasmonic mode through the Jaynes-Cummings interaction with coupling strength gi. The driving strengths for the cavity
and emitter are given by �c and �e, respectively. The laser detunings for the cavity and emitters are given by �c = ωc − ω and
�i = ωi − ω where ωc and ωi are the resonant frequency for cavity and transition frequencies for emitter i.

MPS is a well-known and successful example of the tensor network family. It is very well-suited to study gapped one-
dimensional (1D) or quasi-1D quantum many-body systems [33,34]. The MPS consists of a one-dimensional array of tensors.
Each tensor represents one site in the many-body system, and the tensors are connected together by the bond indices each of
which can take up to D different values. Another index corresponds to the physical index of each site which can take d different
values. For example, d = 2 for a quantum bit.

To implement the MPS algorithm, the many-body quantum state and Hamiltonian should be first transformed to the MPS and
matrix product operator (MPO). The MPS for a quantum state of Eq. (B1) can be written as

|ψ〉 =
D∑

a1,...,aN =1

dc∑
s1=1

ds∑
s2,...,sN+1=1

Ms1
1,a1

Ms2
a1,a2

· · ·MsN+1
aN ,1 |s1s2· · ·sN+1〉, (B2)

where the dimensions of “on-site” tensors Ms1
1,a1

, Ms2
a1,a2

, . . . , MsN+1
aN ,1 are 1 × D × dc, D × D × ds, · · · , D × 1 × ds, respectively.

Here D is the maximum bond dimension and dc, ds are the physical dimensions of cavity and atom, respectively. Based on
the form of the MPS, we note that the Hamiltonian of Eq. (B1) can be interpreted as a one-dimension model with long-range
interaction between cavity and each emitter. This will lead to the particle number N dependence of the bond dimension of MPO
for the Hamiltonian. In the case of TCM in Eq. (B1), there is N + 1 sites in the model, and the bond dimension of the MPO for
the Hamiltonian is 2(N + 1). Take N = 2 as an example. By expressing the bond indices explicitly, the on-site MPO tensors for
cavity and atom sites can be written as
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W s1s′
1 = [

�ca†a + �c(a + a†) g1a g1a† g2a g2a† I
]
, (B3)

W sis′
i =

⎡
⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0
σ+

i 0 0 0 0 0
σ−

i 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0

�iσ
+
i σ−

i + �e(σ−
i + σ+

i ) 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎦

, (i = 2, 3, . . . , N ), (B4)

W sN+1s′
N+1 =

⎡
⎢⎢⎢⎢⎢⎣

I
σ+

N+1
σ−

N+1
0
0

�N+1σ
+
N+1σ

−
N+1 + �e(σ−

N+1 + σ+
N+1)

⎤
⎥⎥⎥⎥⎥⎦

. (B5)

Therefore, the MPO form for the Hamiltonian of Eq. (B1) is

H =
2(N+1)∑

b1,...,bN =1

dc∑
s1=1

dc∑
s′

1=1

ds∑
s2,...,sN+1=1

ds∑
s′

2,...,s
′
N+1=1

W
s1s′

1
1,b1

W
s2s′

2
b1,b2

· · ·W sN+1s′
N+1

bN ,1 |s1s2· · ·sN+1〉〈s′
1s′

2· · ·s′
N+1|. (B6)

To find the ground state, we can minimize the energy E = 〈ψ[M]|H |ψ[M]〉 subjected to the normalization condition
〈ψ[M]|ψ[M]〉 = 1. Here the variational MPS ansatz |ψ[M]〉 is employed, where M = {Ms1 , Ms2 , . . .MsN+1}. By the method
of Lagrange multipliers, the local minimization for site k is equivalent to the following equation:

∂M
sk ∗
al ,al−1

[〈ψ[M]|H |ψ[M]〉 − λ(〈ψ[M]|ψ[M]〉 − 1)] = 0, (B7)

which leads to
∑

{a′
i,bi,s′

j }

∑
{ai 
=l−1,l ,s j 
=k}

(
Ms1∗

a1,1
W

s1s′
1

1,b1
M

s′
1

1,a′
1

) · · · (W sks′
j

bi−1,bi
M

s′
j

a′
i−1,a

′
i

)· · ·(MsN+1∗
1,aN

W
sN+1s′

N+1

bN ,1 M
s′

N+1

a′
N ,1

)

− λ
∑
{a′

i}

∑
{ai 
=l−1,l , s j 
=k}

(
Ms1∗

a1,1
Ms1

1,a′
1

) · · · (Msk

a′
i−1,a

′
i

)· · ·(MsN+1∗
1,aN

MsN+1

a′
N ,1

) = 0. (B8)

Note that if we express the MPS of Eq. (B2) in the mixed-canonical form [33], Eq. (B8) can be further reduced to an
eigenproblem,

∑
a′

l−1,a
′
l ,s

′
k

H
sk ,s′

k

al−1,al ,a′
l−1,a

′
l
M

s′
k

a′
l−1,a

′
l
= λMsk

al−1,al
, (B9)

where the effective Hamiltonian at site k is

H
sk ,s′

k

al−1,al ,a′
l−1,a

′
l
=

∑
{ai 
=l−1,l , s j 
=k ,bi, a′

i 
=l−1,l ,s
′
j 
=k}

(
Ms1∗

a1,1
W

s1s′
1

1,b1
M

s′
1

1,a′
1

) · · · (W sks′
k

bi−1,bi

)· · ·(MsN+1∗
1,aN

W
sN+1s′

N+1

bN ,1 M
s′

N+1

a′
N ,1

)
. (B10)

By solving for the lowest eigenvalue λmin and the correspond-
ing eigenvector Msk

al−1,al
of Eq. (B9), we obtain the current

ground-state energy estimate. Therefore, the ground-state
search can be iteratively obtained by the sweep algorithm. For
the TCM of Eq. (B1), we sweep forward from 1 to N + 1 and
backward from N + 1 to 1 for several times until the local
lowest-energy λmin converges to the ground-state energy Eg

and the corresponding ground-state ψ[Mg] is obtained.

2. Time evolution by time-dependent variational principle

The Dirac-Frenkel TDVP has been reformulated for the
variational MPS [39]. The key ingredient is to project the
right-hand side of the time-dependent Schrödinger equa-

tion Hψ[M] onto the tangent space so that the evolution
never leaves the manifold. This approach is independent
of the Hamiltonian and can be implemented efficiently for
long-range Hamiltonian. Concretely, it approximates the time
evolution of an MPS ψ[M] under the Hamiltonian H by
minimizing

min
Ṁ

|iṀ∂Mψ[M] − Hψ[M]|2, (B11)

with ψ[M] kept fixed whereas its derivative Ṁ is varied.
More recently, an improved TDVP algorithm was derived

for finite MPS with open boundaries, which relies on the
mixed canonical gauge [40,54]. This approach leads to an
effective Schrödinger equation for states constrained to the
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FIG. 5. Comparison between the mean-field and matrix product
state calculations. The black solid line is the result from mean-field
calculation. The red dashed and blue dotted lines are for driving
strength EL = 1 and EL = 2, respectively. Other parameters used are
kept the same as those in Fig. 2(a) in the main text.

MPS manifold,

i
d

dt
ψ[M(t )] = PT ψHψ[M(t )], (B12)

where PT ψ is an orthogonal projector onto the tangent space
of ψ[M(t )]. For the TCM in Eq. (B1), the tangent space
projector can be decomposed as

PT ψ =
N+1∑
i=1

P[1:i−1]
L ⊗ Ii⊗P[i+1:N+1]

R −
N∑

i=1

P[1:i]
L ⊗P[i+1:N+1]

R ,

(B13)
where

P[1:i−1]
L =

D∑
k=1

∣∣�[1:i−1]
L,k

〉〈
�

[1:i−1]
L,k

∣∣,

P[i+1:N+1]
R =

D∑
k=1

∣∣�[i+1:N+1]
R,k

〉〈
�

[i+1:N+1]
R,k

∣∣,

FIG. 6. The SHB effect under the condition of the nonideal fre-
quency comb. The parameters used are kept the same as those in
Fig. 2(a) in the main text with r = 0.5.

meaning that

|ψ[M(t + δt )]〉 = exp(−i δt PT ψH )|ψ[M(t )]〉 (B14)

can be approximated by applying a Lie-Trotter-Suzuki de-
composition [55] to the exponential. Here |�[1:i]

L,k 〉 and

|�[i+1:N+1]
R,k 〉 are obtained by bipartitioning the TCM model

into sites [1:i] and [i + 1:N + 1] and performing the Schmidt
decomposition,

|ψ[M]〉 =
D∑

k=1

λk

∣∣�[1:i]
L,k

〉 ⊗ ∣∣�[i+1:N+1]
R,k

〉
. (B15)

Consequently, one can sweep back and forth along the MPS,
time evolving one site tensor at a time. This algorithm is
symplectic and conserves the energy and norm of a state.

3. Variational MPS algorithms for the Lindblad
master equation

In general, the emitters and the plasmonic cavity are lossy,
which arises from spontaneous emission, imperfections in the
cavity, and nonradiative losses due to the larger environment.
These need to be accounted for in the description of the system
[32]. In a Markovian setting, such losses in an open system
can be described by using a Lindblad master equation of the
form

∂tρ = i[ρ, H] + κ

2
D[a]ρ +

N∑
i=1

	i

2
D[σ−

i ]ρ, (B16)

where D[ô]ρ = 2ôρô† − {ô†ô, ρ}. It is straightforward to find
that the master equation can be rewritten into

∂tρ = i(ρH†
eff − Heffρ) + κaρa† +

N∑
i=1

	iσ
−
i ρσ+

i , (B17)

where

Heff = (�c − iκ/2)a†a +
N∑

i=1

[(�i − i	i/2)σ+
i σ−

i

+gi(σ
+
i a + a†σ−

i )] + �c(a + a†) + �e(S− + S+).

(B18)

In the Choi representation [32,35,36], the master equation
can be recast into ∂t |ρ〉〉 = L|ρ〉〉, which has great similar-
ity with the time-dependent Schrödinger equation shown in
Appendix B 2. Here the density-matrix ρ is reshaped into a
column vector |ρ〉〉 by concatenating all its columns, and the
Liouvillian superoperator is reformulated to operate on the
corresponding enlarged Hilbert space as

L = i(H∗
eff ⊗ I − I ⊗ Heff ) + κa ⊗ a +

N∑
i=1

	iσ
−
i ⊗ σ−

i ,

(B19)
then the variational MPS algorithms described in Appen-
dices B 1 and B 2 can be applied to study the steady and
dynamical properties of the system. The determination of the
steady density matrix can be reformulated as the variational
minimization [36] of the Euclidean norm functional |L|ρ〉〉| �
0, and the time evolution of the system can be achieved by the
TDVP algorithm [40]. Note that the expectation value of an
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FIG. 7. (a) The SHB effect for a Lorentzian distributed ensemble
with N = 5000 emitters. The spectral holes are burned at ωL =
1.9 and ωR = 2.1 eV with a width of 0.033 eV. (b) Transmission
spectrum for the SHB effect with different emitter numbers N =
2000, 4000, 6000.

observable Ô is 〈Ô〉 = tr(Ôρ) = 〈〈Ô†|ρ〉〉 in Choi’s represen-
tation.

APPENDIX C: COMPARISON BETWEEN THE
MEAN-FIELD AND MATRIX PRODUCT STATE

CALCULATIONS

Here we compare the mean field with the matrix product
state calculations. A driving laser field EL with probing fre-
quency ω pumps the entire system via the dipole moments of
cavity μc and emitters μe with the strengths �c = μcEL and
�e = μeEL. In Fig. 5, we find that the mean-field solution is
only exact when the driving strength EL is small, the peak-to-
background ratio and the line profile of the SHB peak will
become lower and broader when one increases the driving
strength EL.

APPENDIX D: ANALYTICAL SOLUTION OF THE
TRANSMISSION

An analytical solution of the transmission T is derived to
assist interpreting the SHB effect. We consider a simplified
case where the coherent driving field only acts on the plas-
monic cavity �e(t ) = 0. In the limit of low driving intensity
when the linear approximation 〈σi,z〉 ≈ −1 is valid, we can

FIG. 8. The SHB effect with different decay rates 	i =
0.01, 0.03, 0.05 eV. The other parameters used are kept the same as
those in Fig. 2(a) in the main text.

derive the equations of motion for the system as

〈ȧ〉 = −(i�c + κ/2)〈a〉 − i
∑

i

gi〈σ−
i 〉 − i�c(t )

〈 ˙σ−
i 〉 = −(i�i + 	i/2)〈σ−

i 〉 − igi〈a〉.
After some straightforward calculations, the transmission
spectrum of the hybrid plasmonic system T (ω), proportional
to the emitted photon number of the cavity 〈a†a〉 can be
simplified to

T (ω) ∝ 1

|�c − �2δ(ω) − i[κ + �2ρ(ω)]/2|2 , (D1)

where the mean-field approximation 〈a†a〉 ≈ |〈a〉|2 is applied.
Here, �2 = ∑

i g2
i represents an effective coupling strength

that is enhanced by a factor of
√

N compared to individual
coupling strength gi. The δ(ω) and ρ(ω) represent the Lamb
shift [29] and the spectral density of the emitter ensemble,
respectively.

Looking at the denominator of this analytical solution of
T (ω), we can clearly see that the resonant frequency and
the spectral broadening of the plasmonic cavity are modified
by the dressed emitter ensemble. In particular, the resonant
frequency ωc is shifted by the Lamb shift [29] �2δ(ω) =∑

i
g2

i

(	i/2)2+�2
i
�i, whereas the spectral broadening κ is in-

creased by the density of states of the emitter ensemble

�2ρ(ω) = ∑
i

g2
i

(	i/2)2+�2
i
	i. More importantly, the value of

T (ω) can be maximized when the denominator gets close
to zero, that is, �c = �2δ(ω) and [κ + �2ρ(ω)]/2 = 0. This
implies that we could tune the transmission spectrum of the
hybrid system by modifying the properties of the emitter
ensemble δ(ω) and ρ(ω). This analytical solution has been
used in interpreting Fig. 2 in the main text.

APPENDIX E: RANDOMNESS IN THE SPECTRAL HOLE
BURNING EFFECT

1. Nonideal frequency comb

Nonideal frequency comb refers to the case that the emitter
frequencies are not exactly located at the comb position. This
can be modeled as a disorder among the transition frequencies
of the ideal comb where the on-site energy of the emit-
ters becomes He = ∑

i ω
′
iσ

+
i σ−

i . The nonideality is reflected
in ω′

i = ωi + δωi, where δωi = αi�
ω

N−1 is a random on-site
energy and the random number αi ∈ [−r, r] (0 � r < 1) is
uniformly distributed. Meanwhile, the corresponding cou-
pling strength for each modified transition frequency follows
the same Lorentzian distribution g′

i = A
1+β(ω′

i−ωe )2 . As shown
in Fig. 6, we find that the SHB effect can still be observed in
the presence of this nonideal frequency comb.

2. Randomly distributed transition frequencies

Next we consider another case where the transition
frequencies of emitters are randomly distributed by the
Lorentzian distribution and the couplings with the plasmonic
cavity are kept constant for all the emitters. Particularly, we
sample N = 5000 emitters from the same Lorentzian distri-
bution and set the coupling strength of each emitter to be
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FIG. 9. The effect of the changed resonant frequency of plasmonic nanocavity ω′
c (from its original value of 2 eV before the SHB) on the

spectral hole burning effect. The other parameters used are kept the same as in Fig. 2(a) in the main text.

identical gi = 0.002 eV. It is found in Fig. 7(a) that the SHB
effect can be observed in the dense emitter ensemble with
individually weak coupling strength.

The SHB effect will be in stronger contrast to the back-
ground spectrum when the number of emitters becomes larger.
As shown in Fig. 7(b), the SHB effect become more and more
significant as the emitter number goes from 2000 to 6000.
Here we show the case where the plasmonic cavity is coupled
with an emitter ensemble with randomly distributed transition
frequencies. It is found that the SHB effect will be in stronger
contrast to the background spectrum when the number of
emitters become larger.

3. Different decay rates

We also discuss the influence of the fundamental decay
rate to the SHB effect. For instance, when the decay rate of
individual emitter 	i increases from 0.01 to 0.05 eV, the SHB
effect will shrink gradually as seen in Fig. 8.

APPENDIX F: HEATING EFFECTS ON THE PLASMONIC
NANOCAVITY

1. Heating effects of the plasmonic nanocavity on SHB

The burning pulse may induce local heating on the plas-
monic metal nanoparticles, e.g., temperature effect [41] or
laser ablation effect [42–44], resulting in the changed prop-
erties of the plasmonic nanocavity (i.e., ωc and κ) during
the hole burning process. We study the heating effects on
the plasmonic nanocavity and their impacts on the SHB.
As indicated in Fig. 9(a), when the plasmon resonance
changes to ω′

c (either redshift or blueshift with respect
to the original ωc = 2 eV), the two SHB peaks become
asymmetric. The clear feature of Rabi oscillation will grad-
ually disappear when such a shift exceeds 120 meV as
shown in Fig. 9(b), defining the critical limit to observe
the SHB if the plasmonic nanocavity is changed. On the
other hand, the impact from the changed decay rate κ ′
seems less critical. As expected, increased κ ′ results in two
blunt SHB peaks and reduced Rabi oscillation as shown
in Fig. 10.

FIG. 10. The effect of the changed decay rate of plasmonic nanocavity κ ′ (from its original value of 0.10 eV before the SHB) on the
spectral hole burning effect. The other parameters used are kept the same as those in Fig. 2(a) in the main text.
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FIG. 11. Dependence of the Rabi oscillation amplitude on the
driving strength �e = �c/19 = 1, 2, 3 meV. The other parameters
used are kept the same as those in Fig. 4(b) in the main text.

2. Full-wave optical simulations of the plasmonic nanocavity

In our full-wave optical modeling, we consider two closely
spaced Au nanospheres and solve the scattering problem for
such subwavelength conductive nanostructures in an oscil-
lating electromagnetic field [56,57]. This is performed by
solving the full set of three-dimensional Maxwell’s equations
for the electric and magnetic fields using the finite element
method. The permittivity of Au is taken from the Johnson and
Christy handbook [58]. In our simulations, we assume that:
(i) the nanosphere has a diameter of 60 nm and placed closely
to each other with a gap of d = 5 nm; (ii) the nanosphere
dimer is embedded in an air environment (refractive index

of 1); and (iii) plane-wave excitation from the top with a
background electric-field |E0| = 1 V/m along the long axis
of the nanosphere dimer.

Upon solving the electric and magnetic fields, the model
calculates the spectrum of power absorption (i.e., the volume
integration of the resistive heating) inside the Au nanospheres
to identify the resonant wavelengths as shown in Fig. 3(b)
in main text (symbols). By plotting the spatial distributions
of the calculated electric fields at the resonant wavelengths,
we identify the plasmon resonance peak and fit it with a
Lorentz curve (dotted lines) to extract the properties of the
plasmonic nanocavity, resonant frequency ωc, and decay rate
κ (i.e., the full width half maximum of the peak). These
parameters are then taken into the quantum simulation model
to study the spectral hole burning effect. All these full-wave
optical calculations are performed based on the scattered-field
formulation in the COMSOL Multiphysics RF module, and a
perfectly matched layer boundary is applied to eliminate the
backreflections of the incident radiation.

APPENDIX G: DEPENDENCE OF THE RABI
OSCILLATION AMPLITUDE ON THE DRIVING

STRENGTH

A driving laser field EL(t ) with probing frequency ω

pumps the entire system via the dipole moments of cav-
ity μc and emitters μe with the strengths �c(t ) = μcEL(t )
and �e(t ) = μeEL(t ), where μc = 19μe and driving strength
�e = �c/19 = 1 meV are used throughout the studies in the
main text. For the scheme of π -phase-switched rectangular
pulses, we can increase the electric-field strength of the driv-
ing laser EL or the driving strength �e = �c/19 to amplify
the Rabi oscillation amplitude. We find that the amplitude
is proportional to the square of driving strength as shown in
Fig. 11.
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