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Analytical theory of the propagation of a dissipative soliton in a nonequilibrium resonant medium
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A nonlinear integrodifferential equation of the “reaction-diffusion” type is derived for an optical pulse
propagating in a gain resonant two-level medium with the inhomogeneous broadening of the quantum transitions.
The stable exact analytical solution of this equation in the form of a dissipative optical soliton with an
asymmetric temporal profile is found and analyzed. The temporal duration of this soliton is much longer than
the characteristic phase relaxation time but much shorter than the energy relaxation time. It is shown that the
formation of such a soliton requires the presence of linear losses, created by the equilibrium part of the medium.
It is noted that the found soliton solution qualitatively coincides with the dissipative soliton recently discovered
experimentally in a laser microcavity.
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I. INTRODUCTION

Recently, there has been a significant increase in interest
in the study of dissipative optical solitons, which are stable
localized bunches of light energy [1–4]. Such energy bunches
are capable of propagating over long distances in nonlinear
active media. Atoms or molecules of the active medium are in
excited (nonequilibrium) states. The energy stored in atoms
can be transferred to an optical pulse, contributing to its
amplification. For the formation of a dissipative soliton, the
amplification of the optical pulse must be compensated for by
dissipative energy losses. Such losses can be caused by the
processes of intra-atomic relaxation, electrical conductivity,
diffusion, thermal conductivity, etc. Propagating in an active
medium, a dissipative optical soliton transfers some of the
atoms from excited states to the ground state. As a result,
the state of the medium after the propagation of the dissipative
soliton differs from its initial state.

Many types of the dissipative solitons have been studied
to date. Both resonant and nonresonant solitons were studied.
Dissipative solitons interact inelastically with each other. For
example, mutual annihilation of solitons or the formation of
bound soliton states can occur [1–8].

Dissipative optical solitons can be used in systems for the
transmission and processing of information [1,2]. In addition,
it is proposed to use the dissipative solitons for the control by
a motion of various micro- and nano-objects [9]. Nonresonant
dissipative solitons in the laser and fiber systems are usually
studied on the basis of generalized versions of the complex
Ginzburg–Landau equation [3,4,10–15]. In this case, the cubic
nonlinearity as well as the cubic-quintic and saturating nonlin-
earities are considered [3,4,16].

For describing resonant dissipative solitons, the systems
of the nonlinear Maxwell-Bloch equations are used [10]. In
this connection, mention should be made of works in which

various versions of the dissipative nonlinear Maxwell-Bloch
system were used without using the slowly varying envelope
approximation [15–22]. In particular, solutions in the form of
unipolar dissipative solitons were found.

In many theoretical works, solutions in the form of dissipa-
tive solitons were found by means of numerical simulations.
Such methods are universal. Therefore they have certain ad-
vantages over analytical approaches. On the other hand, it is
very difficult to find important dependences of the obtained
solutions on various parameters using the numerical simula-
tions. In this case, the restrictions imposed on the parameters
of the medium are very important. It is very difficult to find
quantitative dependences of the amplitude, temporal duration,
and velocity of a dissipative soliton on the parameters of the
medium using only numerical simulation. This circumstance
seems to be very important for the attempts to experimental
confirmation of the theoretical predictions. To find answers on
these and other important questions, the analytical approaches
are more preferable.

The present work is devoted to an analytical study of the
possibility of formation of a dissipative optical soliton in an
absorbing medium containing the impurity resonant atoms
with an inverted population of quantum levels. The article is
organized as follows. In Sec. II an integrodifferential equation
of the reaction-diffusion type is derived from the dissipative
system of the Maxwell-Bloch in the approximation of fast
phase relaxation. In Sec. III the exact solution of this equation
in the form of a dissipative soliton is found and its physical
analysis is carried out. It is shown that this soliton is stable
with respect to small perturbations of its profile. It is also
noted that the obtained solution is in qualitative agreement
with the dissipative soliton recently observed experimentally
in a laser microcavity [23]. In addition, the parameters of the
soliton were estimated for its possible experimental obser-
vations in a ruby crystal and in rubidium vapor. Section IV
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summarizes the results of the work and formulates the main
conclusions.

II. DERIVATION OF A NONLINEAR EQUATION

Let the optical pulse propagate in a two-level resonant
medium along the z axis. Then this propagation is described
by a system of equations of the following form:

∂u

∂t
= −�v − u

T2
, (1)

∂v

∂t
= �u − v

T2
+ �w, (2)

∂w

∂t
= −�v − w + 1/2

T1
, (3)

∂�

∂z
+ nm

c

∂�

∂t
= β

∫ +∞

−∞
vg(�)d� − γm�. (4)

Here u and v are the in-phase and quadrature components
of the envelope of the resonant transition dipole moment,
respectively, w is the population inversion of this transition
(for the ground state of the atom we have w = −1/2, and for
the excited state we have w = +1/2), T1 and T2 are the times
of irreversible relaxations of energy and phase, respectively,
� = ω0 − ω is the detuning the carrier frequency ω of the
laser pulse from the resonant transition frequency ω0 of the
selected atom, � = 2dE/h̄ is the local Rabi frequency of
the laser pulse, d is the matrix element of the dipole moment
of the resonant transition, h̄ is the Planck constant, E is the
envelope of the pulse electric field E associated with this field
by means of the relation E = 2E cos[ω(t − nmz/c)], t is the
time, nm is the refractive index of the medium, c is the speed
of light in vacuum, β = 4πd2nω/h̄c, n is the concentration
of two-level atoms, g(�) is the contour of inhomogeneous
broadening of resonant quantum transitions in the form of a
Lorentzian,

g(�) = 1

π

T ∗
2

1 + (T ∗
2 �)2 , (5)

where T ∗
2 is the characteristic time of reversible phase re-

laxation due to inhomogeneous broadening, and γm is the
coefficient of linear nonresonant losses of the medium. In
the case when γm = 0, the system (1)–(4) takes the form
of the well-known Maxwell-Bloch equations [2,24–28].

For two-level atoms in the media, the relaxation times T1

and T2 are very differ from each other. In these cases the
situations are possible when T2/T1 ∼ 10−5 − 10−9 [28], i.e.,
an inequality T2 � T1 is valid. Below we will assume that the
temporal duration τp of the laser pulse satisfies the condition
min(T2, T ∗

2 ) � τp � T1.

Introducing the reduced relaxation time Tr = T2T ∗
2

T2+T ∗
2

, where
T ∗

2 is the time of reversible phase relaxation caused by the
inhomogeneous broadening, we rewrite this condition in the
form

Tr � τp � T1. (6)

Due to the condition (6) we can put in Eq. (3), T1 = ∞.
Now the problem is to exclude the material variables from

(1)–(4). As a result, we must derive a nonlinear equation for

the envelope of a pulse electric field. Introducing a complex
variable R = u + iv, we rewrite (1) and (2) as follows:

∂R

∂t
=

(
i� − 1

T2

)
R + i�w. (7)

The solution of this equation, taking into account the fact
that R = 0 at � = 0, has the form

R(t ) = i
∫ ∞

0
�(t − t ′)w(t − t ′)e−(1/T2−i�)t ′

dt ′. (8)

Due to the inequality (6), the functions � and w in (8)
are very weakly dependent on time in comparison with the
exponential. In this case the Taylor series expansion with
respect to parameter t ′ is valid:

�(t − t ′)w(t − t ′) = �(t )w(t ) − t ′ ∂

∂t
(�(t )w(t )) + · · ·

=
∞∑

k=0

(−1)k

k!
t ′k ∂k

∂t k
(�w). (9)

Substituting (9) into (8), after integration we arrive at the
Crisp expansion [29]:

R = i
∞∑

k=0

(−1)k

(
T2

1 − iT2�

)k+1
∂k

∂t k
(�w). (10)

The left-hand side of inequality (6) means that the spectral
width δωp ∼ 1/τp of the optical pulse is small in comparison
with the width δωtr = 1/T2 + 1/T ∗

2 = 1/Tr of the resonant
quantum transition. Therefore the interaction of two-level
atoms with an optical pulse under condition (6) is selec-
tive. Consequently, the change of the population inversion
averaged over the contour of the inhomogeneous broadening
〈w〉 ≡ ∫ +∞

−∞ g(�)wd� is small. Taking into account this cir-
cumstance and keeping the first three terms in the expansion
(10), we write

v = ImR = T2�

1 + (T2�)2 w − w−∞T 2
2

1 − (T2�)2

(1 + (T2�)2)
2

∂�

∂t

+w−∞T 3
2

1 − 3(T2�)2

(1 + (T2�)2)
3

∂2�

∂t2
. (11)

Here, in the second and third terms, we put approximately
w ≈ w−∞, where w−∞ is the initial population inversion of
the resonant transition, when t = −∞.

Now we substitute (11) into (3) under condition T1 = ∞.
Since the change of the population inversion w is small, we
will take into account only the first term in the right-hand side
of Eq. (11). Then

∂w

∂t
= −w

T2�
2

1 + (T2�)2 ≈ −w−∞
T2�

2

1 + (T2�)2 .

Integrating, we will have

w = w−∞

[
1 − θ

1 + (T2�)2

]
, (12)

where

θ = T2

∫ τ

−∞
�2dτ ′. (13)
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After substituting Eqs. (12) and (13) into (11), we arrive at
the expression

v = w−∞

{
T2�

1 + (T2�)2

[
1 − T2

1 + (T2�)2

∫ t

−∞
�2dt ′

]

− T 2
2

1 − (T2�)2

(1 + (T2�)2)
2

∂�

∂t
+ T 3

2
1 − 3(T2�)2

(1 + (T2�)2)
3

∂2�

∂t2

}
.

From here and from (5) we find

〈v〉 ≡
∫ +∞

−∞
g(�)vd�

= w−∞

[
Tr� − T 2

r

(
1 + T2

2T ∗
2

)
�

∫ t

−∞
�2dt ′

− T 2
r

∂�

∂t
+ T 3

r

∂2�

∂t2

]
. (14)

Substituting (14) into (4), we obtain

∂�

∂z
= γ� − ε�

∫ τ

−∞
�2dτ ′+σ

∂2�

∂τ 2
, (15)

where

γ = � − γm, ε = �Tr

(
1 + T2

2T ∗
2

)
, σ = �T 2

r , (16)

τ = t−z/v0, and the gain � and the linear group velocity v0

are determined by the expressions

� = w−∞βTr, (17)

1

v0
= nm

c
+ �Tr . (18)

Equation (15) is a nonlinear integrodifferential equation
of the “reaction-diffusion” type. Here the temporal diffusion
occurs due to the reversible and irreversible phase relaxations
[see the last term on the right-hand side of (15)].

The nonlinearity in Eq. (15) has the temporal nonlocality.
This is the fundamental difference between Eq. (15) and well-
known equations of the “reaction-diffusion” type with the
local nonlinear sources [30–32].

After multiplying Eq. (15) by 2T2� and integrating with
respect to τ , taking into account (13), we have

∂θ

∂z
= 2γ θ − ε

T2
θ2 + σ

[
∂2θ

∂τ 2
− 2T2

∫ τ

−∞

(
∂�

∂τ ′

)2

dτ ′
]
.

(19)

If we neglect the second term in the square brackets of
Eq. (19), then this equation becomes the Fisher equation [31].
However, in our case we cannot neglect the second term in
square brackets of Eq. (19), since its value is of the same order
as the first term in these brackets.

After averaging Eq. (12) over the Lorentz contour (5) we
will have

〈w〉 ≡
∫ +∞

−∞
wg(�)d� = w−∞

(
1 − Tr

T2
θ

)
. (20)

Thus we can say that the dynamics of the averaged population
inversion of the resonant transition is describing by Eq. (19).

III. EXACT SOLUTION IN THE FORM OF A
DISSIPATIVE SOLITON

Using the solution of the Fischer equation in the form
of a dissipative soliton, one can obtain a similar solution of
Eq. (19). To do this, let us note that using (13), the second term
in square brackets of Eq. (19) can be written in the following
form:

2T2

∫ τ

−∞

(
∂�

∂τ ′

)2

dτ ′ = 2
∫ τ

−∞

(
∂

∂τ ′

√
∂θ

∂τ ′

)2

dτ ′. (21)

Let us substitute the soliton solution of the Fisher equation
into (19). This solution looks like [33]

θ = A(1 + tanh ξ )2, (22)

where

ξ = τ − z/V ′

τp
= t − z/V

τp
, (23)

and A, τp, and 1/V = 1/v0 + 1/V ′ are the unknown constants.
After substituting Eqs. (22) and (23) into (19) and taking

into account Eq. (21), we obtain

A = 15

32

γ

ε
T2, τp = 2

√
2σ

γ
,

1

V
= 1

v0
− 3

√
γ σ

2
. (24)

Now, using Eqs. (13), (22), (23), and (24), we have a
solution of Eq. (15) in the form of a dissipative soliton:

� = �0sechξ
√

1 + tanh ξ, (25)

where

�0 =
(

15

32
√

2

)1/2(
γ 3

ε2σ

)1/4

. (26)

Thus the expression (25) is an exact solution of Eq. (15).
In this solution the variable ξ has the form (23). In turn, the
constants τp, 1/V , and �0 are determined by the equalities
(24) and (26).

It is obvious that the parameters τp and V have the mean-
ing of the soliton temporal duration and the soliton velocity,
respectively. In turn, the parameter �0 is proportional to the
amplitude of the soliton (see below). Let us study the stability
of the found dissipative soliton. For this we introduce a di-
mensionless parameter Q which is proportional to the soliton
energy:

Q = θ|τ→+∞ = T2

∫ +∞

−∞
�2dτ . (27)

Passing to the limit τ → +∞ in Eq. (19), we write

dQ

dz
= 2γ Q − ε

T2
Q2 − 2σT2

∫ +∞

−∞

(
∂�

∂τ

)2

dτ . (28)
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Due to the last term on the right-hand side of (28), it is not
possible to obtain a closed equation for the dynamic parameter
Q. Note that for soliton (25) this parameter is determined by
the expression Q∞ ≡ 15γ T2/8ε.

We will consider the small deviations of parameter Q from
Q∞: |Q − Q∞| � Q∞. In this case, in the last term of Eq. (28)
we can approximate the Rabi frequency � to be replaced by

expression (25). As a result, we obtain
∫ +∞
−∞ ( ∂�

∂τ
)
2
dτ = �2

0
τp

.
Now, using Eqs. (26) and (24), after the simple mathematical
transformations we rewrite (28) in the form

dY

dz
= 15

8
γ (1 − Y )(Y − 1/15), (29)

where Y = Q/Q∞.
Equation (29) cannot be considered as an analog of the

McCall–Hahn area theorem in the theory of self-induced
transparency (SIT), since after deriving this equation the exact
solution (25) was used. Therefore this equation is valid under
the condition that the value of the parameter Y is very close
to unity. Consequently, we can use Eq. (29) after considering
the small deviations from the exact solution (25). In this case
we can write Y = 1 + y, where |y| � 1. Then, linearizing
Eq. (29) with respect to y, we obtain dy

dz = − 7
4γ y. Thus the

small deviations of the parameter Q from the value Q∞ de-
crease exponentially. This is an essential argument in favor of
the stability of dissipative soliton (25).

Let us now turn to the physical analysis of the obtained
solution. Using Eqs. (16)–(18), we can express the constants
τp, V , and �0 through the physical parameters of the medium.
Here we take into account that usually inequality T ∗

2 � T2

is valid for many media. The situations are possible when
T ∗

2 /T2 ∼ 10−2 − 10−5 [34]. Under the condition T ∗
2 � T2, we

have Tr ≈ T ∗
2 . Then from Eqs. (16)–(18), (24), (26), and (20)

we find

τp = 2.83
T ∗

2√
1 − γm/�

, (30)

1

V
= nm

c
+

(
1 − 2.12

√
1 − γm

�

)
�T ∗

2 , (31)

�0 = 0.81√
T2T ∗

2

(
1 − γm

�

)3/4
, (32)

〈w〉
w−∞

= 1 − 0.94
T ∗

2

T2

(
1 − γm

�

)
(1 + tanh ξ )2. (33)

The temporal envelope profile (25) of a dissipative soliton
is asymmetric: the front of the soliton is steeper than its
tail (Fig. 1, top). The peak value �m = √

32/27�0 ≈ 1.09�0

of the Rabi frequency is achieved at ξ = ξm = ln 2/2 ≈
0.35. The propagation of this soliton is accompanied by
a running front (33) of the averaged population inversion
(Fig. 1, bottom).

Similar solitons were discovered earlier by the numerical
simulation methods [3,35,36]. It is important to note that such
an asymmetric dissipative soliton was observed recently in a
laser microcavity [23].

FIG. 1. Profiles of the normalized Rabi frequency of a dissipative
soliton (top) and the accompanying averaged normalized population
inversion of the quantum levels of the resonant transition (bottom):
T ∗

2 /T2 = 0.2, γm/� = 0.9.

The left-hand side of inequality (6) under the condition
T ∗

2 � T2 takes the form T ∗
2 � τp. From this, as well as from

(30), it follows that

0 < 1 − γm

�
� 1. (34)

In accordance with the left-hand side of double inequality
(34), the resonant amplification should prevail over the non-
resonant losses of the medium: � > γm. On the other hand,
in accordance with the right-hand side of the double inequal-
ity (34), this dominance should be insignificant: (� − γm)/
� � 1.

The averaged population inversion decreases very insignif-
icantly [see Eqs. (33), (34), and condition T ∗

2 � T2]. It was
noted above that this occurs due to the selective nature of the
interaction of two-level atoms with a laser pulse [see condition
(6)]. However, this turns out to be sufficient to compensate for
energy losses. This compensation leads to the formation of a
dissipative soliton.

For the possibility of observing the dissipative soliton dis-
cussed here, numerical estimates of its parameters are very
important. For a quantum transition Ē (2E ) → 4A2(±1/2) in
a ruby crystal at liquid helium temperature, we have [37]
ω ≈ ω0 = 2.4 × 1015s−1, T1 ∼ 10−3s, T2 ≈ 5 × 10−8s, T ∗

2 ≈
3 × 10−10s, d = 4.8 × 10−21SGSE. For the concentration of
resonance transitions we have n = 1.6 × 1019cm−3 [37]. Then
� ∼ βTr ≈ βT ∗

2 ∼ 50 cm−1. Assuming also 1 − γm/� ∼ 0.1,
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for the temporal duration of the soliton we have from Eq. (30)
that τp ∼ 10T ∗

2 ∼ 3 × 10−9s.
For the resonant line in the rubidium vapor, which

was used in [38], we have ω ≈ ω0 = 2.4 × 1015s−1, T2 ∼
5.6 × 10−8s, T ∗

2 ∼ 8 × 10−10s, d = 4.4 × 10−18SGSE, n ∼
1013cm−3. Under these conditions the temperature is 80–
100 °C. Then � ∼ 102cm−1. Under the condition 1 − γm/� ∼
0.1 from (30), for this case we find τp ∼ 10−8s.

Let us estimate the intensity of the soliton. Since the soliton
intensity I ∼ �2, then from (25) we obtain

I = I0sech2ξ (1 + tanh ξ ), (35)

where I0 = ch̄2�2
0

16πd2nm
. Using also (32), we write I0 ∼

ch̄2

16πd2T2T ∗
2

(1− γm

�
)3/2. Substituting here the values of the above

parameters, we find for the intensity of a soliton in a crystal
ruby I0 ∼ 104W/cm2. For a dissipative soliton in rubidium
vapor, we will have I0 ∼ 10−2W/cm2.

Thus the intensity of the considered dissipative soliton in
rubidium vapor is six orders of magnitude lower than the in-
tensity of a similar soliton in a ruby crystal. Note that a similar
situation occurs for the effect of self-induced transparency
[37,38]. This circumstance is due to the large value of the
dipole moment of the resonance transition in a gas and a small
value of this parameter in solids. Let us note that the temporal
soliton duration in both cases lies inside of the range 1–10 ns.

Let us discuss the question related to the soliton velocity
using expressions (24) and (31). From (24) it follows that the
velocity of the dissipative soliton is greater than the linear
group velocity: V > v0. At the same time, as can be seen
from (31) and (34), we have V < c/nm. As a result, taking into
account (18) for the range of possible values of the dissipative
soliton velocity we write

c

nm + c�T ∗
2

< V <
c

nm
. (36)

Substituting into (31) the above parameters for a ruby
crystal, we find V ∼ 10−2c. In the case of rubidium vapor,
we will have V ∼ 10−3c.

Thus under the conditions of a possible experiment, the
velocity of a dissipative soliton can be much less than the
speed of light. Let us now briefly consider the question of
the formation of a dissipative soliton. Using Eq. (19), three
characteristic scale lengths can be determined. Obviously, the
scale length l of the linear amplification will be determined by
the relation l ∼ 1/γ .

Assuming in (19) ∂θ/∂z ∼ θ/lnon ∼ εθ2, we find the char-
acteristic nonlinear scale length: lnon ∼ 1/(εθ ) ∼ (εT2τp�

2
0).

We define the diffusion scale length ld in a similar way:
∂θ/∂z ∼ θ/ld ∼ σ∂2θ/∂t2 ∼ σθ/τ 2

p . From here we find ld ∼
τ 2

p/σ . Using the expressions (22),(24), (16), and (17), for all
three scale lengths we have

l ∼ lnon ∼ ld ∼ 1

� − γm
.

Substituting here the above values of the parameters � and
γm/� for the crystal ruby and for the rubidium vapor we find

l ∼ lnon ∼ ld ∼ 0.1 cm. This is the characteristic distance at
which a dissipative soliton can be formed.

The above estimates allow us to state that it is preferable to
observe a dissipative soliton in gases than in solids. First, the
gases do not need to be cooled to low temperatures. Second,
the intensities of dissipative solitons in gases are much lower
than the intensities of similar solitons in solids. Third, in
gaseous media it is much easier to change the concentrations
of both resonant and nonresonant atoms. Therefore it is easier
to satisfy condition (34) in gases.

IV. CONCLUSION

Thus in this work we obtained a nonlinear equation,
Eq. (15), of the reaction-diffusion type, which describes the
propagation of an optical pulse in a medium containing
the gain resonant transitions (two-level atoms). In this case,
the pulse duration satisfies condition (6), which is equivalent
to the inequality (34). Equation (15) contains a source with
the nonlocal nonlinearity. It is shown here that Eq. (15) is
equivalent to the Eq. (19), which is a generalization of the
well-known Fisher equation. This equation describes dynamic
processes of a physical, chemical, and biological nature [32].
The generalization of the Fisher equation here consists in the
presence of an integral term in the square brackets (19).

An exact analytical solution of Eq. (15) is found and an-
alyzed in the form of a localized dissipative soliton with the
asymmetric temporal profile. There is reason to believe that
this solution describes an experimentally observed dissipative
soliton in a semiconductor laser microcavity [23].

It is important that the formation of such dissipative soliton
requires the presence of a linear absorption of the electromag-
netic field by the nonresonant atoms of the medium [see the
last term on the right-hand side of Eq. (4)].

The analytical study carried out in this work made it pos-
sible to determine the propagation velocity interval (36) of a
dissipative soliton in the resonant gain medium. The expres-
sions for the soliton temporal duration (30) and its amplitude
(32) have been obtained here. These results are not obvious
and cannot be obtained on the basis of numerical simulations.
In addition, using the analytical approach, it was possible
to show that the considered dissipative soliton is stable with
respect to small perturbations of its profile. On the other hand,
the study of the formation process of the soliton considered
here is possible, most likely, only with the using of numerical
simulations.

For very powerful solitons, the assumption about a small
change in the population difference of the quantum states may
turn out to be incorrect. This can lead to equations describ-
ing the formation and propagation of the resonant dissipative
solitons.
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