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Optical pulling force arising from nonparaxial accelerating beams
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We study the optical forces experienced by a dielectric microsphere placed in a nonparaxial vector self-
accelerating beam. Following the beam’s peak intensity (or the main lobe), where the dominant transverse
trapping appears, the longitudinal optical force is found to switch from a purely pushing case to an impure
case involving pulling forces. The pulling forces tend to appear away from the optimal transverse trapping
position, particularly for large particles but populate largely within the transverse trapping potential. In terms of
magnitude, such forces can be comparable to the transverse ones when manipulating small particles. The cases
of both Mie and Rayleigh particles are discussed. Our work opens the possibility to uncover the pulling effect in
nonparaxial accelerating beams, which may lead to applications in optical trapping and manipulation.
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I. INTRODUCTION

Self-accelerating beams can propagate along curved paths
with preserved intensity profiles in free space [1,2]. Such an
intriguing feature is imparted through a proper shaping on the
wavefronts of optical beams. The peculiar momenta stored
in the structured light can be transferred to other entities by
means of interactions, such as electrons, nonlinearly induced
dipoles, and microparticles [3–11], leading to a variety of
exotic phenomena and potential applications. In optical ma-
nipulation, this kind of momenta was first utilized for particle
clearing [3], resorting to the Airy beams [12,13] (i.e., the
first type of self-accelerating waves demonstrated in optics).
Following this pioneering work, extensive studies were per-
formed to analyze the force distributions of a particle placed
in an Airy beam or their ramifications, aiming to improve
particle trapping and delivery [14–28]. Under the nonparax-
ial condition commonly encountered in a microscope system
setup for optical tweezers, paraxial accelerating beams rep-
resented by Airy beams face difficulties in realizing a sharp
bending. To overcome this limitation, nonparaxial acceler-
ating beams [29–38] were conceived, allowing for particle
delivery to distances at steeper angles [39]. However, to the
best of our knowledge, no force analysis has been performed
for these nonparaxial beams. In particular, considering that
nonparaxial accelerating beams are endowed with quite large
momenta (i.e., theoretically, these beams can turn 90 degrees
during propagation), optical pulling effects that have recently
attracted lots of attention [40] are highly expected, inspired by
counterintuitive manipulations via various structured optical
beams [41–49] that can pull the scatterers along a direction
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even opposite to the beam propagation, often called “tractor
beams” [50].

In this paper, we study theoretically optical forces exert-
ing on a dielectric microsphere for nonparaxial accelerating
beams. Our results show that the beam components of a non-
paraxial vector accelerating beam around the peak intensity
(or the main lobe) produce the dominant trapping capability.
The associated trapping potential has an asymmetric distribu-
tion pertinent to the beam asymmetry along the acceleration
direction, leading to a location mismatch for the peak intensity
and the optimal transverse trapping position. Surprisingly,
in the transverse trapping regions around the peak intensity,
the longitudinal optical force is found to switch sign during
propagation, from a purely pushing type to a combination of
pushing and pulling types. The pulling force appears between
the main lobe and the nearby sublobe, particularly for large
particles. It can be comparable to the transverse force in
terms of strength for a beam that bends strongly or for the
manipulation of a small particle. Our work paves the way
for experimental realization of the optical pulling effect via
nonparaxial accelerating beams, which has not been explored
and observed yet.

II. NONPARAXIAL VECTOR ACCELERATING BEAMS

We begin our analysis by considering that a vector elec-
tromagnetic (EM) field, with the suppressed time dependence
e−iωt throughout this paper, propagates along the positive z
direction. By utilizing the method of vector angular spectral
decomposition [51] that describes rigorously the vector EM
fields of an arbitrary beam, the evolution of the electric field
in a nonmagnetic isotropic medium is expressed as

Einc(x, y, z) =
∫∫ ∞

−∞
Ã(kx, ky)ei(kxx+kyy+kzz)dkxdky, (1)
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where kx, ky, and kz are the wave vectors satisfying the
relation k2 = k2

x + k2
y + k2

z . They are reformulated as kx =
k sin α cos β, ky = k sin α sin β, and kz = k cos α in spherical
coordinates in which α(β) is the polar (azimuthal) angle.
k = 2πnb

λ
represents the wave number with nb and λ denoting

the refractive index of the background medium and the light
wavelength in vacuum, respectively. Ã(kx, ky) is the vector

angular spectrum function that has a form of

Ã(kx, ky) = E0

4π2
A(kx, ky)Q(α, β ), (2)

where E0 is the amplitude of the electric field, A(kx, ky) con-
tributes to the profile of the incident beam (i.e., at z = 0) [52],
and Q(α, β ) is a complex vector function defining the light
polarization in the following form [52]:

Q(α, β ) =
⎡
⎣ px(cos αcos2β + sin2β ) − py(1 − cos α) sin β cos β

−px(1 − cos α) sin β cos β + py(cos αsin2β + cos2β )
−px sin α cos β − py sin α sin β

⎤
⎦

⎧⎨
⎩

ex

ey

ez

⎫⎬
⎭, (3)

where px and py correspond to the polarization regime of the
incident beam, and ex, ey, ez are the unit vectors of a Carte-
sian coordinate system. Accordingly, the incident magnetic
field is

Hinc(x, y, z) = 1

iωμ
∇ × Einc(x, y, z), (4)

where ω is the angular frequency and μ is the permeability
of the background medium. For a type of nonparaxial vector
accelerating beam (NVAB) that undergoes shape-preserving
propagation along a semicircular trajectory [36], its associated
vector angular spectrum function is

Ã(kx, ky) = E0

4π2
g(t ) exp (ima f )Q(α, β ), (5)

where t and f are related to the wave vector (kx, ky) by t =
arccos( ky

k ) and f = arcsin( kx√
k2

x +k2
z

), respectively, and ma is a

positive real number used to design the beam trajectory with a
beam radius close to ma

k . Indeed, any form of g(t ) corresponds
to an NVAB. To directly compare with the optical-tweezer
effect via Airy beams, we examine herein the NVAB having
an Airy-like intensity profile. In this regard, a form of 1

2π sin t
is adopted for g(t ). The initial polarization is set in terms of
experimental consideration. In general, a liquid-crystal-based
spatial light modulator is employed to produce the nonparax-
ial accelerating beams [53] by modulating the light in the
domain of spatial frequency. Considering the polarization-
dependent feature of a liquid crystal, we set the polarization of
the light illuminating the modulator along one direction (here
the x axis). In this framework, the vector angular spectrum
function of the associated beam becomes

Ã(kx, ky) = E0 exp (ima f )

8π3 sin t

⎡
⎣ cos αcos2β + sin2β

(cos α − 1) sin β cos β

− sin α cos β

⎤
⎦

⎧⎨
⎩

ex

ey

ez

⎫⎬
⎭.

(6)
Note that the phase term in Eq. (6) does not include any spiral
phase. Thus, in the following analysis, we do not consider
optical effects associated with rotations. Substituting Eq. (6)
into Eq. (1), the electrical field distribution of the NVAB
is readily obtained. Figure 1 illustrates the associated inten-
sity profiles. The parameters for the calculations are chosen
as E0 = 1, ma = 200, nb = 1.33 (water), and λ = 532.8 nm.
The NVAB shows a shape-preserving evolution along an arc.
As mentioned before, its transverse profile exhibits a pattern

[Fig. 1(b)] similar to that of Airy beams [12,13], consisting of
a main lobe carrying the peak intensity and various sublobes
necessary for the beam acceleration. In essence, this beam is
mainly contributed by the x- and z-polarized components that
dominate the initial and final beam propagation, respectively.
In transverse planes, both parts show an Airy-like structure. In
the following, based on the full-wave generalized Lorenz-Mie
theory and the Maxwell stress tensor technique (see details
in the Appendix), we calculate the optical force exerted by
the NVAB on a Mie particle or a Rayleigh particle. Note that,
unless otherwise stated, the power of the incident NVAB is set
to be P = 20 mW, corresponding to E0 ≈ 2.17 × 10−5 V/m.
We choose this power as a typical example. This will not cause
loss of generality since the calculated force is, in general,
proportional to the light power.

III. OPTICAL FORCE ON A DIELECTRIC MICROSPHERE

In this section, we first investigate the optical force of
the NVAB exerting on a Mie particle positioned in water
[see Eq. (A9) in the Appendix]. The particle is made of
polystyrene. Its radius rs, permittivity εs, and mass density
are 0.4 μm, 2.53, and 1050 kg/m3 [42], respectively. In our
analysis, the force due to gravity (about 2.76 fN; much smaller
than the optical force exerted by the NVAB) is ignored.

To overview the force distribution, the calculation is ini-
tially performed in a transverse plane at z = 10/k. Figure 2(a)
presents the transverse component F⊥ [|F⊥| = (F 2

x + F 2
y )1/2]

(see details in the Appendix) in this plane. The lobes with
sufficient intensity can trap the particle transversely. As ex-
pected, the main lobe offers the dominant trapping effect. The
trapping position in the main lobe is close to the location of
the peak intensity. In addition, the longitudinal optical force
Fz is examined along the beam acceleration direction (i.e., the
x axis). As shown in Fig. 2(b), the particle always experiences
a pushing force whose maximum value nearly appears at the
location of the peak intensity. Thus, in the plane at z = 10/k,
once the particle is trapped by the main lobe or the sublobes,
it tends to move along the beam trajectory. This is also the
case for other planes in early propagations, where the beam
just manifests a small bending.

Once the beam turns into a large angle, the longitudinal
optical force can become negative. As an example, Fz is ana-
lyzed following the peak intensity along the propagation, and
the associated calculations are summarized in Fig. 3. In the
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FIG. 1. Intensity profiles of the NVAB under test. Shown from left to right are the total intensity pattern and its three polarized components.
Upper and lower rows are the cases at a longitudinal section (at y = 0) and a transverse section (at z = 0), respectively. The white dashed curve
in panel (a) traces out the beam trajectory. Each panel is normalized by the peak intensity.

range 0 � z < 115/k, Fz is positive, with the maximum value
appearing at the input, while in the range of 115/k � z <

200/k, it becomes negative with the minimum value appearing
around z = 160/k [Fig. 3(a)]. To have a better illustration, the
forces are plotted in Fig. 3(b) by means of arrows overlapped
with the pattern of the beam propagation. One can see a
clear switching of the force type following the peak intensity.
For quite large bending of the beam, the pulling strength is
alleviated because of the reduced peak intensity.

The optical pulling force is strongly related to the wave-
vector direction [43,50]. To better understand its origin, the
optical rays passing through a tiny space around the peak
intensity are examined. They are initiated from the Fourier

FIG. 2. (a) Transverse optical force experienced by a dielectric
microsphere positioned in water (nb = 1.33) with rs = 0.4 μm and
εs = 2.53 illuminated by the NVAB at a chosen plane (z = 10/k).
The force distribution is presented with the magnitudes and direc-
tions characterized by the lengths and the directions of white arrows,
respectively, and the cases with magnitudes less than 1 pN are not
shown. (b) Distribution of the longitudinal force (blue line) for the
same particle along the x axis. In both panels, the associated beam
profiles are overlapped for reference.

plane, and their paths in real space are determined by the
phase of the angular spectrum [i.e., Eq. (6)] [54]. Figures 4(a)
and 4(b) present the k-space locations of the rays passing
through two sites A and B marked in Fig. 3(b), selected
by considering that the associated longitudinal optical forces
oppose each other and reach the maximum strength beneficial
for a sharp comparison. Clearly, the optical pulling effect is
relevant to the beam components of high spatial frequency.
Furthermore, the momentum distributions are transformed
into ray angles about the z axis, as shown in Figs. 4(c)
and 4(d). Around site A, the ray angles are in the range of
15.75◦ � α � 17.19◦; while around site B, quite larger angles
are involved, and the maximum value reaches ≈67°. These
wave vectors, in the latter case, have a small projection along
the propagation direction, thereby leading to an enhancement

FIG. 3. Longitudinal optical force Fz following the peak inten-
sity of the NVAB along the propagation direction. (a) Calculated
values; (b) locations of the forces whose magnitudes (directions) are
revealed by the lengths (directions) of white arrows overlapped with
the pattern of beam propagation. Sites A and B in panel (b) are the
locations corresponding to the maximum pushing and pulling forces,
respectively.
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FIG. 4. Optical rays associated with the NVAB passing through
sites A and B [marked in Fig. 3(b)] in terms of the spatial frequency
(upper) and the angle about the z axis (lower).

for the momentum of the scattered light along the z-axis
direction [42] and in turn inducing an optical pulling force
(Fz < 0) on the particle. Thus, as the accelerating beam bends
to a sufficiently large angle, the longitudinal optical force
switches from positive to negative values. To have a further
understanding of the physical picture behind the pulling ef-
fect, we also calculate the scattering pattern corresponding
to the case of site B in Fig. 3 where the maximum pulling
force appears, and summarize the results in Fig. 5 [where the
scattering pattern is obtained by calculating Eq. (A6) in the
Appendix]. It is apparent that the forward scatterings are much
stronger than the backward scatterings for all directions. This
originates from the interferences between particle multipoles

that are excited simultaneously [42]. Consequently, the dom-
inant forward scatterings induce a backward force, i.e., the
pulling force.

Next, we analyze how the longitudinal optical force coor-
dinates with the transverse trapping to influence the particle
movement. To this end, the force is calculated in more de-
tail. Its distribution at several selected propagation distances
are presented in Fig. 6. As a result of the beam symmetry
about the x axis, the vertical trapping position always ap-
pears on this axis where Fy is zero. Typical examples across
a location vertically near the peak intensity are shown in
Figs. 6(b), 6(f), 6(j), and 6(n). Apparently, Fx (Fy) is always
symmetric (antisymmetric). Along the x axis, Fx exhibits an
oscillatory shape, matching the feature of the beam pattern.
This component is prominent around the main lobe. In this
region, the force pointing to the right (i.e., Fx > 0) tends to
become stronger than the one to the left (i.e., Fx < 0) along
the beam evolution. For most of the range of propagation
(say, z < 189/k), the main lobe exhibits a transverse trapping
effect very close to the location of the peak intensity. In these
associated trapping positions, the longitudinal force is always
positive. The pulling force only exists for the beam to turn to
large angle and prefers to appear at the left side of the main
lobe, nonoverlapping with the transverse trapping position.
Thus, in the case of tight transverse trapping, there is no
chance for the particle to experience the pulling effect. Such a
pulling effect may come into play for loose trapping (e.g., as
realized by using a mild beam intensity). Under this condition,
the particle probably wanders in the trapping potential upon
some external perturbations and enters into the region of the
pulling force. This scenario enables fruitful particle move-
ments in the framework of the position-dependent sign of the
longitudinal force. For a quite longer propagation distance,
the pulling force tends to be comparable to the pushing force
and to the transverse force in terms of strength. Thus, one
can expect that the pulling effect exerts a greater influence on
the particle.

For particles of larger radii, the range of the pulling effect
along the propagation becomes short. Here, an example for
rs = 1 μm is shown in Fig. 7. At z = 130/k, the negative

FIG. 5. Normalized scattering intensities S(θ, φ) for a particle with rs = 0.4 μm placed at site B of Fig. 3. Panels (a)–(e) correspond to
different azimuthal angles.
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FIG. 6. Optical force experienced by a particle of rs = 0.4 μm in the NVAB. From left to right each panel corresponds to different
distances. Shown from upper to lower rows are the transverse beam patterns, the transverse force along a vertical line (near the beam peak
intensity) and along the x axis, and the longitudinal force on the x axis. Solid and dashed curved lines in the bottom three rows correspond to
εs = 2.53 and εs = 2.53+0.01i, respectively. For the lossless case: the black dots in the second and third rows and the black vertical dashed
lines in the bottom row mark the transverse trapping position, while the shaded region in panel (l) shows the range of the trapping potential in
panel (k).

longitudinal force is still absent [Fig. 7(a)] while it is already
apparent in the former case for this distance. Further simu-
lations reveal that the pulling force indeed initially appears
at a much longer distance, i.e., at z = 170/k. The weakened
pulling effect is also shown by the strength and the location
of the pulling force. On the one hand, even for sufficiently
large bending of the beam (say, at z = 190/k), the magnitude
of this force is much smaller than that of the pushing force

[Fig. 7(b)]. On the other hand, the pulling force appears fur-
ther away from the transverse trapping position compared to
the case of using a small particle. In contrast to the reduced
pulling range, the transverse trapping is extended along the
propagation. Particularly, a trapping position even appears
near the end of the beam trajectory [Fig. 7(b)]. Based on
the above analysis, one can see that the pulling effect is not
obvious in the NVAB for particles with a large size, and
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FIG. 7. Optical force experienced by a particle of rs = 1 μm in
the NVAB. Transverse (Fx) and longitudinal (Fz) forces are calculated
at two selected distances: (a) z = 130/k, (b) z = 190/k. Solid and
dashed curved lines correspond to εs = 2.53 and εs = 2.53+0.01i,
respectively. For the lossless case: black dots mark the transverse
trapping position. The associated beam profiles (shaded areas) are
overlapped for reference.

the beam is mainly functionalized for unidirectional particle
delivery along a curved path.

Furthermore, we study the case of particles smaller than
the Mie particle employed in Fig. 6 and find a more notable
pulling effect. As an example, a Rayleigh polystyrene particle
(rs = 20 nm) is considered. The forces experienced by this
particle are presented in Fig. 8. Through a direct comparison
with the forces for the Mie particle (in the bottom two rows of
Fig. 6), one can observe an enhanced pulling effect around the
main lobe, i.e., the pulling force is comparable to the pushing
force in a longer longitudinal range. In particular, the trans-
verse trapping position falls into the region of pulling force,
enabling a stable drag of the Rayleigh particle by the NVAB
for a certain distance. Besides, for such a small particle, the
sublobes of the NVAB exert considerable contributions to
both the transverse and longitudinal forces: stable trapping
position and pulling force also appear in the regions of the
sublobes, which may bring about more fruitful dynamics for
manipulating Rayleigh particles via NVABs.

Finally, we calculate the force by considering the absorp-
tion of a microsphere. To this end, we add a small imaginary
part that was reported and considered in the literature (see,
for instance, Ref. [42]) to the polystyrene permittivity. To
directly compare with the lossless case, the calculated results,

FIG. 8. Optical force experienced by a Rayleigh particle of rs = 20 nm in the NVAB. From left to right each panel corresponds to different
distances. Shown from top to bottom rows are the associated beam profiles and the transverse and longitudinal forces on the x axis. Solid and
dashed curved lines in the bottom two rows correspond to εs = 2.53 and εs = 2.53+0.01i, respectively. For the lossless case, the black vertical
dashed lines in the bottom row mark the dominant transverse trapping positions in the middle row.
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plotted by dashed curved lines, are overlapped in Figs. 6–8.
Through the comparison, several features appear. First, stable
transverse trappings are still achievable, while the associated
trapping potentials experience some changes in terms of mag-
nitude and trapping position. Second, the pulling forces are
still present, although decreasing in magnitude because the
pushing force is enhanced as the microsphere absorbs pho-
tons. Third, the difference in terms of forces between the lossy
and lossless cases is more apparent for particles with a larger
radius.

IV. CONCLUSION

In conclusion, we have studied the forces exerted by an
NVAB on a microparticle. The main lobe of the beam dom-
inates the transverse trapping effect yet, surprisingly, the
longitudinal force can switch from pushing to pulling type
around the main lobe along the propagation. Such an unex-
pected pulling effect is preferable for the beam turning to
large angles and for particles of small size. Around the main
lobe, the sign of the longitudinal force also depends on the
transverse position. We envision fruitful dynamics of particle
trapping and optical manipulations relying on the unique fea-
ture of the pulling force arising from these accelerating beams.

ACKNOWLEDGMENTS

The authors are obliged to Dr. Wanli Lu at China Univer-
sity of Mining and Technology for useful discussions. This
work was financially supported by the National Key R&D
Program of China (2017YFA0303800), the National Natural
Science Foundation of China (NSFC) (12022404, 62075105,
91750204), and the 111 Project in China (B07013).

APPENDIX: FORMULATION OF OPTICAL FORCES

To simplify the force calculation, the origin of the coordi-
nate system is set at a particle center. Based on the full-wave
generalized Lorenz-Mie theory [55,56], the incident EM field
can also be expanded in terms of vector spherical wave func-
tions (VSWFs). In this way, the incident NVAB is expressed
as [21,27,56,57]

Einc(r, θ, φ) = −i
∑
n,m

Emn
[
pmnN(1)

nm(k, r) + qmnM(1)
nm(k, r)

]
,

(A1)
where (r, θ, φ) are the spherical coordinates in real space,∑

n,m denotes the summation from n = 1 to ∞ and from
m = −n to n, Emn = E0inγmn is the coefficient factor with

γmn =
[

(2n + 1)(n − m)!

n(n + 1)(n + m)!

]1/2

,

and N(1)
nm(k, r) and M(1)

nm(k, r) are the VSWFs. The partial-
wave expansion coefficients pmn and qmn, also called beam-
shape coefficients, are determined by using the orthogonality
of the VSWFs [57]:

pmn = kr

jn(kr)

∫ π

θ=0

∫ 2π

φ=0
[er · Einc(r, θ, φ)]

×Fn,m(θ, φ) sin θdθdφ, (A2a)

iqmn = − Zkr

jn(kr)

∫ π

θ=0

∫ 2π

φ=0
[er · Hinc(r, θ, φ)]

×Fn,m(θ, φ) sin θdθdφ, (A2b)

where jn denotes a spherical Bessel function of order n, Z =√
μ/ε stands for the impedance defined by the permittivity ε

and the permeability μ in the background, er is the unit vector
in the spherical coordinate system, and

Fn,m(θ, φ) = i1−n

√
4πn(n + 1)E0

Y ∗
n,m(θ, φ), (A3)

Y ∗
n,m(θ, φ) =

√
2n + 1

4π

(n − m)!

(n + m)!
Pm

n (cos θ )e−imφ, (A4)

where Y ∗
n,m(θ, φ) is the complex conjugate of the spherical

harmonic function, and Pm
n (cos θ ) is the associated Legendre

function of the first kind. After some algebraic computations
involving Eqs. (1), (6), and (A2a), the partial-wave expansion
coefficient pmn of the NVAB is simplified as

pmn = γmn

8π3

∫ π/2

α=0

∫ π

β=0
dαdβ

eima f e−imβ

sin t

× k2 sin α cos α[i sin βπmn(cos α) + cos βτmn(cos α)],
(A5a)

where k2 sin α cos αdαdβ = dkxdky, and πmn(cos α) =
mPm

n (cos α)/ sin α, and τmn(cos α) = dPm
n (cos α)/dα are two

auxiliary functions. Similarly, for the partial-wave expansion
coefficient qmn, one can obtain its simplified expression with
the help of Eqs. (4) and (A2b):

qmn = γmn

8π3

∫ π/2

α=0

∫ π

β=0
dαdβ

eima f e−imβ

sin t

× k2 sin α cos α[i sin βτmn(cos α) + cos βπmn(cos α)].
(A5b)

For the scattered EM field, it can be also described via the
VSWFs N(3)

nm(k, r) and M(3)
nm(k, r) [21,27,56,57]:

Esca (r, θ, φ) = i
∑
n,m

Emn
[
amnN(3)

nm(k, r) + bmnM(3)
nm(k, r)

]
,

(A6)
where amn and bmn are the partial-wave expansion coefficients
of the scattered field. They are readily obtained though the
relationships amn = an pmn, bmn = bnqmn with an and bn being
the Mie coefficients [55].

The total time-averaged optical force acting on a spherical
particle can be evaluated via the integral of Maxwell’s stress
tensor over the surface S of the particle, which takes the
following form [58–60]:

F =
∮

S
n̂ · 〈

↔
T〉dS, (A7)

where n̂ is the unit normal vector on the closed surface and
the time-averaged Maxwell stress tensor reads

↔
〈T〉 = 1

2
Re

[
εEt E∗

t + μHt H∗
t − 1

2
(εEt · E∗

t + μHt · H∗
t )

↔
I
]
,

(A8)
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with Et = Einc + Esca and Ht = Hinc + Hsca being the total
electric and magnetic fields outside the particle, respec-

tively, and
↔
I being a unit tensor. Relying on the principle

of momentum conservation and the asymptotic form of the
Riccati-Bessel function [55], the three components of an op-
tical force can be expressed in terms of the partial-wave
expansion coefficients under lossless conditions [21,27,57]:

Fx = Re[F1], Fy = Im[F1], Fz = Re[F2], (A9)

where

F1 = 2πε

k2
|E0|2

∑
n,m

[
c11F (1)

1 − c12F (2)
1 + c13F (3)

1

]
,

F2 = −4πε

k2
|E0|2

∑
n,m

[
c21F (1)

2 + c22F (2)
2

]
, (A10)

with the coefficients being

c11 =
[

(n − m)(n + m + 1)

n2(n + 1)2

]1/2

,

c12 =
[

n(n + 2)(n + m + 1)(n + m + 2)

(n + 1)2(2n + 1)(2n + 3)

]1/2

,

c13 =
[

n(n + 2)(n − m)(n − m + 1)

(n + 1)2(2n + 1)(2n + 3)

]1/2

,

c21 =
[

n(n + 2)(n − m + 1)(n + m + 1)

(n + 1)2(2n + 1)(2n + 3)

]1/2

,

c22 = m

n(n + 1)
, (A11)

and

F (1)
1 = ãmnb̃∗

m1n + b̃mnã∗
m1n − p̃mnq̃∗

m1n − q̃mn p̃∗
m1n,

F (2)
1 = ãmnã∗

m1n1
+ b̃mnb̃∗

m1n1
− p̃mn p̃∗

m1n1
− q̃mnq̃∗

m1n1
,

F (3)
1 = ãmn1 ã∗

m1n + b̃mn1 b̃∗
m1n − p̃mn1 p̃∗

m1n − q̃mn1 q̃∗
m1n,

F (1)
2 = ãmnã∗

mn1
+ b̃mnb̃∗

mn1
− p̃mn p̃∗

mn1
− q̃mnq̃∗

mn1
,

F (2)
2 = ãmnb̃∗

mn − p̃mnq̃∗
mn, (A12)

where the index m1 = m + 1 and n1 = n + 1, and

ãmn = amn − 1
2 pmn, p̃mn = 1

2 pmn,

b̃mn = bmn − 1
2 qmn, q̃mn = 1

2 qmn. (A13)
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