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Thermal conduction in a harmonic chain coupled to two cavity-optomechanical systems
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We propose a model including a one-dimensional harmonic chain of oscillators whose two ends coupled
two cavity-optomechanical systems for studying one-dimensional thermal conductivity in statistical physics.
In this model, the cavity-optomechanical systems function as two laser-engineerable thermal reservoirs. When
the effective temperatures of the two reservoirs are not equal, a heat flux through the chain can be generated,
and moreover the classical and quantum features of the heat flux have been studied. We further show that
the heat flux does not obey the Fourier’s law in this model. The thermal switching phenomenon could be
induced by controlling the on-site vibrational frequency. Finally, we propose to apply the correlation between
two mechanical oscillators to measure the heat flux through the chain.
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I. INTRODUCTION

Cavity optomechanics has made remarkable progress in
studying the crossover from classical physics to quantum
physics [1–3], and precision measurement [4–15] . Over the
last few years, the study of thermal physics with cavity-
optomechanical systems, such as the quantum heat engine
[16–19] and persistent thermal flux [20,21], has emerged as
a new frontier of this subject.

In thermal physics, one important topic is to understand
the Fourier’s law for the heat transport in temperature gradi-
ent systems from first principles [22,23]. Theoretical analysis
shows that the Fourier’s law could be violated in lower-
dimensional systems, demonstrated as size-dependent thermal
conductivity (a ratio of the heat flux over the temperature gra-
dient) [24–36]. Experimental demonstration of the anomaly of
Fourier’s law [37] is important for nonequilibrium stochastic
physics and thermal engineering in low-dimensional systems.

With the theoretical progress in the investigation of the
Fourier’s law, a wealth of possibilities for the transport, con-
trol, and rectification of heat in the physical reality of the
nanosystems have been explored. For example, thermal diodes
[38–40], thermal switching effect [41,42], and thermal logic
gates [43], as well as thermal memories [44], have been pro-
posed. The experimental realization [45,46] of these devices
can greatly enrich nanophononics [47].

The experimental progress of laser cooling and trapping
particles could facilitate the testing of the lattice models used
in low-dimensional heat transport theory [48–54]. In this way,
laser-cooled particles at the two ends of the chain are analo-
gous to reservoirs. However, the cooling lasers need to tightly
focused to a regime less than one lattice period. Moreover,
how to measure the thermal flux is a challenge. For a chain of
trapped ions, Ref. [53] proposes a spin wave to monitor the
heat flux, yet to be experimentally demonstrated. Recently,

heat transport between optomechanically coupled nanome-
chanical resonators and between hydrodynamically coupled
particles trapped in water by optical tweezers has also been
proposed and experimentally realized [21,55].

In this paper, we note that a cavity-optomechanical system
can function as a thermal reservoir that can be engineered by a
driving laser [16,18–20]; we thus propose to apply two cavity-
optomechanical systems at unequal effective temperatures,
respectively, to couple to two ends of a chain of harmonic
oscillators for investigating heat transport problems in low-
dimensional systems. The heat flux approaches a constant
value as the particle number increases, showing breakdown
of the Fourier’s law in this system, in agreement with pre-
vious research on thermal conductivity in harmonic chains
[22–25,28]. The heat flux can be controlled by the driving
lasers and on-site potential, which provide high flexibility
for experimentally testing lattice models and investigating
low-dimensional heat conduction problems in this system.
Moreover, the heat flux can be measured by the correlation of
the two mechanical oscillators in the cavity-optomechanical
systems.

The paper is organized as follows. In Sec. II, we present
our model and obtain quantum fluctuations of the oscillators
and the electromagnetic field. We further calculate the heat
flux through the chain and study its properties in Sec. III. In
Sec. IV, we propose a scheme using the cross correlation of
the mechanical oscillators to measure heat flux. In Sec. V, we
present a summary.

II. THEORETICAL MODEL FOR THE HYBRID SYSTEM
OF A HARMONIC CHAIN COUPLED TO TWO

CAVITY-OPTOMECHANICAL SYSTEMS AT TWO ENDS

Our model, shown in Fig. 1, is a chain composed of
N trapped identical particles of mass m whose two ends,

2469-9926/2021/103(5)/053509(11) 053509-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3015-0635
https://orcid.org/0000-0001-6755-1470
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.053509&domain=pdf&date_stamp=2021-05-12
https://doi.org/10.1103/PhysRevA.103.053509


ZIQIANG HE AND GUANGJIONG DONG PHYSICAL REVIEW A 103, 053509 (2021)

FIG. 1. A particle chain connected to two cavity-optomechanical
systems at two ends. The left and right cavity-optomechanical sys-
tems are driven by two lasers with power ℘L and ℘R, respectively.
Each optomechanical system has one mechanical oscillator with
mass M, resonance frequency ωM , and damping rate γ . The N parti-
cles in the chain are confined by N identical harmonic potentials of
the frequency ωm. Each particle interacts with its neighboring particle
harmonically at a frequency ωc. The environment temperatures of the
two cavity-optomechanical systems are TL and TR.

respectively, contact the mechanical oscillator of a cavity-
optomechanical system. In the chain, each particle is confined
by a harmonic potential of the frequency ωm and has harmonic
interaction of the frequency ωc with its neighboring particles.
The Hamiltonian of the harmonic chain is given by

Hchain =
N∑

n=1

(
p2

n

2m
+ mω2

m

2
x2

n

)
+ Kc

2

N−1∑
n=1

(xn+1 − xn)2, (1)

where xn is the displacement of the nth particle from its
equilibrium, l is the equilibrium separation between two
neighboring particles, and the chain stiffness Kc = mω2

c .
In the left or right cavity-optomechanical system, the cavity

of resonant frequency ω0 and photon leakage rate κ con-
stitutes a mechanical oscillator of mass M at a frequency
ωM , and is driven by a laser of the frequency ωl,L/R and
power ℘L/R. Hereafter, the subscripts L and R, respectively,
denote the physical quantities belonging to the left and right
optomechanical system. The Hamiltonian of the left (right)
optomechanical system is [56,57]

HoptL/R = h̄a†
L/RaL/R

(
�0

L/R ∓ GxL/R
) + p2

L/R

2M

+ KMx2
L/R

2
+ ih̄εL/R(a†

L/R − aL/R), (2)

where − and + are, respectively, used for the left and right
optomechanical systems; aL/R and a†

L/R are the annihilation
and creation operators for the left and right cavity field,
respectively; xL(xR) is the displacement of the left (right)
mechanical oscillator from its equilibrium; G is the optome-
chanical coupling strength; stiffness KM = Mω2

M ; �0
L and �0

R
are the detuning of optical frequency from the left and right
cavity resonant frequency, given by

�0
L/R = ω0 − ωl,L/R, (3)

and εL/R = √
2κ jinL/R with the input photon flux on the left

and right optomechanical system jinL/R = ℘L/R/(h̄ωl,L/R).
The far-left particle and the far-right particle interact with

the left and right cavity-optomechanical system harmonically
and the interaction Hamiltonian is

Hint = 1
2 Kin[(x1 − xL )2 + (xR − xN )2], (4)

in which Kin is the stiffness of the interaction force between
the particle and the mechanical oscillator.

The total Hamiltonian of the hybrid system is Htot =
HoptL + HoptR + Hchain + Hint . Now we introduce dimension-
less positions and momentums,

QL/R =
√

MωM/h̄xL/R, PL/R = pL/R/
√

Mh̄ωM , (5)

and

Qn =
√

(mωc)/h̄xn, Pn = pn/
√

mh̄ωc. (6)

The Heisenberg equations of motion for the two cavity-
optomechanical systems are governed by

·
PL =

√
2g0aLa†

L + �Q1 − (1 + ςM )ωMQL − γ PL + ξL(t ),
·

PR = −
√

2g0aRa†
R + �QN − (1 + ςM )ωMQR − γ PR + ξR(t ),

·
aL = −[

i
(
�0

L −
√

2g0QL
) + κ

]
aL + εL +

√
2κainL(t ),

·
aR = −[

i
(
�0

R +
√

2g0QR
) + κ

]
aR + εR +

√
2κainR(t ), (7)

with the vacuum-optomechanical coupling rate g0 =√
h̄/(2MωM )G, the chain-oscillator coupling constant α =

ςM ςc , and � = ωM (ακ)1/2. Here, the ratios ςM = Kin/KM ,
ςc = Kin/Kc, κ = ωc/ωM determine the relative strength
between the oscillator vibration, particle oscillation, and the
particle-oscillator vibration. We introduce the damping of the
mechanical oscillator with a rate γ , and vacuum noise ainL

and ainR entering the left and right optomechanical system
from the drive port, and thermal noise ξL(ξR) associated with
the mechanical damping phenomenally. The correlations for
the two noises are given by

〈ainL/R(t )a†
inL/R(t ′)〉 = δ(t − t ′), (8)

and 〈ξL/R(t )ξL/R(t ′)〉 = ∫
ηL/R(ω)e−iω(t−t ′ )dω with [57,58]

ηL/R(ω) = γ

2πωM
ω

[
1 + coth

(
h̄ω

2kBTL/R

)]
, (9)

and the Boltzmann constant kB. When the two optomechanical
systems are decoupled with the chain (α = 0), the effective
temperature of each optomechanical system can be controlled
by the driving laser [56,57,59–63]. To make the two optome-
chanical systems function as two reservoirs, α should be kept
small so that the temperatures cannot be significantly changed
by the coupling to the chain.

The Heisenberg equations of motion for the particles in the
chain are

·
P1 = ωc[Q2 − (1 + ςc + ζ 2)Q1] + �QL,
·

Pn = ωc[Qn+1 + Qn−1 − (2 + ζ 2)Qn], n = 2, . . . , N − 1,
·

PN = −ωc[(1 + ςc + ζ 2)QN − QN−1] + �QR, (10)

with the ratio ζ = ωm/ωc.

Now, to solve the nonlinear Eqs. (7) and (10), we write

aL/R = αsL/R + δaL/R, a†
L/R = α∗

sL/R + δa†
L/R,

PL/R = 〈PL/R〉 + δPL/R, QL/R = 〈QL/R〉 + δQL/R,

Pn = 〈Pn〉 + δPn, Qn = 〈Qn〉 + δQn, (11)
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where 〈Â〉 stands for the expectation value of the operator Â,
αsL/R = 〈aL/R〉; and δaL/R, δPL/R, δQL/R, δQn, and δPn are the
quantum fluctuation of the relevant operator.

A. Expectation values of operators of the hybrid system in
steady state

Taking the expectation values of Eqs. (7) and (10) and mak-
ing the approximation 〈ÂB̂〉 ≈ 〈Â〉〈B̂〉, we get the steady-state
equations for the optomechanical system,

√
2g0NsL = ωM (1 + ςM )〈QL〉 − �〈Q1〉,

√
2g0NsR = −ωM (1 + ςM )〈QR〉 + �〈QN 〉,

〈PL/R〉 = 0, NsL/R = 2κ jinL/R

�2
L/R + κ2

, (12)

with steady-state intercavity photon number NsL/R = |αsL/R|2,
and

�L/R = �0
L/R ∓

√
2g0〈QL/R〉. (13)

The steady-state equations for the harmonic chain are

α̃〈QL〉 = (1 + ςc + ζ 2)〈Q1〉 − 〈Q2〉,
〈Pn〉 = 0,

〈Qn+1〉 = (2 + ζ 2)〈Qn〉 − 〈Qn−1〉, n = 2, . . . , N − 1,

α̃〈QR〉 = (1 + ςc + ζ 2)〈QN 〉 − 〈QN−1〉, (14)

where

α̃ = (α/κ)1/2. (15)

The detailed process of solving Eqs. (12) and (14) is given in
Appendix A.

B. Quantum fluctuation in the hybrid system

From Eqs. (7) and (10), quantum fluctuations δaL/R, δPL/R,
and δPn are governed by

·
δPL =

√
2g0(α∗

sLδaL + αsLδa†
L ) + �δQ1

− (1 + ςM )ωMδQL − γ δPL + ξL(t ),
·

δPR = −
√

2g0(α∗
sRδaR + αsRδa†

R) + �δQN

− (1 + ςM )ωMδQR − γ δPR + ξR(t ),
·

δaL = −(i�L + κ )δaL + i
√

2g0αsLδQL +
√

2κainL (t ),
·

δaR = −(i�R + κ )δaR − i
√

2g0αsRδQR +
√

2κainR(t ),
(16)

·
δP1 = ωc[δQ2 − (1 + ςc + ζ 2)δQ1] + �δQL,

·
δPn = ωc[δQn+1 + δQn−1 − (2 + ζ 2)δQn],

n = 2, . . . , N − 1,
·

δPN = −ωc[(1 + ςc + ζ 2)δQN − δQN−1] + �δQR. (17)

Performing Fourier transformation on both sides
of Eqs. (16) and (17) to the frequency domain by
using f (t ) = ∫ ∞

−∞ f (ω)e−iωt dω/(2π ) and f †(t ) =

∫ ∞
−∞ f †(−ω)e−iωt dω/(2π ), we obtain the quantum

fluctuations δQn(ω) of the nth particle in the frequency
domain,

δQn(ω) = GL(n, ω)δQL(ω) + GR(n, ω)δQR(ω). (18)

Here, the left and right propagators

GL(n, ω) = α̃
BN−n+1(ω)

CN (ω)
, GR(n, ω) = α̃

Bn(ω)

CN (ω)
, (19)

with

CN (ω) = BN+1(ω) + (ςc − 1)BN (ω), (20)

Bn(ω) = �n(ω) + (ςc − 1)�n−1(ω), (21)

�n(ω) =

⎧⎪⎨⎪⎩
sinh[n�(ω)]/ sinh[�(ω)] for 0 < ω < �L

sin[n�(ω)]/ sin[�(ω)] for �L < ω < �H

(−1)n sinh[n�(ω)]/ sinh[�(ω)] for ω > �H ,
(22)

�(ω) =

⎧⎪⎪⎨⎪⎪⎩
ln[σ (ω) +

√
σ 2(ω) − 1] for 0 < ω < �L

arccos σ (ω) for �L < ω < �H

ln[−σ (ω) −
√

σ 2(ω) − 1] for ω > �H ,

(23)

where

σ (ω) = 1 + (
ω2

m − ω2
)
/(2ω2

c ) (24)

and

�L = ωm, �H = ωm

√
1 + 4ζ−2. (25)

δQL(ω) and δQR(ω) are given by(
δQL(ω)

δQR(ω)

)
=

(
RL(ω) RC (ω)
RC (ω) RR(ω)

)(
ξL(ω) + FLrad(ω)

ξR(ω) + FRrad(ω)

)
.

(26)
The total susceptibility RL(ω) [RR(ω)] of the left (right)
cavity-optomechanical system takes account of the response
of the left (right) mechanical oscillator to the total external
forces in the left (right) end; the cross susceptibility RC (ω)
of the left (right) cavity-optomechanical system accounts for
the response of the left (right) mechanical oscillator to the
total external forces in the right (left) end. RL(ω) [RR(ω)] and
RC (ω) are given by

RL/R(ω) = CN (ω) − αBN (ω)ωMχR/L(ω)

χR/L(ω)DN (ω)ω2
M

, (27)

RC (ω) = α

DN (ω)ωM
, (28)

with

DN (ω) = CN (ω) − αBN (ω)ωM[χL(ω) + χR(ω)]

ω2
MχL(ω)χR(ω)

+ α2�N−1(ω), (29)

and the susceptibility χL(ω) and χR(ω) of the left and right
cavity-optomechanical system is given by

χ−1
L/R(ω) = ω2

M (1 + ςM ) − ω2 + iωγ

ωM
+ 4�L/Rg2

0NsL/R

(κ − iω)2 + �2
L/R

.

(30)
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FIG. 2. Left propagator GL (n, ω) as a function of n at differ-
ent frequencies: ω < �L (olive), ω = �L (orange), �L < ω < �H

(green), ω = �H (blue), ω > �H (red). The particle number (a)
N = 32 and (b) N = 128.

ξL/R(ω) are the Fourier spectrums of the stochastic forces in-
duced by Brownian noise, with the correlation function given
by

〈ξL/R(ω)ξL/R(�)〉 = 4π2ηL/R(ω)δ(ω + �). (31)

FL/Rrad(ω) are the Fourier spectrums of the stochastic forces
generated by the radiation pressure backaction, given by

FL/Rrad(ω) = 2
√

κg0αsL/RainL/R(ω)

κ + i(�L/R − ω)
+ H.c., (32)

in which the correlation function of the vacuum noise is given
by

〈ainL/R(ω)a†
inL/R(−�)〉 = 2πδ(ω + �). (33)

C. Conditions for the effective propagation of the fluctuation of
the optomechanical systems along the chain

The thermal fluctuation of a mechanical oscillator of the
optomechanical system can excite the lattice vibration modes
and can further be propagated from one end to another end
via the modes. Thus, the properties of the lattice modes are
important for the propagation. Assuming δQn(t ) = Aei(nql−ωt )

with the wave vector q of the lattice wave [64,65], from
Eq. (17) we obtain the dispersion relation of the particle chain,

ωk (qk ) = ωm

√
1 + 4ζ−2 sin2(qkl/2), (34)

where ωk (qk ) is the frequency corresponding to the kth lattice
vibration mode, and qk is the corresponding wave vector. �L

and �H defined in Eq. (25) are, respectively, the minimum and
the maximum frequencies of ωk (qk ), indicating the relation of
the thermal fluctuation propagation to the lattice waves.

Equation (18) shows that GL(n, ω) and GR(n, ω) describe
the propagation of the fluctuations of the left and right me-
chanical oscillators from one end to another end. Actually
this propagation is limited by the lattice dispersion relation,
as studied in Fig. 2, where the site distribution of the left
propagator GL(n, ω) at different frequencies ω for the chain
length N = 32 (left) and = 128 (right) are shown. The right
propagator GR(n, ω) is not shown here since it has a similar
site distribution. The parameters used in the calculation are
listed in Table I and will be used in the following numerical
simulations unless otherwise specified. Figure 2 shows that

TABLE I. Optical and mechanical parameters for the hybrid
chain-optomechanical system used in the simulation.

Kin M m ωm/2π ωc/2π

6 nN/μm 21 pg 1.1 pg 500 kHz 380 kHz
ωM/2π κ/2π κ/ωM g0/2π QM = ωM/γ

830 kHz 166 kHz 0.2 13 Hz 4 × 104

when ω < �L or ω > �H , GL(n, ω) quickly decays with the
site n, and especially with the increasing of the lattice length
N , the decay rate increases greatly. Thus, the fluctuation of the
optomechanical systems at the frequency ω can be effectively
propagated from the one end to another end of the chain when
ω is within the phonon band (�L < ω < �H ).

To facilitate the controlling cavity-optomechanical system
in a wide range from the quantum ground state to the classi-
cal motion, the weak optomechanical coupling (g0|αsL/R| 

κ) and condition of the sideband cooling mechanical os-
cillator motion (�L/R = ωM) [56,57,59–63] are assumed in
our numerical calculation. In this situation, for a single op-
tomechanical system (α = 0), normal-mode splitting does not
occur and RL/R(ω) has a peak at ω = ωM [56]. Further, to
make the optomechanical systems function as reservoirs for
the chain, a weak coupling between the mechanical oscillator
and the chain (α 
 1) is assumed in this paper, so that the
peak position of RL/R(ω) at ω = ωM is nearly unchanged.
The interaction between the end particle and the mechanical
oscillator could be realized via van der Waals interaction, and
thus α 
 1 could be realized.

The effective coupling of the thermal fluctuation by the
cavity to the chain requires the cavity vibration frequency ωM

to match the lattice vibration frequency, i.e.,

�L < ωM < �H . (35)

The condition (35) is assumed in the following numerical
analysis.

III. THERMAL FLUX ALONG THE CHAIN

Using Eqs. (8), (9), and (30), we obtain the mean phonon
occupancy at the frequency ω of the left and right cavity-
optomechanical heat bath [56,57],

nL/R(ω) = γ
nL/RT (ω) + nL/Rrad(ω)

γL/R(ω)
, (36)

with the mechanical decay rate γL/R(ω) of the left and right
cavity-optomechanical systems,

γL/R(ω) = γ

{
1 + γ −1 8�L/RωMκg2

0NsL/R(
�2

L/R − κ2 − ω2
)2 + 4�2

L/Rκ2

}
,

(37)
and the mean phonon occupancy induced by the environments
at the frequency ω,

nL/RT (ω) = coth[h̄ω/(2kBTL/R)]/2, (38)

at the environmental temperature TL/R, and the thermal
phonon occupancy nL/Rrad(ω) induced by the radiation pres-
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sure backaction,

nL/Rrad(ω) = 2ωMκ
(
κ2 + �2

L/R + ω2
)
g2

0NsL/R[(
�2

L/R − κ2 − ω2
)2 + 4�2

L/Rκ2
]
ωγ

. (39)

The difference of the mean phonon occupancy nL/R(ω)
in the left and right optomechanical systems, i.e., �n(ω) ≡
nL(ω) − nR(ω), includes two parts: the difference of thermal
phonons induced by the environments, �nT (ω) = nLT (ω) −
nRT (ω), and the difference of thermal phonons induced by
the radiation pressure backaction, �nrad (ω) = nLrad(ω) −
nRrad(ω). When the environmental temperatures TL and TR are
different, �nT (ω) �= 0; or when the driving powers ℘L and
℘R are different, �nrad (ω) �= 0. In both cases, the difference
of the mean phonon occupancy nL/R(ω) in the left and right
optomechanical systems can lead to the heat flux through the
chain. The local heat flux through the nth particle is defined
as (see Appendix B)

Jn(t ) = l h̄ω2
c

4
[δPn+1(t ) + δPn(t )][δQn(t ) − δQn+1(t )] + H.c.,

(40)
where H.c. stands for Hermitian conjugate. After transient
time, the heat flux can reach a steady state. The local heat flux
at the steady state can be calculated with the time average of
Jn(t ), 〈Jn(t )〉 = limT −∞

∫ T
0 Jn(t )dt/T , where the symbol 〈·〉

represents the time average. To calculate 〈Jn(t )〉, we introduce

〈Jn(t, τ )〉 = l h̄ω2
c

4

〈
[δPn+1(t ) + δPn(t )][δQn(t + τ )

−δQn+1(t + τ )] + H.c.

〉
. (41)

The calculation of the right side of Eq. (41) can be trans-
formed into the frequency domain with the Wiener-Khinchin
theorem [66] using Eqs. (18)–(26) as well as δPn(ω) =
−iωδQn(ω)/ωc. Using 〈Jn(t )〉 = 〈Jn(t, 0)〉, we obtain

JN =
∫ ∞

−∞
J̃N (ω)dω, J̃N (ω) = j(ω)ρN (ω). (42)

Here, J̃N (ω) is the thermal flux due to the difference of
phonons of the frequency ω between the two cavities, and the
maximum heat flux induced by the phonon number difference
at the frequency ω between the left and right optomechanical
systems is given by

j(ω) = γe(ω)�n(ω)h̄ωl/2, (43)

where the effective damping rate γe(ω) of the cavity-chain
system reads

γe(ω) = γL(ω)γR(ω)/γ (ω), (44)

with γ (ω) = [γL(ω) + γR(ω)]/2. The propagation efficien-
cies ρN (ω) read

ρN (ω) = 2α2ω2γ (ω)

πω4
M |DN (ω)|2 . (45)

A. Dependence of j(ω) on the environmental temperature and
driving laser power

j(ω) is dependent on the environmental temperature and
can be controlled by the driving lasers. In Fig. 3, we
study j(ω) in the case that the environmental temperatures
(TL = 2 K and TR = 1 K) in the two cavities are higher than

FIG. 3. j(ω) as a function of ω under different laser drive powers
℘L and℘R at the environmental temperatures TL = 2 K and TR = 1 K
higher than the Debye temperature �D. The inset shows the mean
phonon occupancy nL/R of the left and right mechanical oscillator
of the optomechanical system under the sideband cooling �L/R =
ωM . The quality factor (a) QM = ωM/γ = 4 × 104 and (b) QM =
ωM/γ = 8 × 106.

the Debye temperature �D ≡ h̄�H/kB, where the insets in
Fig. 3 shows the mean phonon occupancy of the mechani-
cal oscillator of the optomechanical system. For a moderate
mechanical quality factor ωM/γ in Table I, the mean phonon
occupancy is much larger than 1 [cf. the inset in Fig. 3(a)].
For the mechanical quality ωM/γ up to 8 × 106, cooling the
mechanical oscillator close to the ground state can be achieved
as shown in the inset in Fig. 3(b). In both cases, j(ω) has
a peak or dip around ω = ωM . But the the curve of j(ω) in
Fig. 3(b) is nearly flat for ω � ωM , and j(ω) decays quickly
with ω when ω > ωM .

When the two cavities are driven by the same power, the
heat flux is induced by the difference of environmental tem-
peratures. When the driving laser powers in the two cavities
are not equal, the maximum heat flux j(ω) can be tuned by
the difference of the laser powers. Figure 3 shows that even
the direction of the heat flux can be tuned. Using nL/RT (ω) =
kBTL/R/h̄ω in Eq. (43), and ignoring the weak mean phonon
occupancy induced by the radiation pressure backaction, we
get that j(ω) in the high-temperature regime is approximated
by

j(ω) = jc�Te(ω)/�T , (46)

where �T = TL − TR is the environmental temperature differ-
ence,

jc = γ kB�T l/2 (47)
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FIG. 4. j(ω) as a function of ω under different laser drive powers
℘L and ℘R at the environment temperatures TL = 0.25�D and TR =
0.15�D.

is the classical local heat flux of the harmonic chain for γ 

ωc without the laser driving [22], and

�Te(ω) = TeL(ω) − TeR(ω), (48)

with the effective temperature TeL/R(ω) of the left and right
cavity-optomechanical heat bath at ω, given by

TeL/R(ω) = TL/RγR/L(ω)/γ (ω). (49)

Thus, when the laser power in the high-temperature end is
much stronger than that in the low-temperature end so that
γL(ω)/γR(ω) 
 1, �Te(ω)/�T < 0, the direction of the heat
flux can be reversed, as shown in Fig. 3. However, there is a
upper limit for the heat flux. When℘L 
 ℘R, γL(ω) 
 γR(ω),
�Te(ω) = 2TL, j(ω) reaches its maximum γ kBlTL; when
℘L 
 ℘R, γL(ω) 
 γR(ω), �Te(ω) = −2TR, j(ω) reaches its
minimum −γ kBlTR.

In Fig. 4, we study j(ω) in the case that the environmental
temperatures in the two cavities are lower than the Debye
temperature �D such that nL/RT 
 nL/Rrad. This case is dra-
matically different from that in Fig. 3, i.e., j(ω) ≈ 0 now at
ω = ωM . In this situation, nL/Rrad ≈ κ2/(4ω2

M ) + 1/2 at ωM ,
j(ω) ≈ �nrad ≈ 0.

j(ω) for TL = TR has similar features demonstrated in
Figs. 3 and 4, and thus is not shown here.

B. Frequency distribution of ρN on the mechanical
properties of the system

Propagation efficiency ρN (ω) is dependent on the mechan-
ical properties of the system. Figure 5 shows the frequency
distribution of propagation efficiency ρN (ω) for different
chain lengths characterized by the particle number N . Due
to weak optomechanical coupling (g0|αsL/R| 
 κ) and weak
mechanical coupling (α << 1), ρN (ω) has a maximum value
near ω = ωM , and when ω is offset from ωM , ρN (ω) quickly
decays. Except for the major peak around ω = ωM , there
are many minor peaks. These minor peaks arise from the
resonance with the lattice vibration modes, and thus they get
dense with the increasing of N . Moreover, as N increases, the
propagation efficiency ρN (ω) is essentially nonzero for the
frequency interval from �L to �H . This agrees with the fre-
quency distribution of the propagator shown in Fig. 2, where
it shows that when ω < �L and ω > �H , the propagation of

FIG. 5. The propagation efficiency ρN (ω) as a function of ω with
different N ; ρeff (ω) is also given for comparison.℘L = 1 μW,℘R = 2
μW are used.

the phonons is restricted due to the mismatch of the frequency
to the chain mode frequency distribution.

C. Breakdown of the Fourier’s law in the harmonic chain

When N → ∞, we divide the integration in Eq. (42) into
infinite integrands, each of which contains a peak of ρN (ω).
Further, using the properties of ρN (ω) demonstrated in Fig. 5,
we obtain

J∞ = 2
∫ �H

�L

j(ω)ρeff (ω)dω, (50)

where the equivalent propagation efficiency

ρeff (ω) = 2αωγ (ω) sin �(ω)

π [γL(ω)tR(ω) + γR(ω)tL(ω)]
, (51)

with

tL/R(ω) =
∣∣∣∣ςc − 2 sin2[�(ω)/2]

χL/R(ω)
− αωM

∣∣∣∣2

+ sin2 �(ω)

|χL/R(ω)|2 .

(52)

ρeff (ω) versus ω is plotted in Figs. 5(a)–5(c) to make a com-
parison of ρeff (ω) with ρN (ω). Figure 5 shows that when N
is sufficiently large, the envelope of ρN (ω) is close to ρeff (ω).
Moreover, the propagation efficiency is highest at ω = ωM ,
and when ω is off from ωM , ρeff (ω) quickly decreases.

In Figs. 6 and 7, we investigate JN and J∞ in detail using
the parameters in Table I except for γ . Figure 6, plotting
JN versus N , shows that when N increases, JN approaches a
finite value J∞ given by Eq. (50). The finite J∞ shows that
the thermal conductivity of the system is divergent, and thus
the Fourier’s law does not hold in our system, in agreement
with the result on the thermal conduction in a one-dimensional
harmonic chain [22–25,28].

In Fig. 6(a), γ /ωM = 10−2, and in Fig. 6(b), γ /ωM =
10−7. Figure 6 shows that γ has an important influence on
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FIG. 6. Heat flux JN scaled with J∞ as a function of N obtained
with ℘L = 1 μW and ℘R = 2 μW at TL = 2 K, TR = 1 K with (a)
γ /ωM = 10−2 and (b) γ /ωM = 10−7.

the velocity of JN approaching J∞. In Fig. 7, we plot the
heat flux JN and J∞ as a function of γ . When the mechanical
quality factor ωM/γ > 103 or <0.1, using a few number of
particles, JN ≈ J∞; however, the value of the heat flux is
greatly reduced. When γ is small, the thermal fluctuation is
reduced [cf. Eq. (9)] and thus the particle motion in the chain
is little influenced, and even the number of particles is not
high to get JN ≈ J∞. In this situation, JN and J∞ are linearly
proportional to γ . On the other hand, when the damping rate
γ is very high, the mechanical oscillator vibration is reduced
and the influence on the particle motion is weak, and thus the
heat flux inversely proportional to γ is reduced. Between the
two limits, there exists a value of the γ at which the heat flux
takes its maximum value, agreeing with the previous result on
the thermal conduction in a one-dimensional harmonic chain
[22,24].

D. The influence of environmental temperature on the heat flux

Figures 3 and 4 shows that the environmental temperatures
have a strong influence on the heat flux. Therefore, using
Eq. (36) and coth(x) = 1 + 2/(e2x − 1), we rewrite Eq. (42)
as

JN = J1
N + J0

N , (53)

FIG. 7. Heat flux JN as a function of γ obtained with℘L = 1 μW
and℘R = 2 μW at TL = 2 K, TR = 1 K. The insets show the relations
of the heat flux JN to very small γ (left) and to large γ (right).

FIG. 8. (a) JN as a function of T with different N at TL = TR = T ,
with T much lower than the Debye temperature �D, and the horizon-
tal line is the heat flux J0

∞ given by Eq. (55) with N → ∞. (b) J1
N as

a function of T with different N at TL = TR = T , and the horizontal
line is the heat flux J1

∞ in the high-temperature limit given by Eq. (56)
with N → ∞.

where

J1
N = h̄γ l

2

∫ ∞

−∞

ñLT (ω)γR(ω) − ñRT (ω)γL(ω)

γ (ω)
ωρN (ω)dω,

(54)

J0
N = h̄γ l

2

∫ ∞

−∞

�γ (ω)

γ (ω)

κ2 + (ω − ωM )2

4ωM
ρN (ω)dω, (55)

with �γ (ω) = γL(ω) − γR(ω) and ñL/RT (ω) =
[exp(h̄ω/kBTL/R) − 1]−1. Here, J1

N arises from the thermal
phonons of the mechanical oscillator, while J0

N comes from
the shot-noise fluctuation and is therefore irrelevant to the
temperature. When κ 
 ωM , which is used for resolved
sideband cooling, J0

N is much smaller than J1
N in general.

However, when TL/R is very low [h̄ω/(2kBTL/R) → ∞],
ñL/RT (ω) is very small and, in this case, J0

N cannot be ignored.
Figure 8(a), plotting the relation of JN to the environmental
temperature for the case TL = TR = T , shows that when the
temperature is much smaller than the Debye temperature, J0

N
is dominant; however, when the environmental temperature
increases, J1

N increases quickly and takes over J0
N . Figure 8(b)

plots the relation of J1
N to the environmental temperature for

the case TL = TR = T , and shows that when the temperature
is much higher than the Debye temperature, J1

N approaches
the high-temperature limit, which corresponds to the classical
heat flux.

The classical heat flux can be obtained in the following
way. We note that ρN has a narrow major peak around ω = ωM

and around ωM j(ω) varies slowly (cf. Fig. 3). Thus, replacing
j(ω) with j(ωM ) in Eq. (42), we get an approximation,

JN ≈ γ kB�Te(ωM )l

2

∫ ∞

−∞
ρN (ω)dω, (56)

which means that the classical heat flux is proportional to the
effective temperature difference at ωM . Without laser drives,
�Te(ω) = �T , Eq. (56) is accurate and can give the results in
Refs. [22,24] on classical thermal conduction in a harmonic
chain.
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FIG. 9. Heat flux as a function of ωm for different N at laser drive
℘L = 1 μW, ℘R = 2 μW with TL = 2 K and TR = 1 K.

E. Switching of heat flux

The oscillation frequency of the mechanical oscillator is
required to match the lattice wave, i.e., �L � ωM � �H , or,
equivalently, according to Eq. (25), ω2

M (1 − 4κ
2) � ω2

m �
ω2

M . Thus the heat flux can be effectively generated for
ωM

√
1 − 4κ

2 < ωm < ωM . This analysis is confirmed by
Fig. 9 where JN versus ωm is plotted with the ωM and ωc in Ta-
ble I. More interesting, Fig. 9 shows that the heat flux could be
switched on or off by controlling the confinement frequency;
in particular, the heat flux at ωm ∼ ωM has a sharp transition
from on-state of the heat flux to off-state. This property could
be used for the thermal switch. This switching effect arises
from the fact demonstrated in Fig. 2 that for a long chain,
the heat flux cannot be propagated when the frequency cannot
match the lattice vibration modes.

IV. MEASURING HEAT FLUX BY THE DIFFERENCE
BETWEEN THE CROSS CORRELATIONS OF THE

DISPLACEMENTS OF THE LEFT AND RIGHT
MECHANICAL OSCILLATORS

In general, it is difficult to directly measure the heat flux
in a chain. In this section, noting that the heat flux flowing
from one end to other end can generate a correlation of the
motion of the two mechanical oscillators, we propose to use
this correlation to get information regarding the heat flux.
We introduce the difference between the cross correlations
between δxL and δxR,

Cx(τ ) = 〈δxR(t + τ )δxL(t ) + δxL(t )δxR(t + τ )〉
− 〈δxL(t + τ )δxR(t ) + δxR(t )δxL(t + τ )〉, (57)

and we have

dCx(τ )

dτ
= 1

M
F (−τ ), (58)

with the difference between the cross correlations between the
position and momentum of the two mechanical oscillators,

F (τ ) = 〈δpR(t )δxL(t + τ ) + δxL(t + τ )δpR(t )〉
− 〈δpL(t )δxR(t + τ ) + δxR(t + τ )δpL(t )〉. (59)

Introducing the Fourier transform of Cx(τ ) and
F (τ ), i.e., Cx(τ ) = ∫ ∞

−∞ C̃x(ω)e−iωτ dω/(2π ), F (τ ) =∫ ∞
−∞ F̃ (ω)e−iωτ dω/(2π ), from Eq. (58) we have

F̃ (ω) = iωMC̃x(−ω). (60)

When we transform the calculation of the right side of Eq. (59)
into the frequency domain, we obtain

F̃ (ω) = 4π

αω2
M

J̃N (ω)CN (ω). (61)

Comparing Eq. (61) and Eq. (60), we have

J̃N (ω) = i
αMω2

M

4πCN (ω)
ωC̃x(−ω). (62)

Using Eqs. (62) and (42), we have

j(ω) = i
αMω2

M

4πCN (ω)ρN (ω)
ωC̃x(−ω). (63)

Equation (63) shows that once C̃x(−ω) is obtained, the
features of j(ω) in high-temperature and low-temperature
regimes, demonstrated in Figs. 3 and 4, can be investigated
experimentally.

Further comparing Eq. (42) with Eq. (62), we obtain

JN = αlMω2
M

2

∫ ∞

−∞
Cx(τ )KN (τ )dτ (64)

with

KN (τ ) = 1

π

∫ ∞

0
ω sin(ωτ )C−1

N (ω)dω. (65)

Equation (64) shows that steady-state heat flux could be ob-
tained from the measurement of the correlation of motion of
the two mechanical oscillators.

Our scheme for measuring the thermal flux is similar to
that used in Refs. [21,55], where the mean heat flux between
two membranes or two particles has been measured and our
theoretical analysis could be readily extended to those cases.
References [21,55] have shown that this measurement method
has a capability to measure the weak thermal flux. For ex-
ample, a weak thermal flux as weak as 10−17l J/s [67] has
been measured [21], and even weaker thermal flux could be
measured [68] using this method.

V. CONCLUSION

We have investigated thermal conduction in a chain of
identical particles connected with two identical optomechan-
ical systems in contact with an independent thermal bath at
different temperatures. We find that the thermal conductivity
of our system diverges as the number of particles increases,
and thus Fourier’s law does not hold. As the environment
temperature decreases, this system exhibits a transition from
classical thermal conduction to quantum thermal conduction,
and the heat flux tends to a constant when the environment
temperature is much lower than the Debye temperature. More-
over, by controlling the on-site confinement frequency, the
heat flux can be switched on or off, offering an approach to the
heat switch or thermal transistor [41,42]. Finally, we propose
a scheme to measure the heat flux by measuring the difference
between the cross correlations of the displacements of the left
and right mechanical oscillators.

Using current techniques of manipulating particles
[69–79], our harmonic model can be experimentally realized.
The particles in the chain can be ions, or charged or neutral
nanospheres. For the charged particles, there is the Coulomb
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interaction between them [48–54]. For neutral particles, the
optical binding potential between optically levitated parti-
cles [76–80] can be introduced. N identical on-site harmonic
potentials can be provided by N identical optical tweezers
[80,81]. When the on-site potential is sufficiently strong, the
trapped particles oscillate in their own equilibrium positions,
such that the interaction between neighboring particles can be
approximated by the harmonic potential. Furthermore, when
these constraints are relaxed, our current work can be ex-
tended to more complicated cases. For example, when the
on-site harmonic potential in the current work is replaced with
the cosine potential, which could be realized by two coun-
terpropagating optical fields, the Frenkel-Kontorova model
[82] could be realized; in particular, thermal pumping and
resonance in driven Frenkel-Kontorova lattices [83] could be
studied with cavity-optomechanical systems. Moreover, by
setting the random mass of the particles or random on-site
potential frequency, thermal conduction in disordered chains
[84–86] with cavity-optomechanical systems could be inves-
tigated. Finally, by introducing the anharmonic interaction
between the particles, our system could be extended to study
thermal conduction in anharmonic chains [26,27,30,35,36].
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APPENDIX A: CALCULATIONS OF THE EXPECTATION
VALUES OF OPERATORS IN STEADY STATE

In order to obtain the expectation value of the cavity-
optomechanical system in the steady state from Eq. (12), we
need to solve 〈Q1〉 and 〈QN 〉 first. Solving Eq. (14), we get

〈Q1〉 = α̃
AN 〈QL〉 + 〈QR〉

A2
N − 1

SN ,

〈QN 〉 = α̃
〈QL〉 + AN 〈QR〉

A2
N − 1

SN ,

〈Qn〉 = SN−n+1〈Q1〉 + Sn〈QN 〉
SN

, (A1)

with

Sn = sn−1
+ − sn−1

−
s+ − s−

, s± = 1 + ζ 2

2
± ζ

2

√
ζ 2 + 4, (A2)

and

AN = SN+1 + (ςc − 1)SN . (A3)

Substituting Eq. (A1) into Eq. (12), we obtain

〈QL〉 =
√

2g0

ωM
(MN NsL − LN NsR), (A4)

〈QR〉 =
√

2g0

ωM
(LN NsL − MN NsR), (A5)

where

MN = (1 + ςM )ON − αAN

(1 + ςM )2ON − 2α(1 + ςM )AN + α2SN
,

LN = α

(1 + ςM )2ON − 2α(1 + ςM )AN + α2SN
,

ON = AN+1 + (ςc − 1)AN . (A6)

Using Eqs. (12), (A4), and (A5), we obtain the steady-state
intercavity photon number NsL/R.

APPENDIX B: FORMULA FOR THE QUANTUM LOCAL
HEAT FLUX

We extend the classical definition of heat flux in Ref. [22]
to the quantum case. The heat flux j(x, t ) at time t in the
position x is defined by the continuity equation,

dh(x, t )

dt
+ ∂ j(x, t )

∂x
= 0, (B1)

where h(x, t ) is the energy density. For a one-dimensional
(1D) particle chain, we can write the energy density as the
sum of the isolated contributions located in the instantaneous
position of each particle [22],

h(x, t ) =
∑

n

hn(t )δ(x − xn), (B2)

where δ(x) is the Dirac distribution function, and

hn = p2
n

2m
+ U (xn) + 1

2
[V (xn+1 − xn) + V (xn − xn−1)] (B3)

is the energy of the nth particle. Here, U (xn) is the on-site
potential and the last term amounts to half of the potential
energy of the interactions between the neighboring particles
[22]. Similar to Eq. (B2), we can write the heat flux as the
sum of the local heat flux,

j(x, t ) =
∑

n

J (x, t )δ(x − xn). (B4)

Inserting Eq. (B2) and (B4) into Eq. (B1), and using
∂J (x,t )

∂x |x=xn = [J (xn, t ) − J (xn−1, t )]/l , we have

dhn

dt
+ Jn − Jn−1

l
= 0, (B5)

where Jn denotes J (xn, t ). Equation (B5) is the same as that in
classical thermal conductivity theory [22]. In classical theory,
dhn/dt can be directly calculated from Eq. (B3). However,
now we have to employ the Heisenberg equation of motion
for hn, dhn/dt = [hn, Hchain]/ih̄, to obtain

dhn

dt
= − 1

4m
[(pn+1 + pn)F (xn+1 − xn)

− (pn + pn−1)F (xn − xn−1) + H.c.], (B6)
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where F (x) = −dV (x)/dx and H.c. stands for the Hermitian
conjugate. Comparing Eqs. (B5) and (B6), we obtain the local
heat flux given by

Jn ≡ l

4m
(pn+1 + pn)F (xn+1 − xn) + H.c. (B7)

When ignoring the noncommutative relation between pn and
xn, Eq. (B7) is reduced to the classical local heat flux in
Ref. [22].

For the 1D harmonic chain [F (x) = −mω2
c x], from

Eq. (B7) we have

Jn = ω2
c l

4
(pn+1 + pn)(xn − xn+1) + H.c. (B8)

Using the dimensionless positions Qn and momentums Pn, we
get

Jn = h̄ω2
c l

4
(Pn+1 + Pn)(Qn − Qn+1) + H.c. (B9)

Using Pn = 〈Pn〉 + δPn, Qn = 〈Qn〉 + δQn, 〈Pn〉 = 0, we fur-
ther have

Jn(t ) = h̄ω2
c l

4
(δPn+1 + δPn)(δQn − δQn+1) + H.c., (B10)

which is the formula for the local heat flux used in the main
text. In deducing Eq. (B10), we have discarded the term
J̃n(t ) = h̄ω2

c l (δPn+1 + δPn)(〈Qn〉 − 〈Qn+1〉)/4 + H.c., which
does not affect the steady-state local heat flux since
〈J̃n(t )〉 = 0.
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