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Gain-saturation-induced self-sustained oscillations in non-Hermitian optomechanics
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We explore the classical dynamics of a non-Hermitian compound optomechanical system. By resorting to
the method used in laser theory, we derived the classical dynamical equations of the system which incorporate
the gain saturation effect of the gain medium. By simulating the classical evolutions of the system, we find
that as long as the initial state of the cavities is not in the vacuum state the gain medium will amplify the light
energy stored initially in the system and drive the mechanical oscillator into self-sustained oscillation although
there is no extra optical drive for the system. Self-sustained oscillation can be formed in both the nonlinear
PT symmetry and PT symmetry-broken phase. We also find that the oscillation amplitudes of the mechanical
oscillator are more sensitive to the gain saturation of the gain medium than the gain coefficient. Multistability of
the self-sustained oscillation also appears in our model. Our paper provides a deeper insight into the influence of
non-Hermiticity on the dynamics of optomechanical systems and a tool for device applications.
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I. INTRODUCTION

Non-Hermitian systems, the dynamics of which are
described by non-Hermitian Hamiltonians, have attracted in-
tense interest on both theoretical and experimental fronts
in recent years. Among the various non-Hermitian systems,
a class of non-Hermitian Hamiltonians that has triggered a
surge of interest is parity-time (PT ) symmetric systems the
Hamiltonians of which commute with a PT operator [1].
A PT symmetric Hamiltonian can exhibit two distinct
phases: a PT symmetry phase, where the eigenvalues of
the Hamiltonian are real despite its non-Hermiticity, and a
PT symmetry-broken phase where the Hamiltonian supports
complex conjugate pairs. At the transition, exceptional points,
where both the eigenvalues and eigenvectors of the Hamil-
tonian coalescence, emerge [2,3]. Non-Hermitian quantum
theory has been applied to a variety of subfields (for re-
view, see Ref. [4]), including topological systems [5–17],
optical systems [18–27], acoustics [28–31], electrical circuits
[32–36], plasmonics [37], and metamaterials [38]. Non-
Hermitian systems have many unique features that are either
impossible or difficult to be implemented in their Hermi-
tian counterparts, e.g., asymmetric mode conversion [39,40],
loss-induced lasing [41,42], enhanced sensitivity of sensors
near exceptional points [43,44] and non-Hermitian skin effect
[5,45,46].

In optical realizations, the commonly used non-Hermitian
structure consists of two coupled optical components, such
as cavities or waveguides: one having loss and the other
having gain which balances the loss of the other [20,22]. In
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these exotic structures with coupled gain and loss compo-
nents, the interplay between gain and loss and the coupling
strength between the two components can lead to entirely
new features and device functionalities, such as power oscil-
lations [18,20], single-mode PT lasers [47,48], unidirectional
invisibility [49–51], and laser absorbers [52–54] to name
a few. Recently, the concepts of PT symmetry have been
extended to compound optomechanics (COM) [55–57], ob-
serving thresholdless phonon lasers [56], low-power chaos
[57], multistability [58], etc. However, the above-mentioned
researches on PT symmetric optical systems and COM have
been investigated under the assumption that the gain and loss
coefficients do not depend on the light intensity propagating
in the systems. This assumption can lead to unphysical results,
especially in the PT symmetry-broken phase, that the light
intensity in the system will increase to infinity and the systems
have no steady state [59–61]. Indeed, this assumption is only
valid when the light intensity is so small that gain saturation
effect, i.e., that the gain coefficient starts to decrease as the
light intensity increases, does not come into play. When the
light intensity increases to a large value, the optical gain is
a function of light intensity and the gain saturation of the
gain medium cannot be neglected. Based on this, a lot of
researches have explored the influence of gain saturation on
the dynamics of the PT symmetric optical systems [61–65],
PT symmetric phonon lasers [66–68], and nonreciprocity
[69–71]. It has been demonstrated that gain saturation can not
only stabilize the PT symmetric optical systems, but also lead
to PT symmetry restoration [61]. It has also been shown that
gain saturation is responsible for light nonreciprocity in PT
symmetric photonic systems [69].

In this paper, we investigate the influence of gain saturation
on the dynamics of non-Hermitian COM, which has not been
explored extensively. The system we considered contains an
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active cavity and a passive cavity to which the mechani-
cal oscillator couples. In order to describe the dynamics of
the system, we resort to the laser theory [72], i.e., the gain
medium in the active cavity is modeled as inverted two-level
atoms. In addition to the gain medium, we also put an en-
semble of two-level atoms, which are in their ground states
initially, in the passive cavity to induce photon loss. As the
cavities couple to their surroundings inevitably in practice,
we also considered a constant intrinsic photon decay rate
for both the two cavities, which is ignored in the previous
investigations of non-Hermitian COM. By adiabatically elim-
inating the gain and loss medium, we derived the classical
dynamical equations of the non-Hermitian COM, which in-
corporate the gain and loss saturation effects of the gain and
loss medium. By simulating the classical equations, we find
that the gain saturation can play the role of optical drive and
induce self-sustained oscillations (SSOs) of the mechanical
oscillator although the system has no extra optical drive. The
phenomenon that SSOs can be formed without external drive
is due to the nonlinearity of the system. This phenomenon can
also be found in the van der Pol oscillator the damping rate of
which is nonlinear [73]. We also investigate the dependence
of the oscillation amplitude of the mechanical oscillator on
the gain coefficient and gain saturation of the gain medium.
We also find that the intrinsic photon decay rates of the two
cavities have a great influence on the dynamics of the system.
The mechanical oscillator will settle into chaoslike motion if
the intrinsic photon decay rates are neglected, whereas the me-
chanical oscillator settles into SSO even though the intrinsic
photon decay rates are small values.

The paper is organized as follows. In Sec. II, we give
the model that we considered in this paper. The classical
dynamics of the system, including the gain-saturation-induced
SSO, is investigated in Sec. III. In this section, we also study
the influence of the gain coefficient and gain saturation on
the oscillation amplitude of the mechanical oscillator. The
influence of the intrinsic decay rates of the two cavities on
the dynamics of the system is also investigated in this section.
Finally, we summarize our results in Sec. IV.

II. THEORETICAL MODEL OF THE NON-HERMITIAN
COM WITH GAIN AND LOSS SATURATION

The system we consider in this paper consists of two
cavities and one mechanical oscillator (see Fig. 1). The me-
chanical oscillator couples to cavity 2, which is coupled to an
ensemble of two-level atoms (loss medium). Cavity 1 couples
to a gain medium which is modeled as an ensemble of inverted
two-level atoms. It should be noted that in reality the gain
medium is composed of multiple-level atoms, but it can be
mapped to an effective two-level model provided that there
is only one lasing transition [74]. The two cavities couple to
each other through evanescent coupling which can be tuned
by changing the distance between the two cavities. In order to
investigate the classical dynamics of the non-Hermitian COM,
we assume that the decay rates of the two-level atoms are
much larger than the characteristic timescales of the optome-
chanical system. By adiabatically eliminating the two-level
atoms, the classical dynamical equations of the non-Hermitian

FIG. 1. Schematic diagram of the non-Hermitian COM. It in-
cludes a passive cavity (cavity 2) coupled to an active cavity
(cavity 1) with intercavity coupling strength J . The mechanical os-
cillator couples to cavity 2 by radiation pressure. The gain medium
in cavity 1 is modeled via inverted two-level atoms. However, the
atoms in cavity 2, which provides the cavity with loss saturation, are
normal two-level atoms in their ground states.

COM can be described as

α̇1 = −κα1 + g0

1 + |α1|2
n0

α1 − iJα2,

α̇2 = −κα2 − f0

1 + |α2|2
n0

α2 − iJα1 + igmα2x,

ẍ = −ω2
mx + gmωm|α2|2 − γmẋ. (1)

The derivation of Eq. (1) is given in the Appendix. α j

( j = 1, 2) is the field amplitude of the jth cavity and x is the
displacement of the mechanical oscillator with frequency ωm.
Here, we assume that the two cavities have the same intrinsic
decay rate κ . γm is the decay rate of the mechanical oscillator.
J and gm are the evanescent coupling strength between the
two cavities and the optomechanical coupling strength per
single photon, respectively. g0 and f0 are the gain and loss
coefficients of the gain and loss medium, respectively. n0 is
the gain and loss saturation of the gain and loss medium. The
formulas of g0, f0, and n0 are given in the Appendix. In order
to make the role each parameter plays clear, it is convenient to
work with dimensionless quantities. We rescale the variables
t, x, α1, and α2 as t̃ = ωmt , x̃ = gmx/ωm, and α̃ j = α j/

√
n0

( j = 1, 2), so the coupled equations Eq. (1) are changed into

dα̃1

dt̃
= −κ̃ α̃1 + g̃0

1 + |α̃1|2 α̃1 − iJ̃α̃2,

dα̃2

dt̃
= −κ̃ α̃2 − f̃0

1 + |α̃2|2 α̃2 − iJ̃α̃1 + iα̃2x̃,

d2x̃

dt̃2
= −x̃ + Pd |α̃2|2 − γ̃m

dx̃

dt̃
, (2)

where the dimensionless parameters are

κ̃ = κ/ωm, g̃0 = g0/ωm, f̃0 = f0/ωm,

J̃ = J/ωm, γ̃m = γm/ωm, Pd = g2
mn0

ω2
m

.

Compared with Eq. (2) in Ref. [75], we find that the saturation
coefficient n0 played the role of optical drive to drive the
mechanical oscillator into SSO although there is no extra laser
to drive the cavities.

In order to get the classical dynamics of the system,
we simulate Eq. (2) numerically as the equations are too
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FIG. 2. Phase diagram of the PT symmetric dimer considered in
Ref. [61] in the parameter space of g0 and f0. The parameter space
is divided into three regions by three curves, i.e., g0 = (2κ + f0)
(dashed blue line), g0 = f0(J + κ )/(J − κ ) (solid blue line), and
g0 = J2/(κ + f0 ) + κ (blue dot-dashed line). The three curves in-
tersect at point (J − κ, J + κ ) (red dot). The time evolutions of the
non-Hermitian COM for the parameters of the five black marked
points, i.e., points A–E, will be shown below. The loss coefficient
is f0 = 0.5J (point D and E) and f0 = 1.5J (point A–C). The gain
coefficient is g0 = 0.6J (point A), g0 = 1.2J (point B), g0 = 1.8J
(point C), g0 = 0.4J (point D), and g0 = 0.8J (point E).

complicated to solve analytically. To make the following re-
sults within experimental realizations, we simulate Eq. (2)
by the parameters of the system which are accessible exper-
imentally. These parameters are [22,56–58,76] ωc1 = ωc2 =
2π×193 THz, ωm = 2π×23.4 MHz, κ = 3.14 MHz, γm =
0.24 MHz, and gm = 2π×3.4 KHz.

By setting gm = 0, our model reduces to the model con-
sidered in Ref. [61]. In Ref. [61], the authors find that in
the presence of nonlinear saturation effect the PT symmetric
dimer has three different phases in the parameter space of
g0 and f0 (see Fig. 2). In region 1, the two cavities exhibit
limit cycles with the same field amplitude. The authors call
this region the nonlinear PT symmetry phase as the nonlinear
system has two real eigenvalues. In region 2, which is the
nonlinear PT symmetry-broken phase, due to the saturation
effects of the gain and loss medium the two cavities can have
stationary solutions, but with different field amplitudes. The
field amplitude in the active cavity is always larger than that in
the passive cavity. Region 3 is a decay phase in which the field
amplitudes in the two cavities always decay to zero no matter
what the initial state of the system is. The reason is that in this
region the gain rate is so small that it cannot compensate the
total loss of the system. In Fig. 2, we have picked five points
in the three regions, i.e., points A–E. In the following, we will
simulate the time evolutions of the non-Hermitian COM for
the parameters of the five points, respectively.

III. GAIN-SATURATION-INDUCED SSO

From Eq. (2), it is easy to see that α̃1(t )= α̃2(t ) = x̃(t ) = 0
is always a trivial steady-state solution of the system. How-
ever, this solution is unstable and the system will evolve into
other solutions if the initial value of α̃1 or α̃2 deviates from
zero slightly. So the initial values of α̃1 and α̃2 cannot all
be zero to get nontrivial dynamics of the system. The initial

nonzero value of α̃1 or α̃2 means that at least one of the
two cavities is not in vacuum initially. For simplification, we
assume that initially the two cavities are in coherent states
with random field amplitudes, i.e., α̃1(0) = α1(0)/

√
n0 and

α̃2(0) = α2(0)/
√

n0 where α1(0) and α2(0) are the initial
field amplitudes of cavity 1 and 2, respectively. The values
of α1(0) and α2(0) are random complex numbers, satisfying
|α j (0)| ∈ (0, 1) ( j = 1, 2). For the mechanical oscillator, we
assume x(0) = ẋ(0) = 0 throughout the paper.

Figure 3 shows the periodic solutions achieved by the
system at long enough time for the parameters of point B,
C, and E in Fig. 2, with initial values α1(0) = α2(0) = 0.5.
Time evolutions of the system for the parameters of point
A and D are not shown, as in the decay phase the two
cavities always decay into vacuum and cannot influence the
mechanical oscillator. Figures 3(a)–3(c) clearly show that the
position of the mechanical oscillator exhibits sinusoidal oscil-
lation when time is long enough. Figures 3(a) and 3(d) and
Figs. 3(b) and 3(e) show the time evolutions of the system
for the parameters of point C and E, respectively. From these
figures, we can see that the classical dynamics of the system
are similar for the parameters of point C and E, except that
the mechanical oscillator achieves self-sustained oscillation
faster at point C than at point E. This is because at point C
the system has larger gain coefficient and the field amplitude
increases quickly. The similarity of the classical dynamics
for point C and E is due to the fact that both the two points
are in the nonlinear PT symmetry phase and the physical
formalism can be understood as follows. The two cavity
modes form two supermodes â± = (â1 ± e±iθ â2)/

√
2 with

sin(θ ) = κ (g0 + f0)/[J (g0 − f0)]. The nonlinear eigenvalues
of the two supermodes are λ± = ±J

√
1 − sin2(θ ) [61]. When

transforming into the representation of the two supermodes,
the optomechanical coupling â†

2â2x̂ can be written as

â†
2â2x̂ = 1

2 (â†
+â+ + â†

−â−)x̂ − 1
2 (â†

+â− + â+â†
−)x̂. (3)

The frequency difference of the two supermodes is 0.9827ωm

and 0.8822ωm for the parameters of point E and C, respec-
tively. So for both point C and E, the first term is large
detuning and can be neglected. By keeping only the near
resonant term, the interaction between the two supermodes
and the mechanical oscillator has the form â†

+â−b̂ + â+â†
−b̂

and is the same interaction that is used to generate phonon
lasing [56,77]. So the physical mechanism of SSO in the non-
linear PT symmetry phase is similar to that of phonon lasing.
The optical inversion between the two supermodes continu-
ously transmits energy to the mechanical oscillator through
photon scattering. When the energy provided by the optical
inversion per oscillation period is compensated by the energy
loss induced by the mechanical environment, the mechanical
oscillator settles into self-sustained oscillation.

In contrast to the classical dynamics of the system in
the nonlinear PT symmetry phase, in the nonlinear PT
symmetry-broken phase the oscillation amplitude of the me-
chanical oscillator experiences exponential increasing before
the mechanical oscillator reaches self-sustained oscillation
[see Fig. 3(c)]. One interesting phenomenon is that in the
initial short time the evolution of the field intensities in the
two cavities is the same as the situation without mechanical
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FIG. 3. (a)–(c) Time evolution of x̃ and (d)–(f) time evolution of the light energy stored in the active cavity |α̃1|2 (blue solid line) and the
passive cavity |α̃2|2 (red dot-dashed line) for the parameters of point C (a), (d), point E (b), (e), and point B (c), (f) in Fig. 2. Insets in (b), (c),
and (e) show the zoom of the area indicated by the black box. The inset in (f) shows the comparison for the evolutions of |α̃1|2 and |α̃2|2 in the
initial short time with and without the optomechanical coupling. The blue solid line (red dashed line) and black dotted line (green dot-dashed
line) give the dynamics of |α̃1|2 (|α̃2|2) with and without the optomechanical coupling, respectively. Other parameters are J = 0.5ωm and
Pd = 0.1, which means that the gain and loss saturation is about n0 ≈ 4.74×106.

oscillator [see the inset in Fig. 3(f)]. As the oscillation ampli-
tude of the mechanical oscillator increases to a large value,
the light intensities in the two cavities increase quickly.
This means that the harmonic oscillations of the mechanical
oscillator can enhance the amplification effect of the gain
medium. As the two supermodes formed by the two cav-
ities are degenerate in the nonlinear PT symmetry-broken
phase, the phonon-mediated photon scattering interaction
â†

+â−b̂ + â+â†
−b̂ is large detuning. This means that the physi-

cal mechanism for the formation of self-sustained oscillations
is different from that in the nonlinear PT symmetry phase.
Indeed, the reason for the formation of SSO in the nonlinear
PT symmetry-broken phase is the same as that of single cavity
optomechanics [75], i.e., due to the radiation pressure exerted
by the passive cavity on the mechanical oscillator. Compared
with the formation of SSO in single cavity optomechanics,
our model does not need extra cavity pump to drive the me-
chanical oscillator into SSO. This means that SSO is a state
of the non-Hermitian optomechanical system itself and is not
generated by external control. Actually, the gain cavity plays
the role to provide the passive cavity with sufficient light field
to drive the mechanical oscillator into SSO. In the beginning,
the mechanical oscillator is at rest and has no influence on the
dynamics of the two cavities. So the cavity reaches the station-
ary state that the non-Hermitian dimer achieves, quickly. Once
the passive cavity is filled with enough strong light field, the
passive cavity can drive the mechanical oscillator to oscillate.
As the oscillation of the mechanical oscillator can enhance the
amplification effect of the gain medium, the oscillation of the
mechanical oscillator can further enhance the field strength
in the passive cavity which in turn enhances the oscillation
amplitude of the mechanical oscillator. This positive mutual
feedback will continue until the mechanical oscillator reaches
the SSO.

In Fig. 4(a), we plot the oscillation amplitudes A of the me-
chanical oscillator, which are obtained by simulating Eq. (2)
with a set of random initial conditions, as a function of gain
saturation with the gain coefficient g0 = 1.8J (nonlinear PT
symmetry phase) and g0 = 1.2J (nonlinear PT symmetry-
broken phase). From this figure, we can see that for small
gain saturation, e.g., n0 < 2.3×104, the mechanical oscillator
cannot settle into SSO in both the nonlinear PT symmetry and
PT symmetry-broken phase. This is because the gain satura-
tion indicates the ability of the gain medium to amplify the
initial photons in the cavity and the larger the gain saturation
is the larger the initial photons in the cavity can be amplified.
When the gain saturation is small, the amplified optical field
strength in the cavities is not strong enough to drive the me-
chanical oscillator into SSO. In this case, the dynamics of the
two cavities are the same as the situation without mechanical
oscillator. For moderate gain saturation, e.g., 2.3×104 < n0 <

2.3×105, the mechanical oscillator can achieve SSO in the
nonlinear PT symmetry phase and cannot reach SSO in the
nonlinear PT symmetry-broken phase. The reason for this
phenomenon is that in the nonlinear PT symmetry phase the
optical field transfers energy to the mechanical oscillator via
the phonon-laser-like interaction, which is more efficient than
the radiation pressure interaction. So the optical field strength
required to form SSO in the nonlinear PT symmetry phase
is smaller than that in the nonlinear PT symmetry-broken
phase. For large gain saturation, e.g., n0 > 2.3×105, SSO
can be achieved in both the nonlinear PT symmetry and PT
symmetry-broken phase. In both the two phases, the oscilla-
tion amplitude increases as the gain saturation increases.

It is well known that in single cavity optomechanics mul-
tiple stable harmonic solutions of the mechanical oscillator
with different oscillation amplitudes can be found for the
same parameter, i.e., multistability [75]. However, in Fig. 4(a)
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FIG. 4. (a) Oscillation amplitude A of the mechanical oscillator as a function of the gain saturation n0 in the nonlinear PT symmetry phase
(g0 = 1.8J ) and PT symmetry-broken phase (g0 = 1.2J ). The loss coefficient is f0 = 1.5J . (b), (c) Oscillation amplitude A (blue dots) as a
function of the gain coefficient with (b) f0 = 0.5J and (c) f0 = 1.5J . The solid vertical line in (b) represents the boundary between the decay
phase and the nonlinear PT symmetry phase. The left and right region of the solid vertical line are the decay phase and the nonlinear PT
symmetry phase, respectively. The solid vertical line in (c) is the boundary between the decay phase and the nonlinear PT symmetry-broken
phase and the vertical dot-dashed line is the boundary between the nonlinear PT symmetry-broken and PT symmetry phase. The oscillation
amplitudes are obtained by simulating Eq. (2) with a set of random initial conditions. (d), (e) The trajectories of the mechanical oscillator in
phase space for the branch of the smallest oscillation amplitude in (b). The gain coefficient is (d) g0 = 1.38J , (e) g0 = 1.4J , and (f) g0 = 1.5J .
The gain saturation in (b)–(f) is n0 ≈ 4.74×106, i.e., Pd = 0.1. Other parameters are the same as Fig. 3.

multistability does not show. This is because we restrict the
initial values of α̃1 and α̃2 over a very small range of values,
e.g., α̃1(0) = α̃2(0) = 5×10−4 with initial cavity field ampli-
tude α1 = α2 = 1 and n0 = 4×106. If we enlarge the range of
initial values for α̃1 and α̃2, e.g., α̃ j (0) ∈ (0, 10] ( j = 1, 2),
the system can indeed exhibit multistability. However, large
values of α̃ j (0) mean large initial cavity field amplitudes, e.g.,
α1(0) = α2(0) = 104 under the condition α̃1(0) = α̃2(0) = 5
and n0 = 4×106. Such large initial cavity field amplitudes
are difficult to achieve in the PT symmetric dimer. So we
do not consider such initial values of α̃ j (0). The small initial
values of α j (0) ∈ (0, 1) ( j = 1, 2) can be achieved by driv-
ing the two cavities with a very weak laser in a very short
time. As both the driving time and the strength of the driving
are small, the influence of the drive on the dynamics of the
system can be neglected and the drive only alters the initial
values of the cavity field amplitude. Another way to achieve
small initial values of α j (0) is to prepare the cavities on a
coherent state before turning on the interaction between the
cavities and the gain and loss medium. As the two cavities
have intrinsic decay, the field amplitudes will experience ex-
ponential decrease and decay to zero as t → ∞. If we turn
on the interaction between the cavities and the gain and loss
medium at finite time, the small initial values of α j (0) can be
achieved.

The oscillation amplitudes of the mechanical oscillator as
a function of the gain coefficient are shown in Figs. 4(b) and
4(c) with f0 = 0.5J and 1.5J , respectively. When f0 = 0.5J ,
the system only has two phases, i.e., the decay phase and
nonlinear PT symmetry phase. From Fig. 4(b), we can see
that the mechanical oscillator cannot achieve SSO in the de-
cay phase and can settle into SSO once the parameter enters

the nonlinear PT symmetry phase. This is because in the
decay phase both the cavities decay to vacuum as t → ∞.
In the nonlinear PT symmetry phase, the oscillation ampli-
tude increases slowly as the gain coefficient increases and the
system can exhibit multistability when g0 increases to a large
value. For the branch of the smallest oscillation amplitude
in Fig. 4(b), there is an abrupt increase when g0 = 1.4J .
Then, the oscillation amplitude decreases until g0 = 1.5J af-
ter which the oscillation amplitude continues to increase as
g0 increases. Indeed, when g0 ∈ [1.4J, 1.5J ) the mechanical
oscillator settles into period-2 orbit instead of SSO [see the
trajectory of the mechanical oscillator shown in Fig. 4(e) with
g0 = 1.4J]. In both the ranges of g0 < 1.4J and g0 � 1.5J ,
the mechanical oscillator can achieve period-1 orbit, i.e., SSO
[see the trajectories of the mechanical oscillator shown in
Figs. 4(d) and 4(f) with g0 = 1.38J and 1.5J , respectively].
For the other two branches of the oscillation amplitude shown
in Figs. 4(b), the mechanical oscillator always settles into
SSO. When f0 = 1.5J , the system has three phases, i.e., the
decay phase, nonlinear PT symmetry-broken phase, and PT
symmetry phase. From Fig. 4(c), we can see that the system
does not exhibit SSO in the decay phase. This is consistent
with Fig. 4(b). In the nonlinear PT symmetry-broken phase,
the system also does not exhibit SSO near the boundary of the
decay phase and the nonlinear PT symmetry-broken phase.
SSO is formed until the gain coefficient goes into the deep
nonlinear PT symmetry-broken phase. This is because near
the boundary between the decay phase and the nonlinear
PT symmetry-broken phase the amplified optical field in the
passive cavity is not strong enough to drive the mechanical
oscillator into SSO. The amplified optical field in the passive
cavity becomes larger as the gain coefficient increases. As the
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FIG. 5. (a) Dynamics of x̃ with κ = 0. Other parameters are the
same as Fig. 3(a). (b) The zoom of the area indicated by the black
box in (a).

gain coefficient goes deep into the nonlinear PT symmetry-
broken phase, the optical field in the passive cavity will be
amplified to a large value so that it can make the mechanical
oscillator form SSO. In the nonlinear PT symmetry phase,
the mechanical oscillator can always settle into SSO. Similar
to Fig. 4(b), the oscillation amplitude also increases as the
gain coefficient increases. Multistability also does not show
in Fig. 4(c) and the reason is the same as that of Fig. 4(a).
Comparing Figs. 4(b) and 4(c) with Fig. 4(a), we find that
the oscillation amplitude of the mechanical oscillator is more
sensitive to the change of gain saturation than the change of
gain coefficient.

Before concluding this paper, we investigate the influence
of the intrinsic decay of the two cavities on the classical
dynamics of the system. In Fig. 5, we plot the dynamics
of x̃ with κ = 0 for the parameters of point C in Fig. 2.
The dynamics of x̃ with nonzero κ for the same parameters
is shown in Fig. 3(a). From this figure, we can see that x̃
exhibits a chaoslike trajectory by setting κ = 0. However, by
setting κ a small value, the dynamics of x̃ is SSO. This means
that the intrinsic decay rates of the two cavities have a great
influence on the dynamics of the system. In other words, the
formation of SSO is resulted from the combined effect of
the gain medium and the intrinsic decay of the cavities and
SSO cannot be formed without either one of them. The gain
medium provides energy to drive the mechanical oscillator
and the intrinsic decay rate stabilizes the system. So the in-
trinsic decay rate κ , which is usually ignored in the previous
researches of non-Hermitian optomechanical systems, cannot
be ignored when studying the evolution of non-Hermitian
optomechanical systems.

IV. CONCLUSION

We have investigated the influence of gain saturation on
the classical dynamics of non-Hermitian COM. We find that
if the initial cavity field amplitudes, which can be a very small
value, are not zero, the mechanical oscillator can settle into
SSO even if the system has no driving. This is because the gain
medium can amplify the small optical field stored initially in
the two cavities to a large optical field which can drive the
mechanical oscillator into SSO. However, the physical mecha-
nism for the formation of SSO is different in the nonlinear PT
symmetry phase and nonlinear PT symmetry-broken phase.
In the nonlinear PT symmetry phase, the two cavities form
two nondegenerate optical supermodes and the mechanical
oscillator settles into SSO due to the near resonant phonon-
mediated photon scattering interaction, which is also used to
generate phonon lasers, between the two optical supermodes
and the mechanical oscillator. In the nonlinear PT symmetry-
broken phase, the two optical supermodes formed by the two
cavities are degenerate. This means that the phonon-mediated
photon scattering interaction between the two optical super-
modes and the mechanical oscillator is large detuned and
cannot drive the mechanical oscillator into SSO. Indeed, in
this case the reason for the formation of SSO is just due to
the radiation pressure exerted by the passive cavity on the
mechanical oscillator. In both the two phases, the oscillation
amplitude of the mechanical oscillator increases as the gain
coefficient and gain saturation increase. The oscillation ampli-
tude is more sensitive to the increase of gain saturation than
the gain coefficient. Our model can also exhibit multistability
of SSO. We also find that the intrinsic decay rates of the two
cavities, which are usually ignored in the previous investiga-
tions of non-Hermitian optomechanical systems, can have a
great influence on the classical evolution of the system even
though the decay rates are small. Our investigations provide
a deeper insight into the classical dynamics of non-Hermitian
optomechanical systems and a tool for manipulating phonons.
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APPENDIX

In the Appendix, we derive the classical dynamical equa-
tions of the non-Hermitian COM. Our starting point is the total
Hamiltonian of the whole system which includes the two-level
atoms of the gain and loss medium. The total Hamiltonian of
the whole system is given by

Ĥtot =
2∑

j=1

h̄ωc j â
†
j â j + h̄ωmb̂†b̂ + h̄ωa

2

2∑
j=1

N∑
μ=1

σ̂ z
j,μ

+
2∑

j=1

N∑
μ=1

ih̄g j (â
†
j σ̂

−
j,μ − â j σ̂

+
j,μ) − h̄gmâ†

2â2x̂

+h̄J (â†
1â2 + â†

2â1). (A1)
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The terms in the first line of Eq. (A1) represent the free Hamil-
ton of the system. â j and â†

j ( j = 1, 2) are the annihilation

and creation operators of the jth cavity with frequency ωc j . b̂
is the annihilation operator of the mechanical oscillator with
frequency ωm. σ̂ z

j,μ is the z-component Pauli operator for the
μth atom in the jth cavity and N is the total number of atoms
in each cavity. We have assumed that all the atoms in both
cavities have the same level spacing ωa. The first term in the
second line represents the interaction between the atoms and
the cavities. g j is the coupling strength between the atoms and
the cavity in the jth cavity and σ̂+

j,μ and σ̂−
j,μ are the ladder op-

erators of the two-level atoms. The second term in the second
line represents the radiation pressure exerted on the mechan-
ical oscillator by cavity 2 and gm is the optomechanical
coupling strength per single photon. x̂ = (b̂† + b̂)/

√
2 is the

dimensionless displacement of the mechanical oscillator with
respect to its equilibrium position. The last term represents the
directional coupling between the two cavities with tunneling
strength J . For simplicity, we assume that the atoms and the
cavities are resonant, i.e., ωc j = ωa. In the interaction picture

with respect to Ĥ0 = ∑2
j=1 h̄ωc j â

†
j â j + h̄ωa

2

∑2
j=1

∑N
μ=1 σ̂ z

j,μ,
the master equation of the system can be written as

˙̂ρ = − i

h̄
[Ĥint, ρ̂] + L1ρ̂ + L2ρ̂ + Lcρ̂ + Lmρ̂, (A2)

where ρ̂ is the reduced density matrix of the system and Ĥint

is

Ĥint = h̄ωmb̂†b̂ +
2∑

j=1

N∑
μ=1

ih̄g j (â
†
j σ̂

−
j,μ − â j σ̂

+
1,μ)

−h̄gmâ†
2â2x̂ + h̄J (â†

1â2 + â†
2â1).

As we have modeled the gain medium in cavity 1 as inverted
two-level atoms, so the dynamics of the gain medium can
be equivalently described as two-level atoms coupled to an
inverted oscillator heat bath which is introduced by Glauber
[78]. So the dissipator of the atoms in cavity 1 can be written
as [72]

L1ρ̂ =
N∑

μ=1

(
γ1

2
N̄1D[σ̂−

1,μ]ρ̂ + γ1

2
(N̄1 + 1)D[σ̂+

1,μ]ρ̂

)
,

with D[ô]ρ = 2ôρ̂ô† − ô†ôρ̂ − ρ̂ô†ô. γ1 is the damping rate
of the atoms in cavity 1 and N̄1 is the average thermal photon
number of the inverted oscillator heat bath. The third term in
Eq. (A2) represents the dissipation process of the atoms in
cavity 2, which can be written as

L2ρ̂ =
N∑

μ=1

(
γ2

2
(N̄2 + 1)D[σ̂−

2,μ]ρ̂ + γ2

2
N̄2D[σ̂+

2,μ]ρ̂

)
,

where γ2 is the damping rate of the atoms in cavity 2 and N̄2

is the average thermal photon number of the reservoir that the
atoms couple to. The fourth and fifth terms in Eq. (A2) repre-
sent the intrinsic dissipation of the cavities and the mechanical
oscillator, respectively, which can be written as

Lcρ̂ = κD[â1]ρ̂ + κD[â2]ρ̂,

Lmρ̂ = γm

2
N̄mD[b̂†]ρ̂ + γm

2
(N̄m + 1)D[b̂]ρ̂.

Here, we have assumed that the intrinsic decay rates of the
two cavities are the same, i.e., κ , and both the reservoirs of
the two cavities are zero temperature. γm is the decay rate of
the mechanical oscillator and N̄m is the mean phonon number
of the mechanical oscillator in equilibrium.

In the following, we will derive an effective equation of
motion for the optomechanical system by adiabatically elim-
inating the two-level atoms. The adiabatic elimination will
strictly be valid under the condition that decay rates of the
two-level atoms in the two cavities are much larger than other
characteristic timescales of the optomechanical system, i.e.,
γ1, γ2 � ωm, κ, γm, gm. From now on, we assume that the
condition of adiabatic elimination is fulfilled in our system.
We use the projection operator techniques in phase space,
which is the standard treatment of semiclassical laser theory
[72,79], to eliminate the two-level atoms in the two cavities. In
principle, many phase-space representations (e.g., P presenta-
tion, Wigner representation, positive P presentation, etc.) can
be used, but in the following we will use Glauber-Sudarshan
P presentation [80,81], which is the representation used in
laser theory, to achieve our aim. In this formalism, the reduced
density matrix ρ̂ is represented with a diagonal representation
in terms of the coherent states of the photon and phonon, i.e.,

ρ̂ =
∫

d2α1d2α2d2β|α1, α2, β〉〈α1, α2, β|ρ̂(α1, α2, β ),

where ρ̂, which is equivalent to the density operator ρ̂, is a
density operator for the atoms and a quasiprobability distri-
bution for the cavities and the mechanical oscillator over the
complex phase-space variables (α1, α2, β, α∗

1 , α
∗
2 , β

∗). |α j〉
( j = 1, 2) and |β〉 are the coherent states of the jth cavity and
the mechanical oscillator, respectively. The quasiprobability
distribution for the cavities and mechanical oscillator can be
obtained by tracing over the atom space, i.e.,

P(α1, α2, β ) = TrA[ρ̂],

where TrA stands for tracing over the degree of atoms. In P
representation, using the operator correspondences

â j ρ̂ → α j ρ̂, â†
j ρ̂ →

(
α∗

j − ∂

∂α j

)
ρ̂,

ρ̂â†
j → α∗

j ρ̂, ρ̂â j →
(

α j − ∂

∂α∗
j

)
ρ̂,

b̂ρ̂ → βρ̂, b̂†ρ̂ →
(

β∗ − ∂

∂β

)
ρ̂,

ρ̂b̂† → β∗ρ̂, ρ̂b̂ →
(

β − ∂

∂β∗

)
ρ̂,

with j = 1, 2, the master equation Eq. (A2) can lead to an
equivalent equation in phase space for ρ̂, i.e.,

∂

∂t
ρ̂ = L1ρ̂ + L2ρ̂ + L3ρ̂. (A3)
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The formulas of L1, L2, and L3 are

L1ρ̂ = L1ρ̂ + L2ρ̂ +
2∑

j=1

N∑
μ=1

g j[α
∗
j σ̂

−
j,μ − α j σ̂

+
j,μ, ρ̂],

L2ρ̂ = −
2∑

j=1

N∑
μ=1

g j

[
∂

∂α j
(σ̂−

j,μ − 〈σ̂−
j,μ〉)ρ̂ + ∂

∂α∗
j

ρ̂(σ̂+
j,μ − 〈σ̂+

j,μ〉)

]
,

L3ρ̂ =
2∑

j=1

[
∂

∂α j

(
κα j − g j

N∑
μ=1

〈σ̂−
j,μ〉

)
+ ∂

∂α∗
j

(
κα∗

j − g j

N∑
μ=1

〈σ̂+
j,μ〉

)]
ρ̂ + iJ

2∑
j=1

(
∂

∂α j
α3− j − ∂

∂α∗
j

α∗
3− j

)
ρ̂

+iωm

(
∂

∂β
β − ∂

∂β∗ β∗
)

ρ̂ + γm

2

(
∂

∂β
β + ∂

∂β∗ β∗
)

ρ̂ + γmN̄m
∂2

∂β∂β∗ ρ̂

+i
gm√

2

[(
∂

∂β∗ − ∂

∂β

)
α2α

∗
2 +

(
∂

∂α∗
2

α∗
2 − ∂

∂α2
α2

)
(β + β∗) + ∂2

∂α2∂β
α2 − ∂2

∂α∗
2∂β∗ α∗

2

]
ρ̂.

The first term L1ρ̂ is the relevant equation of the atoms and the second term is due to the coupling between the cavities and
the atoms. The last term L3ρ̂ represents the free dynamics of the double-cavity optomechanical system. Under the condition
γ1, γ2 � ωm, κ, γm, gm, the atoms can adiabatically follow the dynamics of the optomechanical system and stay in the stationary
atomic state ρ̂A

s which can be derived by using L1ρ̂
A
s = 0. It should be noted that the average values of the ladder operators in L2

and L3 are calculated by using ρ̂A
s , i.e., 〈σ̂±

j,μ〉 = TrA[σ̂±
j,μρ̂A

s ]. Based on this, we can define a projection operator

P ρ̂ = P(ξ)ρ̂A
s ,

where the function P(ξ) = TrA[ρ̂] is the quasiprobability distribution for the cavities and the mechanical oscillator and ξ is
the column vector formed from the three pairs of complex variables, i.e., α1, α2, β, α∗

1 , α
∗
2 , β

∗. It can be easily shown that the
projection operator satisfies

PL1 = L1P = 0, PL2P = 0, PL3 = L3P .

Based on the above relation and by using the adiabatic elimination technique [82], the Fokker-Plank (FP) equation for P(ξ) can
be written as

∂

∂t
P =

(
−

6∑
j=1

∂

∂ξ j
A j (ξ) + 1

2

∑
i, j

∂2

∂ξi∂ξ j
Di j (ξ)

)
P. (A4)

The first term in the parentheses is the drift term which determines the deterministic dynamics of the COM and the second term
is the diffusion term which is responsible for the noises introduced by the atoms, reservoirs, and optomechanical coupling. The
drift vector A is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
−κ + g0

1+ |α1 |2
n1

)
α1 − iJα2(

−κ + g0

1+ |α1 |2
n1

)
α∗

1 + iJα∗
2

−
(
κ + f0

1+ |α2 |2
n2

)
α2 − iJα1 + i gm√

2
α2(β + β∗)

−
(
κ + f0

1+ |α2 |2
n2

)
α∗

2 + iJα∗
1 − i gm√

2
α∗

2 (β + β∗)

−iωmβ + i gm√
2
|α2|2 − γm

2 β

iωmβ∗ − i gm√
2
|α2|2 − γm

2 β∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As we only consider the classical dynamics of the system in this paper and the diffusion matrix has no relation with the classical
dynamical equations of the system, we do not give the formula of the diffusion matrix here. The gain and loss coefficients are

g0 = 2Ng2
1

γ1(2N̄1 + 1)2
, f0 = 2Ng2

2

γ2(2N̄2 + 1)2
,

and the gain and loss saturations are

n1 = γ 2
1 (2N̄1 + 1)2

8g2
1

, n2 = γ 2
2 (2N̄2 + 1)2

8g2
2

,
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respectively. In order to simplify our model further, we assume n1 = n2 = n0. In this case, we have g0/ f0 = γ1/γ2, which means
that we can turn the ratio between gain and loss coefficients by adjusting the relaxation rates of the gain and loss medium. From
the equations of the gain (loss) coefficients and saturations, we can find that the gain and loss coefficients are proportional to
the number of the atoms in the cavities of which the gain and loss saturations are independent. This means that we can turn
the gain (loss) coefficients and saturations independently by adjusting N and γ j ( j = 1, 2). In this paper, we only consider the
classical dynamics of the non-Hermitian COM and neglect the influence of the noises. The classical dynamical equations of the
non-Hermitian COM can be derived from the drift term of the FP equation Eq. (A4), i.e., 〈ξ̇ j〉P = 〈Aj (ξ)〉P where the expectation
values 〈·〉P are defined by integrals over P(ξ, t ) [83]. So the classical dynamical equations of the non-Hermitian COM can be
described as

α̇1 = −κα1 + g0

1 + |α1|2
n0

α1 − iJα2,

α̇2 = −κα2 − f0

1 + |α2|2
n0

α2 − iJα1 + igmα2x,

ẍ = −ω2
mx + gmωm|α2|2 − γmẋ, (A5)

where we have changed the equation of β into the equation of x = (β + β∗)/
√

2. The above equation Eq. (A5) is Eq. (1) in the
main text.
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