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Optical downfolding method for calculating quasinormal modes of complex nanoparticles
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Optical oligomers are clusters consisting of several nanoparticles that support multipolar resonances. Each
multipole couples to all multipoles in every other particle, leading to formation of a set of oligomer quasinormal
modes. Here we present an “optical downfolding” method for semianalytical study of the optical oligomer
quasinormal modes in the spectral region of the individual nanoparticle dipole resonance. We considered a dimer
and a linear trimer of dielectric nanopillars for demonstration. Our studies revealed the physical nature of the
Fabry-Pérot-like modes which manifest themselves as fringes in dimer scattering spectra at large separations
between the particles. We have also demonstrated these modes to coalesce at an exceptional point. Finally, our
studies uncovered which quasinormal modes interact resulting in the appearance of a Fano resonance in the
scattering spectrum of a linear nanopillar trimer. Our results were verified by finite-element-method simulations.
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I. INTRODUCTION

Metasurfaces are a versatile tool for light manipulation in
nanoscale [1,2]. This is due to their ability to change the wave-
front of an incident wave in the desired manner by resonant
scattering on meta-atoms. This principle has been used in
designing flat metalenses [3,4], structural colors [5], optical
filters [6], vortex plates [7], and for many other applications.
In order to realize all these devices, complex-shaped meta-
atoms are used as structural elements. However, as their size
must be much smaller than wavelength, they are mostly fabri-
cated by costly techniques such as electron lithography and
focused-ion-beam etching [8,9]. Photolithography has only
limited application due to the light diffraction limit. These
restrictions may be overcome by using laser ablation tech-
niques [10] for producing drops of a simple shape. Still, it
is possible to achieve a complex mode structure by organizing
these drops into oligomers or metamolecules [11-19]. They
support multiple quasinormal modes (QNMs), which are used
to achieve complex scattering effects that involve several res-
onances.

In order to design metasurfaces that use oligomers as
building blocks, it is crucial to be able to solve direct and
inverse problems of describing of the QNMs that appear in
a given oligomer and to synthesize an oligomer design that
supports a certain set of QNMs. To achieve that, a reliable
analytical or semianalytical method for analyzing the QNMs
of oligomers is necessary. A number of methods that al-
low studying the optical response of oligomers are available.
The multiple-scattering theory [20-26], also known as the
coupled-multipole method, allows analytical calculation of
the optical response to arbitrary excitation but is not readily
usable for finding the QNMs. Full-wave simulations allow
studying both scattering and QNMs, but they require the usage
of perfectly matched layers that require fine tuning. Moreover,
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the computational complexity of the simulations increases
with the size of the system. There are also analytical methods
to study the QNMs of a particle of arbitrary shape [27,28], but
they are only applicable to trivially connected structures and
not to oligomers.

The analysis of mode coupling in optical oligomers is
complicated because of different multipoles to be taken into
account. Figure 1(a) illustrates that in the region of the dipole
Mie resonance the Lorenz-Mie coefficients corresponding
to higher multipoles have nonzero values. Account of only
dipole-dipole coupling introduces a considerable error in the
resonance frequencies and overestimates mode Q factors [see
Fig. 1(b)]. Therefore, for studying the QNMs of an optical
oligomer, one has to consider higher multipoles as well. The
contribution of higher multipoles becomes less significant
for high-index materials but is still significant for frequently
used dielectric materials such as silicon [29,30]. Also, optical
oligomers are characterized by an intricate coupling, which
is illustrated by Fig. 1(c)—each multipole in one scatterer
couples with all modes in the other one.

As the dipole resonance is the most robust, in practi-
cal cases we usually interested only to the spectral region
around the dipole resonance of the individual scatterers of the
oligomer. Figure 1(a) shows that the contribution of the dipole
mode dominates among other higher-order multipoles. There-
fore the coupling of the dipole modes to higher multipoles is
weak and just a subject of small corrections [see schematic
shown in Fig. 1(c)].

In this paper we present an optical downfolding method,
which allows an efficient procedure for exact finding of
dipole-based QNMs of an optical oligomer. The proposed
method is based on the multiple-scattering theory considering
all significant multipoles in every scatterer. The main idea of
the downfolding procedure is shown in Fig. 1(d). The dipole-
dipole coupling is treated rigorously, while higher multipoles
are downfolded, i.e., treated as a perturbation and introduced
afterwards.

©2021 American Physical Society
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FIG. 1. Schematic representation of the optical downfolding
method. (a) Typical scattering spectrum of individual nanopillar
around the dipole Mie resonance (thick line); thin curves show the
contributions of higher multipoles. (b) Typical scattering spectrum
of dimer. Thick curve shows exact spectrum, while the thin curve
corresponds to dipole approximation. (c) Diagram revealing coupling
of each multipole in one nanopillar with every multipole in the other
one. Thicker arrows correspond to stronger coupling. (d) Optical
downfolding method consists in treating interaction with the higher
multipoles as a perturbation allowing reduction of the problem to the
dipole-dipole coupling only.

The paper is organized as follows. First, we briefly review
the basics of multiple-scattering theory in Sec. II. After that
we describe the optical downfolding (Sec. III). In Sec. IV
we demonstrate a detailed analysis of an optical dimer in 2D
space. As an illustration, we apply this technique to explain a
Fano resonance observed in an optical trimer (Sec. V).

II. MULTTIPLE-SCATTERING THEORY

Our approach is based on the coupled-multipole method
also known as multiple-scattering theory, which is a semiana-
Iytic method allowing fast computation of optical response of
optical oligomers [20-26,31-35]. Here we briefly overview
this method. For simplicity, we consider here a two-
dimensional problem, which allows reducing the problem into
two independent polarizations having a leading field that only
has one component, which can be treated as scalar. The field is
written as a multipole decomposition with azimuthal numbers

J

1
—ag(x + i) HS ((x + iy)4)

—ap(x + iy)H(gl)((x +iy)%)

I =—N,—N +1, ..., N around each scatterer. The scattering
is described by the Lorentz—Mie coefficients a;, which link
the coefficients of the incident-wave multipole expansion to
the corresponding multipole coefficients in the scattered wave.
Then we rewrite the field scattered by each of the M scatterers
as a multipole expansion in the vicinity of every other scatterer
in the system (see Appendix). This procedure yields a system
of the algebraic equations which can be written as a single
matrix equation. The coupled-multipole matrix A, which con-
sists of (M x M) blocks of size ([2N + 1] x [2N + 1]), acts
on the vector containing the scattered multipole amplitudes.
The result is a vector containing the multipole amplitudes of
the excitation field. Solving this matrix equation allows us to
find the scattered field.

III. QUASI-NORMAL MODES OF A DIMER

In this section we describe our approach to finding the
quasinormal modes of an optical oligomer. For simplicity, we
demonstrate it on the simplest oligomer that is a dimer. For
demonstration we choose the refractive index n =4 (e. g.,
germanium in the infrared range) and show both TE and TM
polarizations. As an oligomer is an open system, that is, it has
radiation losses, its QNM frequencies are complex. Here, for
simplicity, we introduce a dimensionless complex frequency
x+ iy =k'R+ ik"R.

We have to find the null space of the matrix A,

. E |V(d)
A‘[V(—d)l E }

(D

where E is an ([2N + 1] X [2N + 1])-sized unit matrix, and
Vinm(d) = —a;H" (kd)e"=¢@_ We note that the Hankel

functions Hl(iin(kd ) of k are quasiperiodic, so there exists an

infinite number of QNMs. Moreover, this matrix contains all
multipoles up to the azimuthal number N, so its kernel is
difficult to find. However, the multipoles of the scatterers are
separated spectrally, that is, in the spectral range where one
multipole dominates, others usually have a small contribu-
tion. Therefore we employ a simplification analogous to the
Lowdin downfolding technique [36,37], which comes from
magnetism. The main idea is to solve the problem rigorously
only for states that are in the spectral range of interest, while
treating spectrally separated states as a perturbation. Here we
use a similar approach to study QNMs of the optical dimer
which come from hybridization of dipole Mie resonances of
scatterers—thus we solve the problem rigorously in the dipole
approximation while treating higher multipoles as a perturba-
tion.

In the dipole approximation the equation defining the ker-
nel of the coupled-multipole matrix is

= 0. 2
| 2)

As the solutions are supposed to be close to the pole of the Lorenz-Mie coefficient ay, it is convenient to rewrite this equation

as follows:

1
%u+m=[

_d\T
(M+ﬂﬂ§>}- 3)
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FIG. 2. Quasi-normal modes of germanium nanopillar dimer.
(a) Extinction spectra of dimers with distances d = 100R (thick
curve) and d = 15R (thin curve). (b) Complex eigenfrequencies of
the dimer with distance d = 15R. Insets display the corresponding
field distributions, which are shown in larger scale in panels (c—f).
Refractive index n = 4, TE polarization.

We show, for example, the solutions of this equation for a
dimer made of germanium (n = 4) with d = 15R in the TE
polarization in Fig. 2(b). Four complex eigenfrequencies exist
in the plotted region. Their corresponding magnetic field dis-
tributions are shown in Figs. 2(c)-2(f). We see that multiple
modes coexist and increasing frequency corresponds to an

increasing number of magnetic field nodes between the rods.
For greater distances the number of nodes is much greater,
while the field maxima are pinned at the rods. Therefore we
further refer to these modes as Fabry-Pérot-like modes.

We plot the left- and right-hand sides of Eq. (2) in the range
close to the pole of the Lorenz-Mie coefficient in Fig. 3(a) for
d = 100R and Fig. 3(b) for d = 15R. As we noted previously,
this equation has an countably infinite number of solutions
which correspond to quasi—Fabry-Pérot modes and can dis-
play a complicated behavior as function of the distance d
between the scatterers. In particular, they can form a helical
line revolving around the single-cylinder scattering pole in the
complex plane [35,38].

However, in the limit of large but finite d this system can
be “diagonalized” in the sense of assigning a unique quantum
number p to each QNM. To demo;lstrate this, let us introduce

a dimer scaling coefficient p = % and consider the Hankel

function asymptotic at p — o0:

[ 2 -
Hl(l)(x) ~ Ei—le—tzezx‘ 4)

In this case, Eq. (2) can be written as

1 2
B+ aptiy)

e 2Py iy (5)

As is seen from Fig. 3, the function in the left-hand side of the
equation has a zero at the point xy + iyp which corresponds
to single-cylinder scattering matrix pole. Aside from this zero
it is smooth and does not have any sudden phase changes in
all the x > O half-plane. On the contrary, the function at the
right-hand side contains a periodic multiplier e*#*. Still, it is
always possible to choose the scaling parameter p to be so
large that the left-hand part would remain almost constant on
the whole period of the exponential, as is shown in Fig. 3(a).
At the same time, as we can see from the e=2%Y multiplier,
large p causes the absolute value of the right-hand side to
grow very quickly at y < O—therefore all solutions will have

arg{F(kR)}
21

3n/2

/2

FIG. 3. Graphical solution of Eq. (3). The surfaces show its left- and right-hand sides, as functions of kR = x + iy. The z axis corresponds
to the absolute values, and the color shows the arguments. Refractive index n = 4, TE polarization, d = 100R (a) and d = 15R (b).
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FIG. 4. Quasi-normal mode complex frequencies of germanium nanopillar dimer (n = 4) for TM (a) and TE (b) polarizations. The curves
demonstrate the results obtained in the dipole approximation (/,,,x = 0, thin lines) and with quadrupoles taken into account (/y.x = 1, thick
lines). Circles show the complex frequencies obtained by full-wave numerical simulations. The symmetric and antisymmetric modes are shown
in blue and red color, respectively. The dashed lines connect pieces of the same mode frequency curve cut at ImkR = —0.2.

¥y > yo and lie on a single non-self-intersecting curve and can
therefore be enumerated.

If we choose a smaller p, some QNM frequencies may
separate, as is seen in Fig. 3(b), making enumerating them
nontrivial. Therefore we diagonalize the system in the large
o limit and follow the evolution of QNM frequencies with
decreasing p. After that we introduce higher multipoles as a
perturbation using the dipole approximation QNM frequen-
cies as the starting values to search the new solutions around.

In Fig. 4 we show the evolutions of the complex eigen-
frequencies (x + iy) as a dependence of p for TM and TE
polarizations. At large p we assign the modes quantum num-
bers p which are shown as labels next to the curves. As is
seen from Fig. 4 and also from Fig. 3(b), at low p the eigen-
frequencies no longer follow the order existing for large p, so
the quantum numbers cannot be assigned in a meaningful way
by considering only small distances. We note that in the TM
polarization case, taking quadrupole modes into consideration
only introduces a significant correction for higher frequen-
cies, that is, in the region x > 0.3, which corresponds to the
quadrupolar Lorenz-Mie coefficient as large as 0.05. Taking
even higher multipoles into account only introduces a negli-
gible correction (up to 1%), so we do not show them on the
plot. In the TE polarization case, in contrast, the quadrupolar
Lorenz-Mie coefficient is not negligible at the frequency of
the dipole resonance, so it cannot be downfolded. Instead, we
have to solve the problem rigorously by taking the quadrupo-
lar contribution into account, but we still can downfold even
higher multipoles. Indeed, as can be seen from Fig. 4(b), the
curves obtained by rigorous calculations with dipole only,
and dipole and quadrupole taken into account, demonstrate a
striking difference in the entire spectral range of interest. We
also note the agreement between the computations with the
quadrupole taken into account and the full-wave simulations
(shown with circles).

IV. EXCEPTIONAL POINTS IN QUASI-FABRY-PEROT
MODES

We note from Fig. 4 that the frequencies of quasi—Fabry-
Pérot modes may or may not form a helical line. This kind of
helical line may be observed, for example, in the dipole model
results (thin lines) in Fig. 4(b). We note that here we will
consider TE polarization; however, as our purpose here is not
to obtain precise numbers but to demonstrate the physics, we
will limit the consideration to the dipole model for simplicity.
Here we choose dimers with n ~ 5 for demonstration and
consider their modes with quantum numbers p = 7 and 9. In
Fig. 5(a) we show the trajectories of these eigenfrequencies as
dependencies of p for a dimer with n = 4.9 and in Fig. 5(b)
for n = 5.1. Both plots here demonstrate a helical line, but
there is a change of topology. For n = 4.9 the repulsion be-
tween the eigenfrequency trajectories is in a horizontal plane,
and the mode with p =7 demonstrates a helical line. For
n = 5.1, in contrast, the helical line is observed for p =9,
and the trajectories repulse in a vertical plane. This change
of topology corresponds to an exceptional point for the set
of parameters (namely, n and p) for which these trajectories
would touch. To prove this hypothesis, we vary both n and
p and plot the real and imaginary parts of the eigenfrequen-
cies as a three-dimensional plot. The results are shown in
Figs. 5(c) and 5(d). The eigenfrequency surfaces demonstrate
a topology characteristic to exceptional points [39] that ex-
hibits a crossing-to-anticrossing transition upon passing an
exceptional point. Physically, an exceptional point is a spe-
cial kind of degeneracy for which not only eigenfrequencies
but also field distributions are degenerated. We plot the field
distributions near and at the exceptional point in the insets
on Fig. 5(a) and 5(b). We note that field distributions corre-
sponding to different modes all resemble the field distribution
at the exceptional point (EP). Exceptional points are usually
considered in optical systems consisting of coupled resonators
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FIG. 5. Complex frequencies of the quasinormal modes of dimer
for the distance d varied continuously. The curves correspond to the
mode quantum numbers p = 7 (blue) and p = 9 (red) for dimer re-
fractive indices n = 4.9 (a) and n = 5.1 (b). The minimum distances
between mode frequencies occur for d = 35.8R in plot (a) and for
d = 37.1R for plot (b) and are marked by black dots. Insets show the
mode field distributions at the corresponding frequencies. The plots
in (c,d) show real (c) and imaginary (d) parts of p =7 and 9 mode
frequencies as two-dimensional functions of refractive index n and
normalized distance d/R. TE polarization, dipole approximation.
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with gain and loss, or with different amount of loss [39,40].
For example, an EP in a PT-symmetric dimer with gain and
loss has also been reported in Ref. [41]. However, in our case
there is no loss contrast: the nanopillars are equivalent and
have no loss other than radiative. Nevertheless, there still are
certain parameters that correspond to mode degeneration, i.e.,
exceptional points.

V. EIGENFREQUENCIES OF A TRIMER EXHIBITING
FANO RESONANCE

Here we apply the optical downfolding method to a trimer.
For simplicity, we only briefly describe the modifications that
have to be made to the dimer case here. First, we note that
instead of the single distance d, in the case of trimer we have
three distances r», 723, and r3;. Nevertheless, we can still
introduce a scaling parameter p by multiplying these distances
by this parameter (in a sense, we apply a scale transforma-
tion). After that we apply the Hankel function asymptotic
at large p to the equation detA = 0, which now has three
periodic parts with different periods that depend on r|3, 73,
and r3i.

Now we consider a linear trimer of rods of radius R made
of a material with refractive index n = 4. The distance be-
tween the centers of neighbor rods is SR. We consider TM
polarization. We plot the extinction spectrum obtained by the
coupled-multipole method in Fig. 6(a). The spectrum shows
that the dipole peak is split into 3. Moreover, there is a dip

(©)
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FIG. 6. Quasi-normal modes of germanium nanorod linear trimer. Refractive index n = 4, TM polarization. Distance between the centers
of neighbor rods is 2.3R. (a) Extinction spectrum of the trimer. (b) Complex frequencies of the trimer quasinormal modes. Symbols show the
results obtained in dipole approximation (circles) and using full-wave numerical simulations (stars). Insets show the mode field distributions.
(c) Quasi-normal mode complex frequencies of germanium nanopillar trimer (thick lines) and dimer (thin lines). The frequencies were
calculated with quadrupoles taken into account (/. = 1). Circles indicate the frequencies shown at panel (b). The symmetric (111), second
symmetric (1] 1), and antisymmetric (1 0 |) modes are shown in blue, green, and red colors, respectively. The inset shows our choice of

scaling distance d.
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near the third peak, which suggests that a Fano resonance may
be present in the trimer.

In order to interpret these peaks, we find the corresponding
QNMs with the approach described before. As is seen from
Fig. 6(b), the lowest peak corresponds to the first symmetric
mode (111). The middle peak corresponds to the asymmetric
mode ({ 0 1). The highest peak corresponds to the second
symmetric mode (| 1 ). We also note that the corresponding
QNM has the highest quality factor, five times higher than that
of the (111) mode.

Let us now discuss the necessary conditions for the Fano
resonance to appear in the scattering spectrum. By considering
the far-field pattern of the scattered field, it is straightforward
to show that the forward-scattering amplitude, which deter-
mines the extinction cross section, reads

Imax

FO) =Y e ™ 3 ileiiay, (6)

J I=—lmax

where the index j runs over all scatterers. For simplicity, let
us rewrite this expression for a dimer in the dipole approxi-
mation:

F(0) = (¢*7]a), |e"’?'?>=[j’ff‘}, |a>=[‘“°]. )

a0

That is, forward-scattering amplitude is equal to the inner
product of the vector of scattering amplitudes |a) with the
incident plane wave |¢%7) at the centers of the scatterers
7 =7;. We note that the incident plane wave, which has a
real frequency, excites a set of quasinormal modes of the
system:

la) =) A,|QNM,). ®)
q

In other words, the response aj; that can be decomposed into
a linear composition of the QNMs. The incident plane wave

e*'T can be written in the basis of the QNMs too:

€7y = > By IQNM,). ©)
-

We now note from Eq. (7) that interference terms
AqBZ,(QNMq,|QNMq) leading to Fano resonance [42] may
appear in the forward-scattering amplitude if the quasinormal
modes g and ¢’ are not orthogonal to each other.

We now use the calculated complex frequencies to find
the null-space basis vectors [QNM,) of the coupled-multipole
matrix A. We find that the vector corresponding to the an-
tisymmetric mode is orthogonal to both symmetric modes,
while first and second symmetric modes are not orthogonal
to each other and may couple. Therefore the Fano resonance
is attributed to the interaction of the (111) mode acting
as a continuum and the (} 1)) mode acting as a discrete
state.

Let us now discuss the evolution of the eigenmode fre-
quencies of a trimer shown in Fig. 6(c). As is seen from the
figure, the antisymmetric modes, which correspond to the odd
quantum numbers p, do not demonstrate a significant differ-
ence until very close spacings between the nanopillars. This is
explained by the fact that the antisymmetric modes have a zero

field in the oligomer center; therefore the presence of a third
nanopillar in the middle does not significantly influence the
mode field distribution. The symmetric modes corresponding
to even p, in contrast, demonstrate a considerable difference
between the dimer and the trimer. First the lowest symmetric
mode (111) has a smaller Q factor for a trimer than for a
dimer. Another difference is that the second symmetric mode
(14 1) in the case of a dimer is a Fabry-Pérot-like mode
with the center field maximum in air. Therefore, its Q factor
becomes far greater in the trimer case, where the central field
maximum is pinned inside a nanopillar, as compared to the
dimer. The higher Fabry-Pérot-like modes, in contrast, do not
demonstrate a significant difference between the dimer and
trimer cases.

VI. CONCLUSION

To summarize, we have studied optical mode coupling
in a dimer and a linear trimer of nanopillars in the spec-
tral region around the dipole Mie resonance of an individual
nanopillar. In our studies we used an originally developed op-
tical downfolding technique based on the multiple-scattering
theory, which consists of a rigorous consideration of the
dipole-dipole coupling and introducing downfolded higher
multipoles afterwards, treating the latter as a perturbation.
The proposed method works at arbitrary distances between
the nanopillars. This technique allowed us to analyze the
quasinormal modes of a dimer and to reveal the physical
nature of the Fabry-Pérot-like modes that exhibit approxi-
mately equidistant fringes in the scattering spectra. We have
also demonstrated that these modes can coalesce to ex-
ceptional points at certain sets of dimer parameters. The
special crossing-to-anticrossing topology of these exceptional
points have been demonstrated to determine the behav-
ior of eigenfrequencies with changing distance between the
nanopillar—whether they repulse along the real or the imagi-
nary parts. Using our technique to study the modes of a linear
trimer helped to find which quasinormal modes interact, with
the result that they appear as a Fano resonance in the trimer
scattering spectrum. Our predictions agree well with the finite-
element-method simulations for systems small enough for the
latter to be applicable. The proposed method can also be
applied to arbitrary oligomers.
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APPENDIX: MULTIPLE-SCATTERING THEORY

Considering each polarization separately and assuming
time harmonics of the form exp(—iwt ), we denote the leading
field component as a scalar field ¢ and solve the problem in
the frequency domain. We also restrict our consideration to the
case of all scatterers to be similar. This simplifies the analysis,
while also being a reasonable assumption, as in reality it is
easier to fabricate arrays of particles of the same size rather
than to vary it [§-10]. To demonstrate the physics, here we
choose the simplest shape, which is a circle, or, equivalently,
an infinite cylinder.
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We use a multipole expansion at the center of each scat-
terer, so we can write the incident wi(J ) and the scattered ws(’ )
waves in the vicinity of the jth scatterer as

N
Y @) = Yeu + Y Luditklr — x0T,
= (A1)

N
Y@ =Y S ke —xye 1,
I[=—N

where ¢(r) denotes the angle of the vector r in polar coor-
dinates, k is the wave number, and r; is the rod position.
Hl(l) is the Hankel function related to the outgoing waves,
J; is the Bessel function related to the incident waves, N is
the maximal azimuthal number of multipoles under consid-
eration, and Y.y is the excitation field, i.e., the waves from
external sources. Scattering is described by the Lorenz-Mie
coefficients:

Sit=aljy, (A2)

where a; is the Lorenz-Mie coefficient for the /th multipole.
Each scatterer is described by the same set of Lorenz-Mie
coefficients:

VI (EVJ(E) — J(E(nE)
(H©®) @i(ng) —vH ()&

where v = n in case of the TM polarization (the magnetic field
is orthogonal to the cylinder axis and the electric field oscil-
lates along it) and v = —1/n in case of the TE polarization
(the magnetic field oscillates along the axis), &£ = Rw/c is the
size parameter, and n and R are the refractive index and radius
of the cylinder.

Next we note that the field, which is incident to jth rod,
consists of the excitation and the sum of the fields scattered
by each of the other rods. By means of the addition theorem it
is straightforward to show that

+N
1 —il—mo(r;
L= Y Hb,Gkrje 7mes;
i#j m=—N

a(n, &)= (A3)

(A4)

where rijj =T, —TIj.

Using Eqs. (A2) and (A4) together, we express either /;;
or §;; (here we choose the latter) to obtain a system of
([2N + 1] x M) algebraic equations with the same number of
unknowns. Here M is the number of rods.

The system of the algebraic equations obtained from com-
bining Egs. (A2) and (A4) can be written as a single matrix

equation. The coupled-multipole matrix A, which consists of
(M x M) blocks of size ([2N + 1] x [2N + 1]), acts on the
vector containing the scattered multipole amplitudes S; ;. The
result is a vector containing the multipole amplitudes of the
excitation field. It is straightforward to show that the matrix
equation for the case of two rods can be expressed as

D AimjtSit = anXim, (A5)

Jj.m
where X is the vector of excitation field multipoles (for a plane
wave it can be obtained with the Jacobi-Anger expansion) and

Aim ji = 8ii8m — [1 = 8;jlarH}) (krije =900 (A6)

The inverse coupled-multipole matrix A~! being an analog
of a Green function allows us to solve the electrodynamic
problem: its inner product with the excitation vector yields the
multipole amplitudes of the scattered field (S = A~'X), which
can be used to calculate the extinction cross section ey in a
straightforward way (see, e. g., [35]).

To provide an example, we show in Fig. 2(a) the TE po-
larization extinction spectra of dimers made of germanium
(n = 4) with the distance d between the centers of the rods
being 25 and 100 times larger than the radius. The spectra
exhibit a dipole Mie resonance at kR = 0.58 and fringes asso-
ciated with Fabry-Pérot-like modes which are discussed later.
The spectrum for d = 100R shows a large number of clearly
evident fringes which correspond to Fabry-Pérot modes. In
contrast, for d = 25R only two fringes can be clearly distin-
guished in the spectrum, which correspond to a small number
of modes with large negative imaginary parts of the corre-
sponding eigenfrequencies.

Here we are interested in the quasinormal modes of the
system of scatterers—that is, nontrivial optical states (which
may be damping) that can exist without any excitation. They
correspond to the kernel (null space) of the coupled-multipole
matrix A. Like in an eigenvalue problem, we first find the
QNM frequencies @ defined by the equation detA(w) =0
and then use them to solve a homogeneous matrix equation
A(w)S = 0 to find the corresponding vectors S.

We note that in the dipole approximation with Lorentzian
response, A = (J€ — wE), where J7 is the effective Hamil-
tonian and E is a unit matrix [35]. Therefore the quasinormal
modes can be written in this approximation as ker(.7¢ — wE),
i.e., they are the eigenvectors of the system.
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