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Topological dipole Floquet solitons
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We theoretically introduce a type of topological dipole soliton propagating in a Floquet topological insulator
based on a kagome array of helical waveguides. Such solitons bifurcate from two edge states belonging to
different topological gaps and have bright envelopes of different symmetries: fundamental for one component,
and dipole for the other. The formation of dipole solitons is enabled by unique spectral features of the kagome
array which allow the simultaneous coexistence of two topological edge states from different gaps at the same
boundary. Notably, these states have equal and nearly vanishing group velocities as well as the same sign of the
effective dispersion coefficients. We derive envelope equations describing the components of dipole solitons and
demonstrate in full continuous simulations that such states indeed can survive over hundreds of helix periods
without any noticeable radiation into the bulk.
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Topological insulators represent a new phase of matter
characterized by the qualitatively different behavior of ex-
citations in the bulk and at the edge of these topologically
nontrivial materials. The phenomenology of topological in-
sulators, originally developed in solid state physics [1,2], was
extended to diverse areas of physics, where it stimulated nu-
merous experimental realizations, e.g., in mechanics [3,4],
acoustics [5,6], in atomic [7,8], optoelectronic [9–11], and
various photonic [12–19] systems. The significant progress
made in linear topological photonics is described in reviews
[20–22], while the investigation of topological effects in non-
linear systems is still in its infancy. In such systems the
evolution of topological edge states may be considerably af-
fected by nonlinearity and a whole set of novel phenomena,
ranging from topologically protected lasing to the forma-
tion of so-called topological edge solitons, becomes possible
[23–25]. Nonlinearity has been shown to impact the mod-
ulational stability of topological edge states [26–28], the
direction of topological currents [29], the appearance of topo-
logically nontrivial phases [30–32], and to lead to bistability
[33]. Furthermore, nonlinearity can give rise to topological
closed currents in the bulk of the photonic insulator [34,35]
and induce a topological current at its edges [36]. Nonlinear
hybridization of topological and bulk states was observed in
[37], and the valley Hall effect for vortices in nonlinear system
was predicted in Ref. [38].

Nonlinearity allows the formation of edge solitons—
unique states that exhibit topological protection and simul-
taneously feature a rich variety of shapes and interactions.

Edge solitons were predicted in photonic Floquet insulators
in continuous [26,34,39,40] and discrete [41–44] models,
and in polariton microcavities [28,45,46]. Their counterparts
in photonic graphene were observed in Ref. [47]. Floquet
Bragg solitons were reported in Ref. [48]. Topological (non-
Floquet) systems also allow the formation of Dirac [49],
Bragg [50], and valley Hall [51] edge solitons. Even though
such states may in principle be encountered in many physi-
cal systems, potentially including Bose-Einstein condensates
in time-modulated potentials [52,53], only fundamental edge
solitons with bell-shaped amplitude profiles have been re-
ported to date. The only exception is Floquet dark-bright
states introduced in Ref. [40], where opposite signs of the
dispersion in two components dictate the dark structure of one
of them—nevertheless still representing a fundamental state.

Unlike regular solitons that are rigorously defined, the
corresponding concept in nonlinear Floquet insulators refers
generically to the observation of localized states in nonlinear
topological insulators. Here, by a Floquet soliton (FS) we
denote a beam localized in the (x, y) plane near the interface
between topologically different materials, which bears the
following two properties: It belongs to a nonlinear family
bifurcating from the respective linear Floquet-Bloch edge
state, and in the weakly nonlinear limit its envelope represents
a conventional soliton solution of the averaged nonlinear
equation with constant coefficients. Due to the broken
transversal [in the (x, y) plane] and longitudinal (along
the z direction) translational symmetries, such states are
intrinsically nonstationary, undergoing small-scale

2469-9926/2021/103(5)/053507(13) 053507-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9230-1035
https://orcid.org/0000-0001-8692-982X
https://orcid.org/0000-0003-3552-0789
https://orcid.org/0000-0002-6491-4210
https://orcid.org/0000-0002-1398-3910
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.053507&domain=pdf&date_stamp=2021-05-11
https://doi.org/10.1103/PhysRevA.103.053507


SERGEY K. IVANOV et al. PHYSICAL REVIEW A 103, 053507 (2021)

FIG. 1. (a) Schematics of a kagome array of helical waveguides. (b) Dependencies b(k) showing three upper bands from the Bloch spectrum
for a finite array [see the array profile in (d)] with straight waveguides (r0 = 0). (c) Quasipropagation constants b(k) defined modulo ω

for a finite kagome array with helical channels at r0 = 0.6, T = 8. Red dots indicate edge states from different gaps with equal velocities
∂bα,β/∂k. (d) Three periods of a finite kagome array (top) and linear Floquet eigenmodes ψα,β from the left edge (middle and bottom) at z = 0,
k = 0.472K corresponding to the red dots in (c). Here and below, p = 12, d = 1.9, σ = 0.4. Here and in all figures below all quantities are
plotted in dimensionless units.

oscillations that, as our numerical simulations reported
below reveal, render them effectively metastable, thus they
decay during evolution albeit remarkably slowly. Thus,
the envelopes of FSs analyzed here for a kagome Floquet
insulator are described by soliton-bearing coupled nonlinear
Schrödinger (NLS) equations with constant coefficients and
they remain localized during distances that dramatically
exceed longitudinal lattice helical periods [26,35].

The dipole FSs introduced here are made up of contri-
butions from different topological gaps with envelopes of
different symmetries. Counterparts of such solitons in non-
topological waveguide arrays were studied in [54–57]. For the
existence of such solitons, the linear edge states they bifurcate
from must have equal group velocities and at the same time
experience equal signs of the dispersions (understood here
in terms of the Floquet-Bloch spectrum). Then the system
sustains FSs where both components are bright. The dipole
envelope of the weaker component in such two-dimensional
(2D) states is held in shape only by the nonlinear coupling
to the stronger fundamental component, as in nontopological
vector dipole solitons in uniform media [58–61]. Dipole FSs
are hybrid objects that are confined to the edge due to their
topological nature, while the nonlinear self-phase modulation
enables their localization along the edge. This is in contrast
to conventional scalar 2D dipole solitons characterized by
an identical localization mechanism in two transverse dimen-
sions [62–65].

The propagation of light along the z axis of a helical
kagome array with focusing cubic nonlinearity is governed by
the nonlinear Schrödinger (NLS) equation for the dimension-
less field amplitude ψ ,

i
∂ψ

∂z
= −1

2
�⊥ψ − R(r, z)ψ − |ψ |2ψ. (1)

Here, r = ix + jy is the radius vector in the transverse
plane, x, y are the normalized transverse coordinates, �⊥ =
∂2/∂x2 + ∂2/∂y2; z is the normalized propagation distance
and the refractive index profile is described by the function
R(r, z) = R(r, z + T ) = R(r + Lj, z). The array is made up
of identical waveguides of width σ placed in the nodes rnm of
the kagome grid R(r, z) = p

∑
nm e−[r−rnm−s(z)]2/σ 2

, where p
is the array depth, and s(z) = r0(sin(ωz), cos(ωz) − 1) de-

scribes the helical trajectory of each waveguide with the
Floquet period T = 2π/ω and radius r0 [Fig. 1(a)]. The y
period of such an array is L = 2d , where d is the separation
between waveguides. To obtain edge states, we truncate the
array in the x plane to form zigzag boundaries [Fig. 1(d)].
Typical parameters of such structures are d ∼ 1.9 (19 μm
spacing), r0 ∼ 0.0–1.0 (helix radius up to 10 μm), p ∼
12 (refractive index δn ∼ 9 × 10−4), σ ∼ 0.4 (4-μm-wide
waveguides), T ∼ 0–10 (helix periods up to 12 mm). We as-
sume excitation at λ = 800 nm. Arrays with such parameters
can be readily created by femtosecond laser inscription [17].
Notice that the topological protection of linear and nonlinear
scalar modes in Floquet insulators with helical channels and
similar array parameters have been shown in Refs. [26,40],
therefore we expect the same degree of protection also for the
dipole vector states analyzed below.

Linear eigenmodes of the helical array are Floquet-
Bloch waves ψ (r, z) = φνk (r, z)eibνk z, where φνk (r, z) =
uνk (r, z)eiky and the function uνk (r, z) = uνk (r, z + T ) =
uνk (r + Lj, z) is periodic along both z and y axes. Here, k
denotes the Bloch momentum in the first Brillouin zone k ∈
[−K/2,+K/2), where K = 2π/L, ν is the mode index, while
bνk ∈ [−ω/2,+ω/2) is a quasipropagation constant defined
modulo ω and describing the phase bνkT accumulated by the
Floquet-Bloch wave over one z period. A representative spec-
trum of a truncated kagome array with straight waveguides
(in this case, at r0 = 0, b is a standard propagation constant)
is presented in Fig. 1(b) (for brevity, we omit the subscripts
in bνk in the figures). We show three upper bands, the lowest
of which is nearly flat. Two pairs of degenerate edge states
are clearly visible in the spectrum. For any nonzero helix
radius r0 �= 0, the system becomes topologically nontrivial as
time-reversal symmetry is broken [66–68]. As a result, topo-
logical states occur on its edges, including left edge (we assign
indices ν = α, β to the “top” and “bottom” states) as marked
by the magenta and green lines in Fig. 1(c). Representative
profiles of the Floquet-Bloch waves from different gaps are
shown in Fig. 1(d) (at z = 0).

A remarkable property of the kagome topological insulator
is that the derivatives b′

ν = ∂bνk/∂k, defining the group veloc-
ities vν = −b′

ν of two topological states coexisting at a given
edge (see Appendix A for details), may coincide for certain
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FIG. 2. Derivatives b′
ν (a) and b′′

ν (b) for the edge state branches.
Solid (dashed) lines correspond to the states from the left (right)
edges. Red dots indicate states from the left edge with equal group
velocities b′′

α,β = −0.00033 and negative dispersion b′′
α = −0.67331,

b′′
β = −0.16827 from which FSs bifurcate (see below). The color

coding for different branches is the same as in Fig. 1(c).

values of the Bloch momentum k [see, e.g., the red dots in
Fig. 2(a)]. Importantly, the sign of the dispersion coefficients
b′′

ν = ∂2bνk/∂k2 for the momentum corresponding to the red
dots is likewise identical [Fig. 2(b)]. The coexistence of topo-
logical edge states with coinciding group velocities vα = vβ

and equal signs of the effective diffraction in the underlying
linear system is necessary for the formation of multipole FSs
as it allows for persistent nonlinearity-mediated coupling. For
our parameters, the group velocities coincide at k = 0.472K
(see Fig. 2).

To construct multipole FSs we focus on their bifurcation
from the linear Floquet-Bloch states ψαk and ψβk . To this end
we look for the solution in the form ψ ≈ Aα (Y, z)φαkeibαk z +
Aβ (Y, z)φβkeibβk z, where Aα,β are the slowly varying envelopes
and Y = y − vα,βz is the coordinate in the frame moving with
velocity vα,β = −b′

α,β , identical for both components. We
adopt a multiscale expansion that shows that the envelopes
Aα,β are governed by the coupled focusing NLS equations (see
Appendix A and Ref. [69]),

i
∂Aα,β

∂z
= b′′

α,β

2

∂2Aα,β

∂Y 2

− (χα,β |Aα,β |2 + 2χx|Aβ,α|2)Aα,β, (2)

where χν = 〈(|φνk|2, |φνk|2)〉T and χx = 〈(|φαk|2, |φβk|2)〉T
are the effective self- and cross-modulation coeffi-
cients, averaging over one z period is defined as
〈g〉T = T −1

∫ T
0 g(r, z)dz, and calculation of the inner

product ( f , g) = ∫
S f ∗(r, z)g(r, z)dr is performed over the

entire transverse array area S. Floquet-Bloch states φνk

are orthogonal and normalized at the same instant z (see
Appendix A): (φνk, φν ′k ) = δνν ′ . Note that the considerable
difference between the quasipropagation-constant mismatch
δbk = bαk − bβk ≈ 0.15 and frequency of periodic
modulation (ω ≈ 0.78) ensures that coupling between
the modes is entirely nonresonant and therefore exclusively
mediated by nonlinearity. Efficient nonlinear coupling
between waves with different momenta k can only occur
for a special ratio of propagation constants of the involved
topological states, which is not met in our system.

FIG. 3. (a) Domain of dipole soliton existence on the (bnl
α , bnl

β )
plane. Dipole soliton envelopes at bnl

α = 0.0015 (b) and bnl
α = 0.0027

(c) for bnl
β = 0.0022. (d) Maximal real part of perturbation growth

rate vs bnl
α at bnl

β = 0.001 (curve 1), 0.0022 (curve 2), and 0.004
(curve 3). The parameters in the envelope equation at k = 0.472K
are b′

α = b′
β = −0.00033, b′′

α = −0.67331, b′′
β = −0.16827, χα =

0.31048, χβ = 0.36011, χx = 0.31973.

We are interested in bright dipole soliton solutions of
Eq. (2) that exist at b′′

α, b′′
β < 0 [see Fig. 2(b)]. In such states

the bell-shaped α component prevents (by creating an effec-
tive potential well via cross-phase modulation) out-of-phase
poles of the dipole β component from splitting, leading to
the formation of stationary states. They can be found by the
Newton method in the form Aα,β = wα,βeibnl

α,β z, where the
nonlinearity-induced phase shifts bnl

α,β should be sufficiently
small (much smaller than the quasipropagation constants, the
topological-gap width, and longitudinal Brillouin zone ω) to
ensure that the profiles wα,β are broad and satisfy the assump-
tion of the slow variation of the soliton profile. The properties
of dipole solitons for nonlinear and dispersion coefficients
corresponding to the edge states at k = 0.472K are described
in Fig. 3. For a fixed bnl

β , dipole solitons exist for blow
α �

bnl
α � bupp

α . The existence domain expands with bnl
β [Fig. 3(a)].

Close to its lower border blow
α , the dipole β component van-

ishes and only a fundamental α component remains, while
at the upper border bupp

α the soliton splits into two states,
gradually separating as the amplitude of the α component
vanishes. Representative profiles are shown in Figs. 3(b) and
3(c). By substituting the perturbed envelope solitons Aν =
(wν + μνeδz + η∗

νeδ∗z )eibnl
ν z, where μν, ην � wν , into Eq. (2),

one arrives at a linear eigenvalue problem (see Appendix B),
whose solution yields the growth rate δre = Re δ for the most
unstable perturbation depicted in Fig. 3(d) as a function of bnl

α .
The growth rate δre vanishes when bnl

α → blow
α , bupp

α and for
the broad states considered here it remains well below 10−3,
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FIG. 4. Propagation of a dipole topological quasisoliton in Eq. (1) with an envelope corresponding to bnl
α = 0.0015, bnl

β = 0.0022 in the
helical kagome array in the nonlinear regime (a)–(c) and its diffraction in the linear regime (d). The left column shows the initial envelopes of
two components (solid lines) and projections |cα,β | at different distances (dots). The right column shows the corresponding |ψ | distributions.

implying that the characteristic scale 1/δre of the instability
development exceeds hundreds of helix periods T .

To confirm the accuracy of the model (2) and to confirm
that topological dipole solitons are observable experimentally,
we propagated Floquet-Bloch modes with exact dipole soliton
envelopes, obtained from Eq. (2) for various bnl

α,β values, in
the helical kagome array. Such an evolution is governed by
the full 2D model (1), which we solved with a split-step fast
Fourier transform (FFT) method. The input for Eq. (1) was
constructed as ψ = wα (Y )φαk + wβ (Y )φβk . In the right col-
umn of Figs. 4(a)–4(c) we show (with dots) the modulus of the
projections of the field ψ on the linear Floquet-Bloch modes,
cν = ∫ mL+d

mL−d φ∗
νk (r, z)ψ (r, z)dr (m ∈ Z defines the y period

on which projection is calculated), and the input envelopes
wα,β (solid lines). The projections cν explicitly show that the
dipole soliton at all distances shown contains contributions
from two Floquet-Bloch states, whose amplitudes remain
practically unchanged and whose envelopes remain mutually
localized.

Propagation governed by (1) confirms the metastability
of the dipole solitons, which survive over hundreds of helix
periods even when small-scale noise (up to 5% in ampli-
tude) is added into the input field distributions. The rotation
of the waveguides induces fast z oscillations of the soliton

peak amplitude (a signature of its Floquet nature) and causes
very weak radiation, which nevertheless does not destroy the
dipole solitons at the considered distances. The weak radiation
becomes noticeable only at propagation distances exceeding
the ones shown here at least by one order of magnitude.
Metastability [associated with very small, but nonzero, growth
rates δre for perturbations of the envelope in Eq. (2)] results
also in an extremely slow growth of the oscillations of the two
poles (peaks) of the dipole component (small input noise only
slightly affects the phase of these oscillations), which never-
theless do not cause splitting of the dipole state at least up
to z < 103T . Splitting may occur, but at larger distances. The
right column of Figs. 4(a)–4(c) illustrates the corresponding
evolution of the total field ψ . Since the group velocities of the
two components are close to zero, the soliton remains virtually
locked in place for the parameters chosen above, although for
other helix parameters we obtained slowly moving states. If
nonlinearity is switched off, wave packets experience strong
diffraction along the array edge at similar propagation dis-
tances [Fig. 4(d)], an observation that further confirms that
the state from Figs. 4(a)–4(c) is sustained by nonlinearity.

When the combination of two modes ψα and ψβ with
different propagation constants (i.e., a total field of the form
ψ ∼ ψα + ψβ) is substituted into (1), one can formally reduce
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FIG. 5. Propagation of a dipole topological quasisoliton in the equivalent vector Eq. (3) in a nonlinear medium (a)–(c) and its diffraction
in a linear regime (d). The left column shows |ψα|, while the right column shows |ψβ |. Parameters are the same as in Fig. 4.

it to two purely nonlinearly coupled 2D NLS equations by
collecting terms ∼eibαk z, eibβk z and dropping the oscillating
terms ∼ei(bαk−bβk )z (thus, accounting only for self- and cross-
phase modulation interactions and skipping four-wave mixing
terms), without averaging over the helix period T :

i
∂ψα,β

∂z
= −1

2
�⊥ψα,β − R(r, z)ψα,β

− (|ψα,β |2 + 2|ψβ,α|2)ψα,β. (3)

The advantage of such a reduction is that (3) allows one
to follow the evolution of each component. This reduction
is partially justified due to the rapid variation of the phase
difference (bαk − bβk )z between modes, but it has to be tested
numerically because the scale (bαk − bβk )−1 > T is not the
smallest one in the Floquet system. The model (3) can be also
directly derived for two waves with different polarizations or
two different wavelengths. The propagation of the dipole FS in
the vector model (3) with a helical kagome array is illustrated
in Figs. 5(a)–5(c). Indeed, it shows the metastable propagation
of the dipole soliton, qualitatively similar to the dynamics
encountered in the scalar model (Fig. 4). Also, the aforemen-
tioned oscillations of the dipole component at the equivalent
distances closely match the oscillations of the corresponding
projections in Fig. 4 (notice the different direction of the y axis
in panels with projections). As in the scalar model, switching
off nonlinearity causes a strong diffraction (see Appendix C
for the evolution of the peak amplitudes in the linear and non-

linear cases). The remarkable similarity between the dynamics
in the scalar model (1) and in the vector model (3) shows that
the periodic modulation of the array does not introduce any
linear coupling of the involved modes.

In conclusion, we uncovered a type of topological dipole
FS, which is constructed using envelopes featuring the dif-
ferent symmetries imposed on two edge states from different
topological gaps exhibiting equal group velocities. The soli-
tonic nature of the wave packets is consistent with their
bifurcation from the linear Floquet-Bloch eigenstates at small
amplitudes and confirmed by the preservation of their shape
over extremely long propagation distances. Our prediction
has broad implications, as dipole solitons can be observed
for other types of Floquet insulators featuring at least two
topological gaps, such as, e.g., Floquet Lieb insulators. It is
plausible that more complex multicomponent solitons of a
nonfundamental nature may be also found. Finally, we antic-
ipate that the reported results may be relevant for polaritonic
and atomic nonlinear systems, where topological edge soli-
tons can be sustained by different physical mechanisms.
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APPENDIX A: DERIVATION OF MODEL (2) FROM
THE MAIN TEXT

Here, we provide the detailed derivation of the coupled
mode model, Eq. (2) of the main text (see also Ref. [40]).
We start with the model (1) from the main text rewritten as
follows,

i
∂ψ

∂z
= H0(r, z)ψ − |ψ |2ψ, (A1)

where r = ix + jy,

H0 = − 1
2∇2 − R(r, z), (A2)

and the following properties hold,

R(r, z) = R(r, z + T ) = R(r + Lj, z), (A3)

with T = 2π/ω, and other notations from the main text.

1. The linear problem

Consider the linear problem

i
∂ψ̃

∂z
= H0ψ̃ (A4)

(hereafter, tildes stand to distinguish solutions of the linear
problem from their nonlinear counterparts, i.e., ψ̃ is the linear
limit of ψ). A general Floquet-Bloch state (FBS) ψ̃ (r, z) sat-
isfies the Floquet (with respect to z) and Bloch (with respect
to y) theorems and allows the representation

ψ̃νk (r, z) = φνk (r, z)eib̃ν (k)z = uνk (r, z)eiky+ib̃ν (k)z, (A5)

where k ∈ [−K/2, K/2] where K = 2π/L is the Bloch vector
along the y direction, b̃ν (k) ∈ [−ω/2, ω/2], and

uνk (y, z) = uνk (y + L, z) = uνk (y, z + T ) (A6)

(to abbreviate notations we do not show the x dependence of
uνk explicitly). The index ν stands either for a spatial band
or for a topological branch connecting the neighbor gaps at a
given edge.

Now, Eq. (A4) can be rewritten in terms of the functions
φνk (y, z) and uνk (y, z),

i
∂φνk

∂z
− b̃ν (k)φνk = H0φνk (A7)

and

i
∂uνk

∂z
− b̃ν (k)uνk = Hkuνk, (A8)

where

Hk = 1

2

(
1

i

∂

∂y
+ k

)2

− 1

2

∂2

∂x2
+ R(r, z). (A9)

Let the lattice have dimensions defined by x ∈ [−�x, �x]
and y ∈ [−�y, �y]. Let also ψ subject to the cyclic boundary

conditions with respect to y and zero boundary conditions
with respect to x (these conditions were also used in numerical
simulations):

ψ (r, z) = ψ (r + 2�yj, z), ψ (±�xi + yj, z) = 0. (A10)

Respectively, S = [−�x, �x] × [−�y, �y] is the total area of
the lattice. We are interested in the limit where �x, �y � L
(formally �x, �y → ∞).

Define the inner product

( f (·, z), g(·, z)) :=
∫

S
f ∗(r, z)g(r, z)dr, (A11)

and the T average

〈 f 〉T := 1

T

∫ T

0
f (r, z)dz. (A12)

We emphasize that the inner product in (A11) is considered
between two functions at the same instant. Below we use
only such products and therefore drop the explicit argument
z, writing ( f (·, z), g(·, z)) = ( f , g).

The following simple properties hold:
Lemma 1. The spectrum b̃ν (k) is real.
Proof. Using (A7) compute

i

(
φνk,

∂φνk

∂z

)
− b̃ν (k)(φνk, φνk ) = (φνk, H0φνk ).

The complex conjugate of this equation reads

−i

(
∂φνk

∂z
, φνk

)
− b̃∗

ν (k)(φνk, φνk ) = (φνk, H0φνk ),

where we used that H0 is Hermitian in the Hilbert space with
the inner product (A11). Subtracting one of this equation from
another and applying the T averaging we obtain

i

〈
∂

∂z
(φνk, φνk )

〉
T

= [b̃ν (k) − b̃∗
ν (k)]〈(φνk, φνk )〉T . (A13)

By the T periodicity of φνk , the left-hand side is zero, and
hence b̃ν (k) = b̃∗

ν (k).
Lemma 2. Nondegenerate states φν ′k′ (r, z) and φνk (r, z),

with (ν, k) �= (ν ′, k′), considered at the same instant z, are
orthogonal for all z � 0.

Proof. Using (A7) compute

i

(
φν ′k′ ,

∂φνk

∂z

)
− b̃ν (k)(φν ′k′ , φνk ) = (φν ′k′ , H0φνk ) (A14)

and

i

(
φνk,

∂φν ′k′

∂z

)
− b̃ν ′ (k′)(φνk, φν ′k′ ) = (φνk, H0φν ′k′ ). (A15)

The complex conjugation of the last equation reads

−i

(
∂φν ′k′

∂z
, φνk

)
− b̃ν ′ (k′)(φν ′k′ , φνk ) = (φν ′k′ , H0φνk ).

(A16)
Subtracting (A16) from (A14), we obtain

i
d

dz
(φν ′k′ , φνk ) + [b̃ν (k) − b̃ν ′ (k′)](φν ′k′ , φνk ) = 0. (A17)

This is a first-order ordinary differential equation for the
inner product (φν ′k′ , φνk ) as a function of z, and by
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assumption of nondegeneracy b̃ν (k) �= b̃ν ′ (k′). Thus, if

(φν ′k′ , φνk ) = 0 (A18)

at z = 0, then this property holds for all z � 0.
To complete the proof we notice that for a given fixed z,

in particular for z = 0, the Hamiltonian H0 is Hermitian, and
thus (A18) holds.

For the next consideration we notice the property, valid for
the states from the different bands (of branches) ν and ν ′ but
equal Bloch wave numbers k = k′:

(φν ′k (·, z), φνk (·, z)) = (uν ′k (·, z), uνk (·, z)). (A19)

We emphasize that the states u∗
ν ′k (r, z) and uνk (r, z) are con-

sidered here at the same instant z
By Lemma 2, for ν �= ν ′ and the same instant z,

(uν ′k, uνk ) = 0, while for ν = ν ′ this inner product is a
constant (independent on z). Thus, we can impose the nor-
malization

(uν ′k (·, z), uνk (·, z)) = δνν ′ . (A20)

This condition will be used in what follows.

2. The k · p perturbation theory

Now we extend the standard k · p perturbation theory [70]
to the case of z-dependent topological FBSs. Let ψ̃νk (r, z)
be a topological FBS. Consider also a FBS belonging to the
same branch ν but having a Bloch wave vector k1 = k + δk
where δk is infinitesimal. Taylor expansion of the dispersion
relation yields

b̃ν (k + δk) = b̃ν (k) + b̃′
ν (k)δk + 1

2 b̃′′
ν (k)(δk)2 + · · · (A21)

(here a prime stands for the derivative with respect to k). On
the other hand, the equation for uνk1 (r, z) can be rewritten as

i
∂uνk1

∂z
− b̃ν (k1)uνk1 = Hkuνk′ + H (1)uνk1δk + 1

2 uνk1 (δk)2,

(A22)

where

H (1) = 1

i

∂

∂y
+ k. (A23)

Now we compute b̃ν (k1) and uνk1 perturbatively from
(A21)–(A23). To this end, we look for a solution in the form
of the expansion

uνk1 = uνk + δk u(1)
νk + (δk)2u(2)

νk + · · · , (A24)

where u(1,2)
νk can be expanded over the complete set of the

states uνk ,

u( j)
νk =

∑
λ

c( j)
νλ (z)uλk, j = 1, 2 (A25)

[notice that the expansion coefficients c( j)
νλ (z) are functions

of z].
Several important comments are in order. First, as in the

stationary case (see, e.g., Ref. [71]) it is enough to consider
only projections of u(1,2)

νk on the eigenstates with the same
Bloch vector k, and therefore the sum in (A25) is over the
band number only (this is confirmed by the self-consistency
of the expansion). Also, this is the reason why the expansion
coefficients c(z) are not labeled by the index k: They all
correspond to the chosen k.

Second, unlike in the stationary perturbation theory, where
the sum excludes also the state uνk (r, z) to which the pertur-
bation u(1,2)

νk (r, z) is orthogonal, now we have to keep this term
because the orthogonality (A18) is verified only for the same
instants z, while two states considered at different instants,
say, at z1 and z2 such that z1 �= z2, are, generally speaking,
nonorthogonal. Physically, this means that the mode uνk (r, z)
can be excited at z = z2 even if at the instant z = z1 it is zero.

Third, the functions u(1,2)
νk (r, z) are T periodic along z. This

implies that the expansion coefficients c( j)
νλ (z) are also periodic

functions of z, i.e.,

c( j)
νλ (z + T ) = c( j)

νλ (z). (A26)

Substituting (A21), (A24), and (A25) into (A22), collect-
ing terms up to (δk)2 order, taking into account that the states
uνk solve Eq. (A8), and separating the orders δk and (δk)2,
we obtain

i
∑

λ

ċ(1)
νλ uλk −

∑
λ

(b̃ν − b̃λ)c(1)
νλ uλk − b̃′

νuνk = H (1)uνk, (A27)

i
∑

λ

ċ(2)
νλ uλk −

∑
λ

(b̃ν − b̃λ)c(2)
νλ uλk − b̃′

ν

∑
λ

c(1)
νλ uλk − 1

2
b̃′′

νuνk = H (1)
∑

λ

c(1)
νλ uλk + 1

2
uνk, (A28)

where the overdot stands for the derivative with respect to z:
ċ = dc/dz.

Applying (uνk, ·) to (A27) we obtain

i
dc(1)

νν

dz
− b̃′

ν = (uνk, H (1)uνk ). (A29)

By the requirement (A26) 〈dc( j)
νν /dz〉T = 0 and hence

b̃′
ν (k) = −〈(uνk, H (1)uνk )〉T . (A30)

We rewrite this expression as

vν (k) = −b̃′
ν (k) =

〈(
φνk,

1

i

∂

∂y
φνk

)〉
T

(A31)

[below we argue that vν (k) represents the group velocity].
In the absence of resonances, the T -periodic solution of

(A29) satisfying the zero initial condition c(1)
νν (0) = 0 reads

c(1)
νν (z) = 1

i

∫ z

0
[hνν (z′) − 〈hνν〉T ]dz′, (A32)
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where we defined a T -periodic function

hνλ(z + T ) = hνλ(z) :=
(

φνk,
1

i

∂

∂y
φλk

)
, (A33)

thus ensuring the equality

∫ T

0
[hνλ(z′) − 〈hνλ〉T ]dz′ = 0. (A34)

Applying (uλk, ·) to (A27) we obtain the differential
equations for c(1)

νλ (z) (λ �= ν),

iċ(1)
νλ − �νλc(1)

νλ = h∗
νλ(z), �νλ = b̃ν (k) − b̃λ(k). (A35)

Recalling (A33) and using the Fourier expansion

h∗
νλ(z) =

∑
m

h(m)
νλ e−i fmz, fm = 2π

m

T
, (A36)

the T -periodic solution of (A35) can be written as

c(1)
νλ (z) =

∑
m

h(m)
νλ

fm − �νλ

e−i fmz. (A37)

We notice that generally speaking c(1)
νλ (0) �= 0.

Now we turn to the equation appearing in the second order:

1

2
b̃′′

ν = iċ(2)
νν − b̃′

νc(1)
νν −

∑
λ

(uνk, H (1)uλk )c(1)
νλ − 1

2
. (A38)

Notice that c( j)
νλ does not depend on y while H (1) acts on the

functions of y. Since b̃′′
ν is a constant, and all coefficients c( j)

νν ′

are T periodic, the easiest wave to obtain b̃′′
ν is to perform T

averaging. This gives

1

2
b̃′′

ν = −1

2
−

∑
λ �=ν

〈
(uνk, H (1)uλk )c(1)

νλ

〉
T
, (A39)

where we have taken into account (A30). Comparing this with
(A21) and returning to the FBSs we obtain the final form of
the dispersion of the group velocity (the effective diffraction
coefficient)

b̃′′
ν (k) = −1 − 2

∑
λ �=ν

〈
hνλc(1)

νλ

〉
T . (A40)

3. Multiple-scale expansion

Now we apply the multiple-scale expansion to the non-
linear problem (A1). To this end, we use two sets of scaled
variables

(y0, y1, y2, . . .) := (y, μy, μ2y, . . .), (A41)

(z0, z1, z2, . . .) := (z, μz, μ2z, . . .), (A42)

where μ � 1 is a formal small parameter. The scaled vari-
ables are treated as independent. Respectively we have

H0 = H̃0 + μH̃ (1) + μ2H̃ (2), (A43)

H̃ (1) = − ∂2

∂y0∂y1
, (A44)

H̃ (2) = − ∂2

∂y0∂y2
− 1

2

∂2

∂y2
1

, (A45)

where H̃0 is H0 with the substitution y → y0. We also have

∂

∂z
= ∂

∂z0
+ μ

∂

∂z1
+ μ2 ∂

∂z2
+ · · · . (A46)

In this work we are interested in the evolution of two
nonlinearly coupled modes having the same Bloch vector k
but belonging to different branches denoted as ν = α and
ν = β (see Fig. 1 in the main text). Respectively, we look for
a solution of (A1) in the form

ψ = μ
[
Aα (y1, z1)φαkeib̃αz + Aβ (y1, z1)φβkeib̃β z

]
+μ2

[
φ(1)

α eib̃αz + φ
(1)
β eib̃β z

]
+μ3

[
φ(2)

α eib̃αz + φ
(2)
β eib̃β z

]
+ · · · . (A47)

Here, Aα and Aβ are slowly varying envelopes of the
states φαk and φβk; in the arguments of Aα,β only the
most rapid variables are indicated, e.g., A(y1, z1) stands for
A(y1, , y2, . . . ; z1, z2, . . .). To shorten notations further we do
not show k in the arguments of b̃α and b̃β .

At each instant z0, the second- and third-order corrections
in (A47) can be expanded as follows,

φ( j)
α =

∑
ν

B( j)
αν (x1, z0)φνk (z0), (A48a)

φ
( j)
β =

∑
ν

B( j)
βν (x1, z0)φνk (z0). (A48b)

Now we substitute (A47) into (A1) considered in the scaled
variables. In the first order of μ, the obtained equation is
identically satisfied.

a. Order μ2

In the second order we obtain

[
i
∂Aα

∂z1
φαk + i

∑
ν

∂B(1)
αν

∂z0
φνk + i

∑
ν

B(1)
αν

∂φνk

∂z0
− b̃α

∑
ν

B(1)
αν φνk

]
eib̃αz

+
[

i
∂Aβ

∂z1
φβk + i

∑
ν

∂B(1)
βν

∂z0
φνk + i

∑
ν

B(1)
βν

∂φνk

∂z0
− b̃β

∑
ν

B(1)
βν φνk

]
eib̃β z
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=
[

H̃0

∑
ν

B(1)
αν φνk + H̃ (1)Aαφαk

]
eib̃αz +

[
H̃0

∑
ν

B(1)
βν φνk + H̃ (1)Aβφβk

]
eib̃β z. (A49)

Collecting the terms ∝eib̃αz and ∝eib̃β z separately, using (A7) with H0 replaced by H̃0 with ν = α and ν = β, and using the
explicit expression for H̃1, we rewrite (A49) in the form of two equations as follows,

i
∂Aα

∂z1
φαk + i

∑
ν

∂B(1)
αν

∂z0
φνk −

∑
ν

(b̃α − b̃ν )B(1)
αν φνk = −∂Aα

∂y1

∂φαk

∂y0
, (A50a)

i
∂Aβ

∂z1
φβk + i

∑
ν

∂B(1)
βν

∂z0
φνk −

∑
ν

(b̃β − b̃ν )B(1)
βν φνk = −∂Aβ

∂x1

∂φβk

∂y0
. (A50b)

Now we apply (φαk, ·) to (A50a) to obtain

i
∂Aα

∂z1
+ i

(
ψαk,

1

i

∂

∂y0
ψαk

)
∂Aα

∂y1
+ ∂B(1)

αα

∂z0
= 0, (A51)

where we have used(
φνk,

1

i

∂

∂y0
φαk

)
≡

(
ψνk,

1

i

∂

∂y0
ψαk

)
. (A52)

Taking into account that all terms in (A51) are T periodic with
respect to z0, we average (A51) over the period T to obtain

∂Aα

∂z1
+ vα

∂Aα

∂y1
= 0, (A53)

where the group velocity vα is given by (A31). Analogously
from (A50b) we obtain

∂Aβ

∂z1
+ vβ

∂Aβ

∂y1
= 0. (A54)

An important property, used in the main text, is the equality
of the group velocities of the chosen modes, i.e.,

vα = vβ = v. (A55)

This means that both Aα and Aβ depend on the “fast variables”
z1 and y1 only through the combination Y = y1 − vz1:

Aα,β ≡ Aα,β (Y ; z2, x2). (A56)

We also obtain

B(1)
αα = −i

∂Aα

∂y1
c(1)
αα, B(1)

ββ = −i
∂Aβ

∂y1
c(1)
ββ, (A57)

where c(1)
νν is defined in (A32). Importantly, at this stage we

assume that the modes are nonresonant, i.e., no zero denomi-
nators appear in (A32).

For ν �= α we apply (φνk, ·) to (A50a) and obtain
[cf. (A35)]

i
∂B(1)

αν

∂z0
− (b̃α − b̃ν )B(1)

αν = −i
∂A

∂y1
h∗

αν (z0). (A58)

Its T -periodic solution is found as

B(1)
αν (z0) = −i

∂Aα

∂y1
c(1)
αν , (A59)

where c(1)
αν is defined in (A37). Similarly, for the β component

we obtain

B(1)
βν (z0) = −i

∂Aβ

∂y1
c(1)
βν . (A60)

b. Order μ3

Turning to the equations of the μ3 order we write them
already separated for the terms ∝eib̃αz and ∝eib̃β z, where all
entries ∝e±3ib̃αz and ∝e±3ib̃β z are dropped:

i
∂Aα

∂z2
φαk + i

∑
ν

∂B(2)
αν

∂z0
φνk + i

∑
ν

∂B(1)
αν

∂z1
φνk + i

∑
ν

B(2)
αν

∂φνk

∂z0
− b̃α

∑
ν

B(2)
αν φνk

= H̃0

∑
ν

B(2)
αν φνk + H̃1

∑
ν

B(1)
αν φνk + H2Aαφαk − |Aα|2Aα|φαk|2φαk − 2|Aβ |2Aα|φβk|2φαk, (A61)

i
∂Aβ

∂z2
φαk + i

∑
ν

∂B(2)
βν

∂z0
φνk + i

∑
ν

∂B(1)
βν

∂z1
φνk + i

∑
ν

B(2)
βν

∂φνk

∂z0
− b̃β

∑
ν

B(2)
βν φνk

= H̃0

∑
ν

B(2)
βν φνk + H̃ (1)

∑
ν

B(1)
αν φνk + H̃ (2)Aβφβk − |Aβ |2Aβ |φβk|2φβk − 2|Aα|2Aβ |φαk|2φβk . (A62)

Projecting (A61) and (A62) to φαk and φβk respectively we obtain

i
∂Aα

∂z2
+ i

∂B(2)
αα

∂z0
+ i

∂B(1)
αα

∂z1
= −

∑
ν

∂B(1)
αν

∂y1

(
φαk,

∂φαk

∂y0

)
− 1

2

∂2Aα

∂y2
1

− ∂Aα

∂y2

(
φαk,

∂φαk

∂y0

)

− |Aα|2Aα (φαk, |φαk|2φαk ) − 2|Aβ |2Aα (φαk, |φβk|2φαk ), (A63)
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i
∂Aβ

∂z2
+ i

∂B(2)
ββ

∂z0
+ i

∂B(1)
ββ

∂z1
= −

∑
ν

∂B(1)
βν

∂y1

(
φβk,

∂φβk

∂y0

)
− 1

2

∂2Aβ

∂y2
1

− ∂Aβ

∂y2

(
φβk,

∂φβk

∂y0

)

− |Aβ |2Aβ (φβk, |φβk|2φβk ) − 2|Aα|2Aβ (φβk, |φαk|2φβk ). (A64)

It follows from (A59), (A53), (A54), and (A55) that

i
∂B(1)

αν

∂z1
= v

∂2Aα

∂y2
1

c(1)
αν , i

∂B(1)
βν

∂z1
= v

∂2Aβ

∂y2
1

c(1)
βν . (A65)

Thus (A50a) and (A50b) are rewritten as

i
∂Aα

∂z2
+ iv

∂Aα

∂y2
+ 1

2

∂2Aα

∂y2
1

+ i
∑
ν �=α

hαν

∂B(1)
αν

∂y1
+ |Aα|2Aα (φαk, |φαk|2φαk ) + 2|Aβ |2Aα (φαk, |φβk|2φαk ) = −i

∂B(2)
αα

∂z0
, (A66)

i
∂Aβ

∂z2
+ iv

∂Aβ

∂y2
+ 1

2

∂2Aβ

∂y2
1

+ i
∑
ν �=β

hβν

∂B(1)
βν

∂y1
+ |Aβ |2Aβ (φβk, |φβk|2φβk ) + 2|Aβ |2Aα (φβk, |φαk|2φβk ) = −i

∂B(2)
ββ

∂z0
. (A67)

Since all terms in these equations are either z0 independent or T periodic we average over the period. The last terms in (A66)
and (A67) vanish because of the periodicity, while using (A59) and (A40) we obtain

1

2

∂2Aα

∂y2
1

+ i

〈∑
ν �=α

hαν

∂B(1)
αν

∂y1

〉
T

= 1

2

∂2Aα

∂y2
1

(
1 + 2

∑
ν �=α

〈
hανc(1)

αν

〉
T

)
= − b̃′′

α

2

∂2Aα

∂y2
1

. (A68)

A similar relation holds for α replaced by β.
Looking for the envelopes Aα and Aβ which are y2 independent, we obtain two nonlinearly coupled NLS equations. Setting

the formal small parameter μ to be one, i.e., returning to nonscaled physical variables, we obtain

i
∂Aα

∂z
− b̃′′

α

2

∂2Aα

∂Y 2
+ χα|Aα|2Aα + 2χx|Aβ |2Aα = 0, (A69a)

i
∂Aβ

∂z
− b̃′′

β

2

∂2Aβ

∂Y 2
+ χβ |Aβ |2Aβ + 2χx|Aα|2Aβ = 0, (A69b)

where the nonlinearity coefficients are given by

χα = 〈(ψαk, |ψαk|2ψαk )〉T , (A70)

χβ = 〈(ψβk, |ψβk|2ψβk )〉T , (A71)

χx = 〈(ψαk, |ψβk|2ψαk )〉T = 〈(ψβk, |ψαk|2ψβk )〉T . (A72)

These are Eq. (2) from the main text, where b̃′′
ν is replaced by b′′

ν referring to the linear spectrum.

APPENDIX B: LINEAR STABILITY ANALYSIS OF SYSTEM (2)

To perform a linear stability analysis in the frames of the envelope equation (2) from the main text we substitute into it the
perturbed solution Aν = (wν + μνeδz + η∗

νeδ∗z )eibnl
ν z, where μν, ην are small perturbations, δ is the complex perturbation growth

rate, and linearize the resulting system. This yields the linear eigenvalue problem,

iδμα,β = +b′′
α,β

2

∂2μα,β

∂Y 2
− χα,β (2μα,β + ηα,β )w2

α,β − 2χx
[
w2

β,αμα,β + wαwβ (μβ,α + ηβ,α )
] + bnl

α,βμα,β, (B1a)

iδηα,β = −b′′
α,β

2

∂2ηα,β

∂Y 2
+ χα,β (2ηα,β + μα,β )w2

α,β + 2χx
[
w2

β,αηα,β + wαwβ (ηβ,α + μβ,α )
] − bnl

α,βηα,β . (B1b)

Stationary envelopes wα,β that enter the linear eigenvalue problem [Eqs. (B1a) and (B1b)] can be found using the Newton
method from the following system of nonlinearly coupled ordinary differential equations [also obtained from Eq. (2) of the
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FIG. 6. Peak amplitude of the dipole soliton vs distance in
(a) scalar and (b) vector models corresponding to the dynamics
shown in Figs. 4 and 5 from the main text. Black and red curves: peak
amplitude in the nonlinear regime; green curves: peak amplitude in
the linear regime.

main text]:

bnl
α wα = −b′′

α

2

∂2wα

∂Y 2
+ χαw3

α + 2χxw
2
βwα, (B2a)

bnl
β wβ = −b′′

β

2

∂2wβ

∂Y 2
+ χβw3

β + 2χxw
2
αwβ. (B2b)

The linear eigenvalue problem [Eqs. (B1a) and (B1b)]
was solved using standard eigenvalue solver to obtain the
dependence of the perturbation growth rate δre = Re(δ) on the
nonlinear propagation constant shifts bnl

α and bnl
β of two soli-

ton components. We identified the most unstable perturbation
mode with the largest growth rate and plotted it as a function
of bnl

α for several bnl
β values in Fig. 3(d) from the main text. One

can see that for nonlinear phase shifts used in the paper (they
should be sufficiently small to ensure that the envelope covers
many y periods of the array) the growth rate for the most
unstable perturbation eigenmode is typically very low. Thus,
for the soliton shown in Fig. 3(b) one has δre = 0.000 44.

The characteristic propagation distance at which such an in-
stability may develop can be estimated as 1/δre and for all
cases considered it exceeds the helix period T at least by
two orders of magnitude that implies the metastability (very
long-living character) of the obtained dipole solitons. Due to
their metastability, one can observe the long-range propaga-
tion of dipole solitons along the edge of the insulator without
a breakup into sets of fundamental solitons. Notice that the
perturbation growth rate vanishes close to the left border of the
existence domain of vector solitons, when bnl

α → blow
α , but so

does also the dipole component of the soliton. Thus, in the pa-
per the optimal situation was chosen, when this component is
still considerable in comparison with other bell-shaped com-
ponents, and at the same time, the growth rate δre remains very
small. The analysis described above guarantees metastability
of the one-dimensional envelopes of vector topological edge
solitons.

APPENDIX C: EVOLUTION OF PEAK AMPLITUDES IN
LINEAR AND NONLINEAR REGIMES

The fact that dipole topological solitons are indeed the
objects, sustained by the nonlinearity of the material, becomes
especially obvious from a comparison of the evolution of
peak amplitudes of the wave packets in the nonlinear and
linear cases. Such a comparison is presented in Fig. 6 that
shows the dependence of the maximal amplitude of the wave
packet propagated in the scalar model (1) from the main text
[Fig. 6(a), a = max|ψ |] and the wave packet, whose compo-
nents evolve in accordance with vector model (3) [Fig. 6(b),
aα,β = max|ψα,β |]. The amplitude in the nonlinear medium
is shown with black (in the scalar case) or black and red
(in the vector case) lines. Note that fast oscillations with
period T clearly visible in the plots reflect the underlying
Floquet nature of the obtained solitons. While in the nonlin-
ear case the peak amplitude does not decrease notably over
the considerable distance shown, in linear versions of the
above-mentioned models, where nonlinearity was deliberately
switched off (see green lines), the peak amplitude rapidly
drops down, reflecting the strong diffraction broadening ob-
served in Figs. 4(d) and 5(d) from the main text.
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