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Optical vortex dichroism in chiral particles
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Circular dichroism is the differential rate of absorption of right- and left-handed circularly polarized light by
chiral particles. Optical vortices which convey orbital angular momentum (OAM) possess a chirality associated
with the clockwise or anticlockwise twisting of their wave front. Here it is highlighted that both oriented and
randomly oriented chiral particles absorb photons from twisted beams at different rates depending on whether
the vortex twists to the right or the left through a dipole coupling scheme. This is in contrast to previous studies
that investigated dipole couplings with vortex modes in the paraxial approximation and showed no such chiral
sensitivity to the vortex handedness: only in oriented media where electric quadrupole coupling contributes
to optical activity effects due to absorption does such a mechanism exist for paraxial vortices. The distinct
difference in the scheme highlighted in this work is that longitudinal fields are taken into account. Due to the
vortex dichroism persisting in randomly oriented collections of chiral particles, the mechanism has a distinct
advantage in its potential applicability in chemical and biochemical applications where the systems under study
are invariably in the liquid phase. Additionally, the result is put into context in terms of the quantifiable optical
chirality, highlighting that optical OAM can in fact increase the optical chirality density of an electromagnetic
field.
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I. INTRODUCTION

Natural optical activity is the differential interaction of
a chiral particle—a chiral molecule for example—to the
handedness of circularly polarized light (CPL) [1]. Circu-
lar dichroism (CD) is a type of natural optical activity that
specifically relates to a differential rate of absorption of CPL.
Fundamentally all natural optical activity effects are due to
the chiroptical interplay between the left- and right-handed
nature of chiral particles L(ξ )/R(ξ ) and the left- and right-
handed rotations of the electromagnetic field vectors in CPL,
L(σ )/R(−σ ) (see Fig. 1); this optical helicity is denoted by
σ = ±1, respectively, and stems from the intrinsic spin angu-
lar momentum (SAM) σ h̄ of photons.

Biomolecules are invariably chiral and therefore optically
active, and the importance of chiroptical spectroscopies are
at the forefront in determing these structures and their func-
tionalities [2]. Indeed, CD methods have been well utilized
in determing the secondary structure of proteins [3,4]. Raman
optical activity (ROA) is a widely used technique in deter-
mining the chiral molecular structures and motions of viruses,
carbohydrates, proteins, and structures even as large as insulin
[5–7]. Beyond natural materials, chiroptical spectroscopies of
fabricated nanostructures are an important facet of the fields
of plasmonics and metamaterials [8–10].

Optical vortices (or twisted light) are well known and
well utilized in the physics community, particularly in optical
manipulation, communication and information transfer, and
imaging, to name a few [11]. The most common vortex mode
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implemented is the Laguerre-Gaussian (LG), a solution to the
paraxial wave equation in cylindrical coordinates. The key
property of optical vortices is their ability to convey orbital
angular momentum (OAM)—this stems from the fact they
propagate with a helical phase ei�φ , where � ∈ Z is known
as the topological charge and φ is the azimuthal angle; optical
vortices with +|�| are left handed, those with −|�| are right
handed (see Fig. 1). For beams propagating paraxially (that is,
the wave vector makes a small inclination to the optical axis),
the spin (polarization) and orbital (spatial) degrees of freedom
are legitamately separable, and individual photons may pos-
sess discrete �h̄ units of OAM and σ h̄ units of SAM [12,13].
The application of optical vortices in spectroscopic situations
is a relatively new but rapidly growing research area, partic-
ularly in atomic optics [14] and chiral spectroscopies [15].
Interest in the latter is due to the fact that optical vortices
are chiral, in an analogous fashion to CPL (see Fig. 1), and
so it is natural to ask whether (nonmechanical) light-matter
interactions can be sensitive to whether a vortex twists to the
left or to the right. At this point it is worth briefly mentioning
an emerging application of the chirality of optical vortices
to fabricate chiral micro- and nanostructures through purely
mechanical means [16].

A comprehensive review of the field of chirality, optical
activity, and vortex light can be found in Ref. [15]. An ini-
tial study to address whether chiral molecules would respond
differently to the handedness of an optical vortex considered
paraxial LG vortex beams interacting in the dipole approxi-
mation (both electric and magnetic), concluding that neither
oriented or randomly oriented chiral molecules would show
differential absorption of +|�| and −|�| photons [17]. More
recent studies however highlighted how chiral molecules can
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FIG. 1. Chirality of light: the chirality of circular polarization
stems from the electromagnetic field vectors tracing out a helix as
the light propagates; the chirality of an optical vortex stems from
the helical structure that the wave front traces out as the beam
propagates. The optical helicity or chirality associated with lights
polarization is an intrinsic property stemming from SAM; the vortex
chirality is a spatial property of the beam stemming from its OAM.
(Figure reproduced with permission from [15].)

in fact show differential interactions with paraxial vortices,
but only through electric quadrupole (and higher multipole)
interactions with the field [18,19], and in the specific case of
absorption the individual material components have to be ori-
ented with respect to the optical axis of the input beam. What
all these studies have in common however is that they assume
the input beam is well described as a paraxial vortex mode
and fully transverse with respect to the direction of prop-
agation. Under specific situations, however, longitudinal (in
the direction of beam propagation) fields can become highly
important, such as when the fields are strongly focused [20] or
when specific angular momentum combinations are employed
[21,22]. By accounting for longitudinal fields we highlight
here a vortex dichroism (VD) which persists even for isotropic
chiral particles in the dipole approximation. Compared to
schemes where the chiral particles must exhibit a degree of
orientational order, the VD mechanism outlined in this work
that persists in orientationally averaged chiral particles has a
much larger scope of potential applicability in chemical and
biochemical chiral spectroscopies as the systems under study
are invariably in solution and liquid phases.

II. ABSORPTION OF TWISTED LIGHT
BY CHIRAL PARTICLES

In the theory of quantum electrodynamics (QED) [23–25]
the coupling of light and matter is represented by the inter-
action Hamiltonian Hint, which in the Power-Zienau-Woolley
(PZW) formulation is given in a multipolar expansion form

for a particle ξ positioned at Rξ [26]:

Hint (ξ ) = −ε−1
0 μi(ξ )d⊥

i (Rξ ) − mi(ξ )bi(Rξ )

− ε−1
0 Qi j (ξ )∇id j

⊥(Rξ ) − ...H.O.T, (1)

where μ(ξ ) is the electric dipole transition moment opera-
tor, m(ξ ) is the magnetic dipole, and Qi j (ξ ) is the electric
quadrupole; d⊥(Rξ ) and b(Rξ ) are the electric displacement
field and magnetic field operators, respectively (both are trans-
verse to the Poynting vector); H.O.T. stands for higher-order
terms in the multipole expansion; we use standard suffix no-
tation for tensor quantities and imply the Einstein summation
convention for repeated indices throughout (i.e., aibi = a · b).

The electric displacement field mode expansion for cir-
cularly polarized Laguerre-Gaussian (LG) beams in the long
Rayleigh range is given by [22]

d⊥
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where � = i(h̄ckε0/2A2
�,pV )1/2 is the normalization constant

for LG modes, with V the quantization volume; a(σ )
|�|,p(kẑ) is

the annihilation operator, the exponential terms eikz, ei�φ , and
eiσφ are phase factors, H.c. stands for Hermitian conjugate,
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where the normalization constant is given by C|�|
p =√

2p!/[π (p + |�|)!] and L|�|
p is the generalized Laguerre poly-

nomial of order p. The magnetic field CPL LG mode operator
in the long Rayleigh range is
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(4)

In Eqs. (2) and (4), the parts of the total fields that depend
on the transverse coordinates x̂ and ŷ are known in termi-
nology originating from Lax et al. [27] as the zeroth-order
transverse fields, the terms dependent on ẑ are the first-order
longitudinal fields, generally neglected for paraxial vortex
modes such as LG. The relative magnitude of the longitudinal
field compared to the transverse fields is weighted by the
paraxial paramter (kw0)−1, where w0 is the beam waist at
z = 0. For general non-OAM possessing laser modes (e.g., a
Gaussian mode) longitudinal fields only becomes important
for very highly focused nonparaxial laser fields and can be
safely neglected for paraxial modes [20]. However, this is not
the case for OAM-possessing paraxial optical vortex light,
and in general first-order longitudinal fields of optical vortices
should be included for beams with larger values of kw0 than
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would be necessary for non-OAM paraxial possessing modes
[21,22].

Most optical interactions with matter can be solely de-
scribed by E1 couplings [the first term on the right-hand side
of Eq. (1)]: the electic dipole approximation. However, the
origin of natural optical activity stems from the interferences
between electric dipole couplings (E1) with both magnetic
dipole (M1) and electric quadrupole (E2) couplings: E1M1
and E1E2 [28]. For CD in particular, isotropic collections of
chiral particles (e.g., those randomly oriented such as in a
liquid) only produce optical activity through the E1M1 mech-
anism: E1E2 contributes to oriented systems of molecules but
averages to zero for tumbling systems [29] (see Appendix C).

As mentioned in Sec. I, an initial study in the field of
optical activity and twisted light predicted, via theoretical
calculations, that chiral molecules (both oriented and ran-
domly oriented) subjected to an optical vortex would show
no differential rate of absorption with respect to the vortex
handedness [17]. However, that study only included the purely
zeroth-order transverse fields of the Laguerre-Gaussian modes
Eqs. (2) and (4), i.e., those dependent on x̂ and ŷ. In this
study we highlight how inclusion of the longitudinal fields
does in fact allow for a vortex dichroism of twisted photons
for both ordered and isotropic chiral molecules through the
E1M1 mechanism.

For CD the initial and final states of the total light-matter
system are given by the following kets, respectively: |I〉 =
|E0〉|n(k, σ, �, p)〉 and |F 〉 = |Eα〉|n−1(k, σ, �, p)〉. That is, a
chiral particle in the initial state |E0〉 absorbs a photon from
a single mode (k, σ, �, p) input laser with occupation number
n, reducing the occupaton of the mode to n−1 and resulting
in the particle being in the excited state |Eα〉. CD involves
the absorption of a single photon, and so first-order time-
dependent pertubation theory MFI = 〈F |Hint (ξ )|I〉 yields the
matrix element (or quantum amplitude) for the process:

MFI = −�
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where for notational brevity we drop the dependencies of the
radial function f . To calculate the rate � of photon absorption
we require Fermi’s rate rule: � = 2π h̄−1|MFI|2ρ where ρ is
the density of final states. When taking the modulus square
of Eq. (5) as required by the Fermi rule it is evident that
three distinct terms will be produced: μμ, mm, and μm; the
latter of these are the interference terms between electric and
magnetic transition dipole moments (E1M1) and these are
what are responsible for the differential effects observed in
optical activity [1,23]. The pure electric dipole E1E1 and
pure magnetic dipole terms M1M1 are equivalent for either
enantiomer—this is clearly obvious from parity considera-
tions alone [28]—and therefore are neglected from now on
apart form when discussing Kuhn’s dissymmetry factor.

In the fields of chemistry, biochemistry, and molecular
spectroscopy the particles under study are often in the con-
densed liquid phase and exhibit no correlations between one

another. Chiral molecules in fluids are generally randomly
oriented with respect to the laboratory frame of reference,
and to account for this isotropic system we must carry out
an orientational average of the molecules (see Appendix A
for the result that pertains to oriented chiral systems). The
second-rank molecular tensor average is easily carried out
using standard techniques [30], namely 〈aib j〉 = 3−1δi ja · b,
where angular brackets denote a rotationally averaged quan-
tity. Taking all of the above into account, the rate is given by

〈�〉 ∝ 〈|MFI|2〉 ∝ −Nr
I

3ε0c2

[
σ f 2 + 1
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r
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)]
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where Nr is the number of chiral particles at a position r, the
beam irradiance is given by I = nh̄c2k/A2

�,pV , and μ0α
i = μ̄α0

i

is a pure real polar vector, but m0α
i = −m̄0α

i and m0α
i = −mα0

i
is a purely imaginary axial vector.

III. CIRCULAR DICHROISM WITH OPTICAL VORTICES

The circular rate differential for CD, i.e., the difference
of absorption between left- (σ = +1) and right- (σ = −1)
handed circular polarization is easily derived from Eq. (6):

〈�(L)〉 − 〈�(R)〉 ∝ Nr
2I

3ε0c2

[
f 2 + 1

2k2

(
f ′2 + �2

r2
f 2

)]
Rα0,

(7)
where we now make use of the optical rotatory tensor defined
as usual by [31,32]

Rα0
i j = Im〈E0|μi|Eα〉〈Eα|mj |E0〉 = Imμ0α

i mα0
j , (8)

which in its rotationally averaged form is the pseudoscalar
optical rotatory strength Rα0. Importantly Eq. (7) can easily
be shown to give the well-known Kuhn’s dissymmetry factor
for randomly oriented chiral molecules:

g = 〈�(L)〉 − 〈�(R)〉
1
2 (〈�(L)〉 + 〈�(R)〉)

∝ 4

c
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f 2 + 1

2k2

(
f ′2 + �2

r2 f 2
)]

Rα0

1
2

[
2 f 2 + 1

k2

(
f ′2 + �2

r2 f 2
)]|μα0|2

= 4

c

Rα0

|μα0|2 . (9)

The dissymmetry factor Eq. (9) is clearly position indepen-
dent even for a structured beam. The rate differential Eq. (7)
for |�| = 1, 2; p = 0 is plotted in Fig. 2. The figures are nor-
malized to the maximum intensity.

First we must make clear that this CD does not depend on
the sign of �, i.e., it is not sensitive to the handedness of the
input vortex. The peak signal intensity at any given location
is larger for smaller values of kw0 for a given input beam
power; this simply indicates the energy of the beam being
spread into a smaller area. However, we also see that for a
small range of kw0 the circular vortex differential in the core
of an |�| = 1 mode is not actually zero as would be expected
for a doughnut-shaped vortex mode: for Fig. 2(a) the value is
0.14. This stems from the decreasing value of kw0 leading to
larger longitudinal field components, contributions of which
yield an on-axis intensity for |�| = 1. For values of kw0 < 2π

the on-axis intensity of the |�| = 1 continues to increase and
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FIG. 2. Circular dichroism (CD), Eq. (7). (a) |�| = 1, w0 = λ,
(b) |�| = 1, for values of 2π � kw0 � 8π , (c) |�| = 2, w0 = λ, (d)
|�| = 2, for values of 2π � kw0 � 8π . p = 0 in (a)–(d).

can even become larger than the transverse components of the
field; for such values of kw0 there can even exist an on-axis
intensity for |�| = 2. However, such extreme focusing scenar-
ios are beyond the validity of the paraxial wave equation—see
Sec. V for further discussion.

The magnitude of the CD differential is highly dependent
on the location of the chiral particle in the beam; note that
all values of the CD differential are of the same sign for any
given r and so all signals effectively positively contribute to
the total differential rate. Note that it is not the wavelength
that necessarily dictates the distributions in Fig. 2 but rather
the value of kw0.

IV. VORTEX DICHROISM

Bearing in mind the two different forms of optical handed-
ness (Fig. 1), the CPL handedness exhibited via σ = ±1, and
the optical vortex handedness exhibited via ±|�|, clearly there
are a number of distinct scenarios of where this chirality can
engage in chiroptical effects. For a thorough discussion we
again refer the reader to Ref. [15], however for our purposes
here we note that in theory chiroptical effects may depend on
the CPL handedness as in CD, the vortex handedness through
the sign of �, or both forms of handedness through the product
� · σ . The latter of these lead to so-called circular-vortex dif-
ferential effects, while those solely dependent on the vortex
handedness would be vortex differential effects, and in the
specific case of absorption it may be termed vortex dichroism
(VD).

Inspecting Eq. (6) it can be seen that the last term in
rounded brackets which is linearly dependent on � can also
produce a differential rate, but in contrast to CD this one
manifests for +|�| − (−|�|). This VD differential is obtained

FIG. 3. Vortex dichroism (VD), Eq. (10) (|σ | = 0,1). (a) |�| = 1,
w0 = λ, (b) |�| = 1, for values of 2π � kw0 � 8π , (c) |�| = 2, w0 =
λ, (d) |�| = 2, for values of 2π � kw0 � 8π . p = 0 in (a)–(d).

as

〈
�

|σ |
|�|

〉 − 〈
�

|σ |
−|�|

〉 ∝ − 2NrI|�|
3ε0c2k2r

f f ′Rα0. (10)

Importantly the VD differential Eq. (10) is independent of
the handedness of the input circular polarization. Throughout
the derivation so far we have assumed the input beam to be
circularly polarized for the sake of generality—we now there-
fore set σ = 0 and see that we still produce a VD differential
for linearly polarized beams (see Appendix B), namely〈

�
|σ |
|�|

〉 − 〈
�

|σ |
−|�|

〉 = 〈
�σ=0

|�|
〉 − 〈

�σ=0
−|�|

〉
. (11)

The VD differential rate Eq. (10) is plotted in Fig. 3 for
|�| = 1, 2; p = 0. Although the strength of the CD signal
varies with the radial position of the chiral particle in the beam
in Fig. 2, the magnitude is always the same sign, positive
in this case (negative if taking 〈�(R)〉−〈�(L)〉). However, as
Fig. 3 highlights, the VD signal is likewise highly position
dependent, but can take on negative as well as positive val-
ues. Consequently the following figures are normalized to the
maximum absolute value of the intensity.

The integrated signals of Fig. 3 are highly dependent on
the size and number (Nr) of the individual chiral particles
under study (see Sec. V for further discussion). The VD effect
does not give the standard Kuhn’s dissymmetry factor for
isotropic chiral particles either and is plotted in Fig. 4 for
|�| = 1, 2; p = 0:

g = − 4|�| f f ′Rα0

crk2
[

f 2 + 1
2k2

(
f ′2 + �2

r2 f 2
)]|μα0|2 . (12)

There are also two additional distinct nonzero differentials
that could be studied: subtracting the two antiparallel sgnσ =
−sgn� combinations of AM, or subtracting the two parallel
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FIG. 4. Kuhn’s dissymmetry factor Eq. (12). (a) |�| = 1, w0 = λ,
(b) |�| = 1, for values of 2π � kw0 � 8π , (c) |�| = 2, w0 = λ, (d)
|�| = 2, for values of 2π � kw0 � 8π . Compared to previous fig-
ures, the ones here are plotted with a wider range of X and Y values
to show the positive portion of g. p = 0 in (a)–(d).

sgnσ = sgn� combinations of AM:

〈
�

|σ |
∓|�|

〉 − 〈
�

−|σ |
±|�|

〉
∝ Nr

I

3ε0c2

[
2 f 2 + 1

k2

(
f ′2 + �2

r2
f 2 ± 2|�|

r
f f ′

)]
Rα0.

(13)

The rate (13) for the antiparallel combination of AM is
plotted in Fig. 5 for |�| = 1, 2; p = 0 and the rate (13) for a
parallel combination of AM is plotted Fig. 6 for |�| = 1, 2;
p = 0.

V. ANALYSIS AND DISCUSSION

The initial theoretical study we have mentioned previously
that looked at E1M1 interactions with twisted light used only
the zeroth-order transverse parts of Eqs. (2) and (4), conclud-
ing that chiral molecules do not interact with the sign of �

in a chiroptical fashion [17]. This study was followed up by
experimental work that seemingly vindicated this theoretical
prediction [33,34]. While Araoka et al. studied their chiral
material system under the influence of a weakly focused LG
vortex, Löffler et al. used both weakly and strongly focused
LG modes. The experimental result that the sign of � plays
no role in CD under weak focusing can be explained by the
initial theory of Andrews et al. [17] or that in Secs. III and
IV of this work, namely that under such conditions the CD
differential has no dependence on � and that the longitudinal
fields responsible for VD are insignificant as w0 � λ.

We believe a potential reason the Löffler et al. strongly
focused beam experiment failed to observe differential effects
dependent on � is due to the dissymmetry factor they used to

FIG. 5. Antiparallel combination of SAM and OAM dichroism
Eq. (13) where the upper sign is employed (|σ | = 1). (a) |�| = 1,
w0 = λ, (b) |�| = 1, for values of 2π � kw0 � 8π , (c) |�| = 2, w0 = λ,
(d) |�| = 2, for values of 2π � kw0 � 8π . p = 0 in (a)–(d).

measure an influence of OAM on CD. Their definition is

gOAM =
(
�

+|σ |
+|�| − �

−|σ |
+|�|

) − (
�

+|σ |
−|�| − �

−|σ |
−|�|

)
(
�

+|σ |
+|�| − �

−|σ |
+|�|

) + (
�

+|σ |
−|�| − �

−|σ |
−|�|

) . (14)

Inserting our Eq. (6) into this definition automatically leads
to a null result for any dependence on � and also for each

FIG. 6. Parallel combination of SAM and OAM dichroism
Eq. (13) where the lower sign is employed (|σ | = 1). (a) |�| = 1,
w0 = λ, (b) |�| = 1, for values of 2π � kw0 � 8π , (c) |�| = 2,
w0 = λ, (d) |�| = 2, for values of 2π � kw0 � 8π . p = 0 in (a)–(d).
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individual differential measurement in Eq. (14). The neces-
sary observable should use a fixed value for σ or alternatively
σ = 0 (as well as the antiparallel VD differential), as high-
lighted in Sec. IV, one such example being

gOAM = �
|σ |
+|�| − �

|σ |
−|�|

�
|σ |
+|�| + �

|σ |
−|�|

, (15)

which is essentially the dissymmetry factor plotted in Fig. 4.
Looking at Figs. 3(b) and 3(d) it is clear the VD differential

increases as the value of kw0 gets smaller. This is to be
expected as the VD effect itself stems from longitudinal fields,
which are correlated to the degree of focusing, though for
vortices are also sensitive to input angular momenta configu-
rations. For example, we have seen in Sec. IV that the on-axis
differential is twice as large for antiparallel combinations of
SAM and OAM than if the input beam is linearly polarized or
has the same state of circular polarization.

While higher-order transverse and longitudinal compo-
nents to the mode expansions Eqs. (2) and (4) can be derived
using the Maxwell-Ampere and Faraday laws, LG modes
are fundamentally solutions to the paraxial wave equation,
and so are always bound to the well-known approximations
associated with it. As such, any contribution to Eqs. (2) and
(4) from these higher-order fields only become relevant in
situations where w0 < λ and a paraxial wave solution (such
as the LG mode) is not justifiable in this regime. Specifically,
we can expect our theory to work well both qualitatively
and quantitatively so long as w0 � λ [35,36], however us-
ing our theory to go below this lower bound will introduce
quantitative errors. We can however predict with confidence
that the VD signal will only get larger for subwavelength
focusing where w0 � λ, however a more refined theory which
specifically accounts for nonparaxial fields should be used to
yield accurate results with respect to the quantitative magni-
tudes involved. Such methods could be those that explicitly
account for high numerical aperture (NA) focusing [20,37],
for example, or alternatively nonparaxial solutions to the full
Helmholtz equation should be used, such as Bessel modes (or
the nonparaxial form of LG modes) [38]. Further interesting
properties may arise if the field is highly nonparaxial, as it is
known that an on axis intensity can exist in even the |�| = 2
case for such strongly focused scenarios when second-order
transverse components of the field can produce observable
effects [39].

Another important issue we draw attention to is the unique
scale-dependent nature of VD. Because the VD signal can
take on both positive and negative signals, the size and num-
ber of any chiral particles within the interaction volume is
important. One can imagine scenarios with specifically sized
particles where the signal is essentially zero; alternatively,
increasing the value of |�| could lead to enhanced signals as a
larger number of particles of a given size could fit in the high
signal intensity region compared to a lower value of |�|. Be-
cause the CD signal is always of the same sign, such a scheme
is not possible. This difference in behavior between CD and
VD is another classic motif of chiroptical effects with optical
vortices [15]. CD stems from the intrinsic property of circular
polarization; VD stems from the OAM of a vortex which is a
spatial property of the beam, and thus any measurement of the

chirality associated to it is likewise scale dependent. This is no
difference in the geometrical chirality of molecules; a small
chiral molecule is no less chiral than a large one; both their
chiral nature is exhibited to varying degrees depending on
what they are specifically interacting with. It should therefore
be of no surprise that the ability to exhibit a chiroptical effect
in small chiral particles using an optical vortex like we have
shown here with VD requires small values of w0 on the order
λ. A similar logic of matching the size of an optical vortex to
the material dimensions has recently highlighted a differential
scattering effect for chiral microstructures which exhibit an
acute sensitivity to the magnitude and sign of � [40].

Finally, an important experimental technique for carrying
out optical activity studies is the ability to modulate between
left and right circular polarizations. With respect to experi-
mentally observing the VD effect outlined here it is pertinent
to note the timely technical breakthrough by J.-F. Bisson et al.
of the ability to modulate between optical vortices with differ-
ent signs of � [41].

VI. OPTICAL CHIRALITY

A different way of interpreting the results of Secs. III and
IV is through the so-called optical chirality density χ . Origi-
nally introduced by Lipkin [42] and brought to prominence by
Tang and Cohen [43], crudely put it quantifies how chiral an
electromagnetic field is. The optical chirality density in free
space for a monochromatic beam may be given by [44]

χ = ω2

(
−

∫
d⊥dt

)
· b. (16)

In their paper, Coles and Andrews [44] state that the optical
chirality Eq. (16) is independent of any factors pertaining to
the optical orbital angular momentum. Their analysis, fully
correct when only zeroth-order transverse fields are accounted
for, however, neglects the first-order longitudinal fields which
we have seen lead to the VD chiroptical effect. Inserting
Eqs. (2) and (4), which include the longitudinal fields, into
Eq. (16), we discover that the optical chirality density does in
fact depend on optical OAM. Specifically,

χ =
∑

k,σ,�,p

(
nh̄ck2

A2
�,pV

)[{
σ f f + 1

2k2

(
σ f ′ f ′ − �

r
f f ′

− �σ 2

r
f ′ f + �2σ

r2

)}]
. (17)

This equation tells us that there is a nonzero optical chi-
rality density at z = 0 which is made up from contributions
dependent on both � and σ ; these individual contributions are
plotted in Fig. 7. In Eq. (17) the first term in square brackets
on the right-hand side is the standard zeroth-order paraxial
contribution to the optical chirality density; the remaining
terms (in round brackets) all originate from the longitudinal
contributions to the fields. It is clear that Eq. (17) and Fig. 7
mirror the physics of those in the previous sections which
were calculated using standard perturbative QED methods.
A more obvious consequence of Eq. (17) however is that
optical orbital angular momentum can lead to an enhanced
optical chirality density in comparison to non-OAM possess-
ing (� = 0) light, and this enhancement is proportional to the
smallness of kw0.
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FIG. 7. Optical chirality density Eq. (17) for kw0 = 2π and dif-
ferent combinations of OAM and SAM. (a) |σ | = 0, 1 |�| = 1, (b)
|σ | = 0, 1, |�| = 2. Note the existence of an optical chirality density
for optical vortices even when σ = 0. p = 0 in (a) and (b).

The on-axis optical chirality density in Eq. (17) [and
Fig. 7(a)] present for σ = 0, � = ±1 stems purely from lon-
gitudinal fields and was noted by Rosales-Guzmán et al. for
linearly polarized Bessel beams [45]; subsequently Woźniak
et al. [46] experimentally observed this on-axis optical chi-
rality using focused kw0 ≈ 8.7 linearly polarized LG modes
interacting with a chiral plasmonic helix. It is worthwhile to
note that our analysis here indicates that if the input beam
carried antiparallel combinations of SAM and OAM then the
effects in these two previous studies would be twice the size in
magnitude. Furthermore, our results also extend these studies
to values of |�| > 1.

VII. CONCLUSION

Here we have highlighted a vortex dichroism exhibited
by chiral particles that are both oriented and randomly

oriented which stems from longitudinal fields of optical vor-
tices through an E1M1 mechanism. This contrasts to previous
work restricted to the purely zeroth-order transverse fields of a
paraxial vortex in which no such mechanism is viable through
the E1M1 route. Previously discovered mechanisms in the
paraxial approximation required E2 couplings which vanish
for randomly oriented chiral particles. It is important to note
the underlying origin of both mechanisms is that the material
is interacting with the transverse phase gradient of the input
mode, i.e., the property responsible for the OAM.

While previous chiroptical absorption mechanisms have
been discovered for vortex light in oriented media, the impor-
tance of the result here is that it persists in fluids consisting
of chiral particles, which has an acute importance in the field
of optical activity and spectroscopies utilized in chemical and
biochemical systems which are invariably in the liquid phase.
There have been both a number of circular-vortex differen-
tial [19,47,48] and vortex differential [40,46,49–51] effects
reported, though no vortex dichroism (absorption) effects in
isotropic chiral molecular matter of the nature here has been
reported thus far to the best of our knowledge. The underlying
principles of this work can easily be extended to other types
of optical activity, such as optical rotation or Rayleigh and
Raman optical activity (scattering effects). Interestingly our
theory indicates that a previous experiment which failed to
observe the optical rotation of linearly polarized � = ±1 LG
modes in a chiral medium [52] should be revisited using a
higher NA lens.

To experimentally observe VD in small chiral particles
the input optical vortex must be moderately to strongly fo-
cused, kw0 � 8π , though may still be viable for larger values,
and the differential under study should be of the form of
Eq. (15). While the accuracy of our analysis is quantitatively
limited to values of w0 > λ, in fields which are focused fur-
ther, i.e., w0 < λ, the VD differential should only increase in
magnitude, and for when |�| = 2 the effect will even occur
on axis due to the on-axis intensity that is known in this
scenario.

Furthermore, we highlighted the agreement between our
result derived using standard perturbative QED methods and
that using the quantity known as optical chirality. This also al-
lowed us to highlight that optical OAM can in fact increase the
optical chirality density, contrary to earlier studies restricted to
the paraxial regime.
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APPENDIX A: DERIVATION OF THE RATES OF CIRCULAR DICHROISM WITH LAGUERRE-GAUSSIAN BEAMS

The matrix element is calculated using standard perturbative QED techniques and is given by

M f i = −i

(
nh̄ck

2ε0A2
�,pV

)1/2[{
eL/R

i +ẑi
1√
2

i

k

(
∂

∂r
−�σ

1

r

)
eiσφ

}
μα0

i +
{

∓ i

c
eL/R

i + ẑi
1√
2

1

ck

(
σ

∂

∂r
− �

1

r

)
eiσφ

}
mα0

i

]
f�,p(r)ei�φeikz.

(A1)
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The Fermi rule requires we take the square modulus of the matrix element (A1):

|M f i|2 =
(

nh̄ck

2ε0A2
�,pV

)([{
eL/R

i + ẑi
1√
2

i

k

(
∂

∂r
− �σ

1

r

)
eiσφ

}
μα0

i

+
{

∓ i

c
eL/R

i + ẑi
1√
2

1

ck

(
σ

∂

∂r
− �

1

r

)
eiσφ

}
mα0

i

]
f�,p(r)ei�φeikz

)

×
([{

ēL/R
j − ẑ j

1√
2

i

k

(
∂

∂r
− �σ

1

r

)
e−iσφ

}
μ̄α0

j

+
{

± i

c
ēL/R

j + ẑ j
1√
2

1

ck

(
σ

∂

∂r
− �

1

r

)
e−iσφ

}
m̄α0

j

]
f�,p(r)e−i�φe−ikz

)
. (A2)

Collecting the pure E1 terms we get

|M f i(μμ̄)|2 =
(

nh̄ck

2ε0A2
�,pV

)[
eL/R

i ēL/R
j f 2

�,p(r)μα0
i μ̄α0

j

− eL/R
i ẑ j

1√
2

i

k
f�,p(r)

(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)
e−iσφμα0

i μ̄α0
j

+ ēL/R
j ẑi

1√
2

i

k
f�,p(r)

(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)
eiσφμα0

i μ̄α0
j

+ẑi ẑ j
1

2k2

(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)
μα0

i μ̄α0
j

]
. (A3)

The pure M1 terms produce

|M f i(mm̄)|2 =
(

nh̄ck

2ε0A2
�,pV

)
1

c2
eL/R

i ēL/R
j f 2

�,p(r)mα0
i m̄α0

j

∓ eL/R
i ẑ j

1√
2

i

c2k
f�,p(r)

(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)
e−iσφmα0

i m̄α0
j

± ēL/R
j ẑi

1√
2

i

c2k
f�,p(r)

(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)
eiσφmα0

i m̄α0
j

+ ẑi ẑ j
1

2c2k2

(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)
mα0

i m̄α0
j . (A4)

The cross terms are E1M1 and these are responsible for optical activity

|M f i(μm̄ + mμ̄)|2 =
(

nh̄ck

2ε0A2
�,pV

)[
± i

c
eL/R

i ēL/R
j f 2

�,p(r)μα0
i m̄α0

j

× eL/R
i ẑ j

1√
2

1

ck
f�,p(r)

(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)
e−iσφμα0

i m̄α0
j

∓ ēL/R
j ẑi

1√
2

1

ck
f�,p(r)

(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)
eiσφμα0

i m̄α0
j

+ ẑi ẑ j
i

2ck2

(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)
μα0

i m̄α0
j

∓ i

c
eL/R

i ēL/R
j f 2

�,p(r)mα0
i μ̄α0

j

∓ eL/R
i ẑ j

1√
2

1

ck
f�,p(r)

(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)
e−iσφmα0

i μ̄α0
j

+ ēL/R
j ẑi

1√
2

1

ck
f�,p(r)

(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)
eiσφmα0

i μ̄α0
j

− ẑ j ẑi
i

2ck2

(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)
mα0

i μ̄α0
j

]
. (A5)
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Using the fact that Re(z) = 1
2 (z + z̄) we can simplify some of these results:

|M f i(μμ̄)|2 =
(

nh̄ck

2ε0A2
�,pV

)
eL/R

i ēL/R
j f 2

�,p(r)μα0
i μ̄α0

j

− 2ReeL/R
i ẑ j

1√
2

i

k
f�,p(r)

(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)
e−iσφμα0

i μ̄α0
j

+ ẑi ẑ j
1

2k2

(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)
μα0

i μ̄α0
j , (A6)

|M f i(mm̄)|2 =
(

nh̄ck

2ε0A2
�,pV

)
1

c2
eL/R

i ēL/R
j f 2

�,p(r)mα0
i m̄α0

j

+ 2Re ∓ eL/R
i ẑ j

1√
2

i

c2k
f�,p(r)

(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)
e−iσφmα0

i m̄α0
j

+ ẑi ẑ j
1

2c2k2

(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)
mα0

i m̄α0
j , (A7)

and

|M f i(μm̄ + mμ̄)|2 =
(

nh̄ck

2ε0A2
�,pV

)
2Re

[
∓ i

c
eL/R

i ēL/R
j f 2

�,p(r)

− ẑi ẑ j
i

2ck2

(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)

+ ēL/R
j ẑi

1√
2

1

ck
f�,p(r)

(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)
eiσφ

∓eL/R
i ẑ j

1√
2

1

ck
f�,p(r)

(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)
e−iσφ

]
mα0

i μ̄α0
j . (A8)

The above result applies to oriented particles. Clearly the terms that depend on eL/R
i ẑ j factors will be zero upon rotational

averaging: δi je
L/R
i ẑ j = eL/R · ẑ = 0, however they will exist and potentially contribute to the rate of absorption for oriented

samples. Concentrating on these terms we yield for p = 0

∣∣M ′
f i(μm̄ + mμ̄)

∣∣2 =
(

nh̄ck

2ε0A2
�,pV

)
2Re

[
ēL/R

j ẑi
1√
2

1

ck
f 2

(
σ |�|

r
− 2r

w2
0

− �

r

)
eiσφ

∓eL/R
i ẑ j

1√
2

1

ck
f 2

( |�|
r

− 2r

w2
0

− �σ

r

)
e−iσφ

]
mα0

i μ̄α0
j , (A9)

which after expanding the azimuthal phase can be written as

|M ′
f i(μm̄ + mμ̄)|2 =

(
nh̄ck

2ε0A2
�,pV

)
2Re

[(
x̂ j − iσ ŷ j

)
ẑi

1

2ck
f 2

(
σ |�|

r
− 2r

w2
0

− �

r

)
(cos σφ + iσ sin φ)

∓(x̂i + iσ ŷi )ẑ j
1

2ck
f 2

( |�|
r

− 2r

w2
0

− �σ

r

)
(cos σφ − iσ sin φ)

]
mα0

i μ̄α0
j (A10)

The real part of (A10) is

∣∣M ′
f i(μm̄ + mμ̄)

∣∣2 =
(

nh̄ck

2ε0A2
�,pV

)
Re

1

ck
f 2

[(
σ |�|

r
− �

r
− 2r

w2
0

)
iσ ẑi(x̂ j sin φ − ŷ j cos φ)

±
( |�|

r
− �σ

r
− 2r

w2
0

)
iσ ẑ j (x̂i sin φ − ŷi cos φ)

]
mα0

i μ̄α0
j . (A11)
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For left-handed CPL

|M ′
f i(L,μm̄ + mμ̄)|2 =

(
nh̄ck

2ε0A2
�,pV

)
Re

1

ck
f 2

[( |�|
r

− �

r
− 2r

w2
0

)
iẑi(x̂ j sin φ − ŷ j cos φ)

+
( |�|

r
− �

r
− 2r

w2
0

)
iẑ j (x̂i sin φ − ŷi cos φ)

]
mα0

i μ̄α0
j . (A12)

For right-handed CPL

|M ′
f i(R, μm̄ + mμ̄)|2 =

(
nh̄ck

2ε0A2
�,pV

)
Re

1

ck
f 2

[( |�|
r

+ �

r
+ 2r

w2
0

)
iẑi(x̂ j sin φ − ŷ j cos φ)

+
( |�|

r
+ �

r
− 2r

w2
0

)
iẑ j (x̂i sin φ − ŷi cos φ)

]
mα0

i μ̄α0
j . (A13)

Thus the circular polarization differential of this effect is

|M ′
f i(L,μm̄ + mμ̄)|2 − ∣∣M ′

f i(R,μm̄ + mμ̄)
∣∣2 =

(
nh̄ck

2ε0A2
�,pV

)
Re

1

ck
f 2

[(
−2�

r
− 4r

w2
0

)
iẑi(x̂ j sin φ − ŷ j cos φ)

+
(

−2�

r

)
iẑ j (x̂i sin φ − ŷi cos φ)

]
mα0

i μ̄α0
j . (A14)

Notice we could also have fixed the circular polarization and taken the vortex differential. In either case, the effect depends on
both the sign of σ and �. The dependence on the azimuthal angle φ highlights how integration over the transverse beam profile
leads to these oriented effects vanishing, thus their observance relies on only probing part of the output signal or resolving
contributions from individual chiral particles or subdomains.

APPENDIX B: DERIVATION OF THE RATES OF VORTEX DICHROISM WITH LAGUERRE-GAUSSIAN BEAMS

We now go back to the terms in (A8) which do not vanish upon averaging. Isolating these terms we get

|M ′′
f i(μm̄ + mμ̄)|2

=
(

nh̄ck

2ε0A2
�,pV

)
2Re

[
∓ i

c
eL/R

i ēL/R
j f 2

�,p(r) − ẑi ẑ j
i

2ck2

(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)]
mα0

i μ̄α0
j .

(B1)

Averaging this rate gives

〈|M ′′
f i(μm̄ + mμ̄)|2〉

=
(

nh̄ck

2ε0A2
�,pV

)
2

3
Re

[
∓1

c
f 2

�,p(r) − 1

2ck2

(
σ

∂

∂r
f�,p(r) − �

1

r
f�,p(r)

)(
∂

∂r
f�,p(r) − �σ

1

r
f�,p(r)

)]
imα0 · μ̄α0, (B2)

which can be rewritten as

〈�〉 ∝ 〈|M ′′
f i(μm̄ + mμ̄)|2〉 ∝ −

(
nh̄ck

2ε0A2
�,pV

)
1

3c

[
2σ f 2 + 1

k2

(
σ f ′2 + �2σ

r2
f 2 − �

r
f f ′ − �σ 2

r
f f ′

)]
μ0α · imα0. (B3)

The rate (B3) for left CPL (σ = +1) is

〈�(L)〉 ∝ −
(

nh̄ck

2ε0A2
�,pV

)
1

3c

[
2 f 2 + 1

k2

(
f ′2 + �2

r2
f 2 − 2�

r
f f ′

)]
μ0α · imα0 (B4)

and for right CPL (σ = −1) it is

〈�(R)〉 ∝
(

nh̄ck

2ε0A2
�,pV

)
1

3c

[
2 f 2 + 1

k2

(
f ′2 + �2

r2
f 2 + 2�

r
f f ′

)]
μ0α · imα0, (B5)

therefore

〈�(L)〉 − 〈�(R)〉 ∝ −
(

nh̄ck

2ε0A2
�,pV

)
2

3c

[
2 f 2 + 1

k2

(
f ′2 + �2

r2
f 2

)]
μ0α · imα0, (B6)
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however, we can fix |σ | = 1 in (B3) and take the vortex differential +|�| − (−|�|), i.e., a left-handed vortex minus a right-handed
vortex:

〈
�

|σ |
|�|

〉 − 〈
�

|σ |
−|�|

〉 ∝
(

nh̄ck

2ε0A2
�,pV

)
4|�|

3crk2
f f ′μ0α · imα0. (B7)

We can also calculate VD differential for a linearly polarized input (�, σ = 0),

M f i = −i

(
nh̄ck

2ε0A2
�,pV

)1/2{[
x̂i + ẑi

i

k

(
(cos φ)

∂

∂r
− i�

r
(sin φ)

)]
μα0

i +
[

ŷi + ẑi
i

k

(
(sin φ)

∂

∂r
+ i�

r
(cos φ)

)]
mα0

i

}
f�,p(r)ei�φeikz,

(B8)

|M f i|2 =
(

nh̄ck

2ε0A2
�,pV

){[
x̂i + ẑi

i

k

(
(cos φ)

∂

∂r
− i�

r
(sin φ)

)]
μα0

i +
[

ŷi + ẑi
i

k

(
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Collecting E1M1 terms,
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+ẑi ẑ j

1
k2

[
(sin φ) ∂

∂r + i�
r (cos φ)

][
(cos φ) ∂

∂r + i�
r (sin φ)

]
]

mα0
i μ̄α0

j f�,p(r) f�,p(r)

=
(

nh̄ck

2ε0A2
�,pV

)
2Re

[
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Rotationally averaging,

〈�〉 ∝ 〈|M f i|2〉 ∝
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giving
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Thus we see that 〈
�

|σ |
|�|

〉 − 〈
�

|σ |
−|�|
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. (B14)

APPENDIX C: QUADRUPOLE CONTRIBUTIONS

In order to be able to calculate the quadrupole contributions to circular dichroism and vortex dichroism we require the
calculation of the correct interaction Hamiltonian term:

Hint (ξ ) = −ε−1
0 Qi j (ξ )∇id

⊥
j (Rξ ), (C1)

specifically,

∇ jd
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(σ )(kẑ)ei(kz+�φ) − H.c.
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, (C2)
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where
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ẑ j

)
.

This is best carried out in two parts: one the fully transverse part, and the other the fully longitudinal part:
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For the longitudinal part,
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Therefore the total is
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)(
∂

∂r
− �σ

r

)
eiσφ ẑi
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Including both the E1 and E2 couplings in the matrix element for single-photon absorption we obtain
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and so the matrix element squared (proportional to the rate) is
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Concentrating on the E1E2 terms which only chiral particles can support,
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From this result we can abstract well-known results such as CD by chiral molecules and CVD by chiral molecules. In both of
those cases, orientational averaging of (C8) leads to a null result and so the E1E2 terms cannot contribute to CD, CVD, or VD
in randomly oriented isotropic chiral particles.
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