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Statistical properties of partially coherent polarization singular vector beams
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We investigate the statistical properties of partially coherent polarization singular beams embedded with a
V-point polarization singularity. An analytical formula for the cross-spectral density matrix is derived for the
family of partially coherent polarization singular vector beams (PSVBs) propagating through a paraxial ABCD
optical system. It is observed that the far-field intensity profiles and the coherence-induced depolarization effect
in partially coherent PSVBs depend on both the input spatial coherence length and the Poincaré-Hopf index (PHI)
of the beam. Interestingly, it is found that in this process of coherence degradation, the polarization (Stokes, S12)
vortices are preserved. The depolarization is due to an enhanced unpolarized light field that in turn modulates
the beam profile, the transverse distribution of the degree of polarization (DOP) and the degree of coherence
(DOC). Furthermore, the Gaussian distribution of the DOC evolves into a non-Gaussian profile in the far-field
with the number of ring dislocations equal to the magnitude of PHI of the beam. The degeneracy associated
with the intensity profile, the Stokes intensity distribution, the DOP, and DOC profiles of these partially coherent
PSVBs carrying opposite polarity of PHI are also discussed to complete this study. Subsequently, all of these
findings are experimentally verified by generating a family of partially coherent PSVBs with controllable spatial
coherence. The modulation of the spatial coherence length in the source plane leads to efficient control of its
intensity, the DOC and DOP profiles on propagation, which are of importance in particle trapping, material
thermal processing, free-space optical communications, and detection of a phase object.
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I. INTRODUCTION

Polarization and coherence, the fundamental features of
any light field, were considered to be independent until Wolf
developed a unified theory of coherence and polarization
[1,2]. This thought-provoking theory was then readily utilized
to study the statistical properties—namely, the average
intensity, degree of coherence (DOC), degree of polarization
(DOP), and state of polarization (SOP)—of a partially
coherent electromagnetic beam on propagation in free-space
and atmospheric/oceanic turbulence [2–8]. Furthermore, it is
claimed that partially coherent and partially polarized beams
are more robust toward scintillation caused by atmospheric
turbulence [9]. A partially coherent vortex beam has received
a great deal of interest in recent years, thanks to the twofold
benefits of partial coherence and vortex structure [10]. Partial
coherence lowers the beam scintillation and beam wandering
during propagation in random media, while the presence
of a vortex phase enables beam-shaping from a doughnut
to a Gaussian profile [11,12]. It is found that the statistical
properties of the partially coherent vortex beam are influenced
by both the spatial coherence and the topological charge of
the beam [11–16].

Recently, more and more attention has been paid to po-
larization singular beams due to their potential applications
in particle trapping [17–19], free-space optical communica-
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tion [19–21], high-resolution microscopy [19,22], underwater
communication [23], material processing [19,24], and photon
entanglement [19,25,26]. Polarization singular beams en-
dowed with V-point polarization singularity are generated by
the superposition of two phase vortices possessing orthogonal
polarization [27,28]. There are a number of different terms
used in the literature for these V-point polarization singular
beams, including vector vortex beams [29], cylindrical vec-
tor beams [30], Majorana-like vector beams [31], etc. The
Poincaré-Hopf index (PHI: η) or the Stokes index (σ12), where
σ12 = 2η, is used to characterize these beams. Most of the
research related to these beams is confined to fully coherent
beams [27,32–34]. However, in recent reports it has been
proposed that particles of different sizes and refractive indices
can be trapped using a partially coherent radially polarized
beam due to its unique state of polarization distribution and
beam-shaping capability [35,36]. Furthermore, generic polar-
ization singular vector beams (PSVBs) are found to be even
more robust than scalar vortices for propagation in a turbulent
medium [20,37]. For scalar vortices, the statistical properties
are reported to be dependent on the topological charge of the
beam. Thinking along these lines, it is anticipated that the PHI
of the beam will govern the statistical properties of partially
coherent PSVBs. There are few preliminary reports on the
generation and characterization of generic partially coherent
PSVBs (radially/azimuthally) [37–44]. However, the statisti-
cal characteristics of higher-index partially coherent PSVBs
and their dependency on PHI are not yet explored. Therefore,
a theoretical platform describing the complete statistical be-
havior of the family of isotropic partially coherent polarization
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singular vector beams is developed as a part of this research.
The partially coherent PSVBs exhibit coherence-induced de-
polarization effects [45] in contrast to the antidepolarization
behavior demonstrated for partially coherent C-point polar-
ization singular beams [46,47]. The statistical properties are
also found to be dependent on both the input spatial coherence
length and the PHI of the partially coherent PSVB.

The paper is organized as follows: In Sec. II, a gener-
alized theoretical framework is developed to investigate the
statistical properties of the whole family of partially coherent
PSVBs. The theory predicts that the average intensity profile,
the DOP and DOC distributions modulate over propagation.
The far-field characteristics of these beams are fundamentally
dependent on the PHI and the two-point correlation of the
input beam. The experimental setup to synthesize and char-
acterize these partially coherent PSVBs with different PHI
indices is given in Sec. III. Section IV includes the experimen-
tal results, which are in good agreement with the theoretical
predictions. The key findings of the study are concluded in
Sec. V.

II. THEORETICAL DESCRIPTION: PARTIALLY
COHERENT POLARIZATION SINGULAR VECTOR BEAM

In this article, the inhomogeneously polarized vector
beams containing a V-point polarization singularity at the
core of the beam are referred to as PSVBs. The beams
carrying C-point polarization singularity are not considered
here. The electric field of four major types [27,48] of PSVB
(I/II/III/IV) can be written as a superposition of orthogonal
orbital angular momentum (OAM) in orthogonal spin angular
momentum (SAM) states as [27]

E(ρ, φ) = ρ|m|

2
[e±imφ (x − iy)±e∓imφ (x + iy)]|I/II,

= iρ|m|

2
[±e±imφ (x − iy) − e∓imφ (x + iy)]|III/IV,

(1)

where ρ = ρxx + ρyy with ρx = ρ cos φ, ρy = ρ sin φ, and
(x, y) are the unit vectors along the two orthogonal direc-
tions in the Cartesian coordinate system. m and φ are the
topological charge and azimuthal angle, respectively. Here
m determines the strength of the phase-gradient of the vor-
tex beams, and it can take any integral value. The polarity
(+,−) of m depicts the handedness of the helical wavefront.
By superposing two homogeneously polarized phase vortices
having orthogonal polarizations, the information of the az-
imuthal phase-gradient can be encoded onto the cylindrically
symmetric polarization distribution of the resulting beam. The
in- or out-of phase superposition and the interchange of the
orthogonal SAM (or OAM) state of two beams yield four
distinct types of polarization distributions of a PSVB [27,48]
corresponding to a fixed magnitude of topological charge
(|m|). The endowed V-point polarization singularity exists
at intensity null where the azimuth is indeterminate. These
vector-field singularities are characterized by a Poincaré-Hopf
index

η = 1

2π

∮
∇γ · dl, (2)

where γ is the polarization azimuth of the linearly polarized
states. η depicts the strength of the azimuth gradient, and it
can take integral values. Corresponding to a particular η, there
are two pairs of inhomogeneously polarized orthogonal basis
states. For η = +1, orthogonal distributions are radial (type
III) and azimuthal (type I), and likewise for η = −1, type II
and type IV form the pair of orthogonal SOP distributions.
Now, η can also have either +ve (type I and type III) or
−ve (type II and type IV) polarity depending upon the coun-
terclockwise (clockwise) sense of the azimuth gradient. This
implies that for a V-point polarization singular beam having
a particular |η|, there are four different types of polarization
distributions considered here. One can refer to the figures pre-
sented in the later part of the article for the SOP distributions
(types I–IV) corresponding to a fixed η.

Based on the unified theory [1], the coherence and po-
larization properties of a statistically stationary (in the wide
sense), quasimonochromatic partially coherent PSVB beam
can be determined from the 2×2 cross-spectral density (CSD)
matrix as

W(ρ1, ρ2, 0) =
(〈E∗

x (ρ1)Ex(ρ2)〉 〈E∗
x (ρ1)Ey(ρ2)〉

〈E∗
y (ρ1)Ex(ρ2)〉 〈E∗

y (ρ1)Ey(ρ2)〉
)

, (3)

where 〈E∗
α (ρ1)Eβ (ρ2)〉 (α = x, y; β = x, y) defines the field

correlation between two transverse points ρ1(ρ1, φ1) and
ρ2(ρ2, φ2). The angular brackets denote the ensemble average,
and an asterisk denotes the complex conjugate. The partially
coherent PSVBs are synthesized using a Gaussian Schell-
model (GSM) type source [49] of beam waist σ and spatial
coherence length δαβ ,

〈E∗
α (ρ1)Eβ (ρ2)〉 = exp

(
−ρ2

1 + ρ2
2

4σ 2

)
exp

(
− (ρ2 − ρ1)2

2δαβ
2

)
.

(4)
In this study, the input GSM beam is considered to be
isotropic, i.e., the spatial coherence length pertaining to dif-
ferent orthogonal electric field components is identical (δxx =
δyy = δxy = δ). For a partially coherent PSVB of type I and
type II, the elements of the CSD matrix, in the cylindrical
coordinate system, at the source plane are expressed as

W ±η

0xx (ρ1, ρ2)|I/II = cos(mφ1) cos(mφ2)ξ (ρ1, ρ2), (5a)

W ±η

0yy (ρ1, ρ2)|I/II = sin(mφ1) sin(mφ2)ξ (ρ1, ρ2), (5b)

W ±η

0xy (ρ1, ρ2)|I/II = ± cos(mφ1) sin(mφ2)ξ (ρ1, ρ2), (5c)

W ±η

0yx (ρ1, ρ2)|I/II = ± sin(mφ1) cos(mφ2)ξ (ρ1, ρ2), (5d)

where ξ (ρ1, ρ2) = (ρ1ρ2 )|m|
(2σ )2|m| exp (− ρ2

1 +ρ2
2 −2ρ1ρ2 cos(φ1−φ2 )

2δ2 )

exp (− ρ2
1 +ρ2

2
4σ 2 ). One can deduce the CSD matrix of the

partially coherent PSVB of the other two types (III/IV) by
inserting the appropriate field components in Eq. (3). The
CSD matrix elements of these four types of partially coherent
PSVBs are connected by the following relationship:

W ±η

0xx (ρ1, φ1; ρ2, φ2)|III/IV = W ±η

0yy (ρ1, φ1; ρ2, φ2)|I/II, (6a)

W ±η

0yy (ρ1, φ1; ρ2, φ2)|III/IV = W ±η

0xx (ρ1, φ1; ρ2, φ2)|I/II, (6b)

W ±η

0xy (ρ1, φ1; ρ2, φ2)|III/IV = −W ±η

0yx (ρ1, φ1; ρ2, φ2)|I/II, (6c)

W ±η

0yx (ρ1, φ1; ρ2, φ2)|III/IV = −W ±η

0xy (ρ1, φ1; ρ2, φ2)|I/II. (6d)
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Within the paraxial approximation, the propagation properties of partially coherent PSVBs can be obtained by using the
generalized Collins formula given by [50]

Wαβ (r1, r2, z) = 1

λ2B2

∫ 2π

0

∫ 2π

0

∫ ∞

0

∫ ∞

0
W0αβ (ρ1, ρ2) exp

[
ik

B
[ρ1r1 cos(θ1 − φ1) − ρ2r2 cos(θ2 − φ2)]

]

× exp

[
ikD

2B

(
r2

2 − r2
1

) − ikA

2B

(
ρ2

1 − ρ2
2

)]
ρ1ρ2dρ1dρ2dφ1dφ2, (7)

where α, β = x, y; k = 2π/λ, λ being the wavelength. r1(r1, θ1) and r2(r2, θ2) represent the coordinates of two transverse
points of a partially coherent PSVB in the observation plane after propagating a distance z. A, B, C, and D are the transfer matrix
elements of the optical system. Substituting Eq. (5) into Eq. (7), and after some tedious calculations, the elements of the CSD
matrix of a partially coherent PSVB (type I/II) in the observation plane are obtained as

W ±η
xx (r1; r2; z)|I/II = −�(r1, r2)

∞∑
p=−∞

∞∑
s=0

exp[ip(θ1 − θ2)]

{
i2m exp(2imθ2)B1(a1, p)B2(a1,−2m + p)

s!�(s + | − m + p| + 1)(2δ2)2s+|−m+p|

+ B1(a2, p)B2(a2, p)

s!�(s + |m + p| + 1)(2δ2)2s+|m+p| + B1(a1, p)B2(a1, p)

s!�(s + | − m + p| + 1)(2δ2)2s+|−m+p|

+ i−2m exp(−2miθ2)B1(a2, p)B2(a2, 2m + p)

s!�(s + |m + p| + 1)(2δ2)2s+|m+p|

}
, (8a)

W ±η
yy (r1; r2; z)|I/II = �(r1, r2)

∞∑
p=−∞

∞∑
s=0

exp[ip(θ1 − θ2)]

{
i2m exp(2imθ2)B1(a1, p)B2(a1,−2m + p)

s!�(s + | − m + p| + 1)(2δ2)2s+|−m+p|

− B1(a2, p)B2(a2, p)

s!�(s + |m + p| + 1)(2δ2)2s+|m+p| − B1(a1, p)B2(a1, p)

s!�(s + | − m + p| + 1)(2δ2)2s+|−m+p|

+ i−2m exp(−2miθ2)B1(a2, p)B2(a2, 2m + p)

s!�(s + |m + p| + 1)(2δ2)2s+|m+p|

}
, (8b)

W ±η
yx (r1; r2; z)|I/II = ±i�(r1, r2)

∞∑
p=−∞

∞∑
s=0

exp[ip(θ1 − θ2)]

{
i2m exp(2imθ2)B1(a1, p)B2(a1,−2m + p)

s!�(s + | − m + p| + 1)(2δ2)2s+|−m+p|

− B1(a2, p)B2(a2, p)

s!�(s + |m + p| + 1)(2δ2)2s+|m+p| + B1(a1, p)B2(a1, p)

s!�(s + | − m + p| + 1)(2δ2)2s+|−m+p|

− i−2m exp(−2miθ2)B1(a2, p)B2(a2, 2m + p)

s!�(s + |m + p| + 1)(2δ2)2s+|m+p|

}
, (8c)

W ±η
xy (r1; r2; z)|I/II = W ∗±η

yx (r1, θ1; r2, θ2)|I/II. (8d)

In the above Eqs. (8a)– (8d), the descriptions of various functions are

�(r1, r2) =
(

k2

4B2(2σ )2|m|

)
exp

[
ikD

2B

(
r2

2 − r2
1

)]
exp

[
− k2r2

1

4M1B2
− k2r2

2

4M2B2

]
, (9)

B1(a, b) = M−a/2
1

2 b!
�

(
a + b

2

)(
k2r2

1

4M1B2

)b/2

1F1

[
b − a

2
+ 1; b + 1;

k2r2
1

4M1B2

]
, (10)

B2(a, b) = M−a/2
2

2 b!
�

(
a + b

2

)(
k2r2

2

4M2B2

)b/2

1F1

[
b − a

2
+ 1; b + 1;

k2r2
2

4M2B2

]
, (11)

M(1/2) = 1

4σ 2
+ 1

2δ2
± ikA

2B
, (12)

a(1/2) = 2s + m + 2 + |p ∓ m|. (13)

In this mathematical description, symbols �(·) and 1F1(·; ·; ) represent a Gamma and a Kummer functions, respectively. The
subscripts (1/2) of Eqs. (12) and (13) are corresponding to the different sign (+/−) of the last term. In solving Eq. (7) for the
CSD elements, we have used the following expansion and integral formulas [51,52]:

exp

[
ikρ1ρ2

B
[cos(θ1 − φ1)]

]
=

∞∑
l=−∞

il Jl

(
kρ1ρ2

B

)
exp [il (θ1 − φ1)], (14)
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Jl (χ ) = (−i)l

2π

∫ 2π

0
exp [ilθ0 + iχ cos(θ0)], (15)∫ 2π

0
exp [−inφ1 + N1ρ1ρ2 cos(φ1 − φ2)]dφ1 = 2π exp(−inφ2)In(N1ρ1ρ2), (16)

In(N1ρ1ρ2) =
∞∑

s=0

1

s!�(s + |n| + 1)

(N1ρ1ρ2

2

)2s+|n|
, (17)

∫ ∞

0
xq exp(−τx2)Jl (νx)dx = ν l�[(l + q + 1)/2]

2l+1τ (l+q+1)/2�[l + 1]
1F1

(
l + q + 1

2
; l + 1; − ν2

4τ

)
(18)

1F1(a; b; c) = ec
1F1(b − a; b; −c). (19)

Here Jl (·) and In(·) denote the lth- and nth-order regular and modified Bessel function of the first kind, respectively. Using
Eq. (6), one can readily obtain the elements of the CSD matrix for the other two types of partially coherent PSVBs at the
observation plane. The intensity at the observation plane z is expressed as

I (x, y, z) = TrW±η(r, r, z) = W ±η
xx (r, z) + W ±η

yy (r, z). (20)

The CSD matrix of partially coherent PSVBs can be written as a sum of the CSD matrices of a polarized part (W±η
p ) and an

unpolarized part (W±η
u ) as [2,3]

W±η(r, r, z) = W±η
p (r, r, z) + W±η

u (r, r, z), (21)

where the matrices W±η
p and W±η

u are expressed as

W±η
p (r, r, z) =

(
P(r, r, z) R(r, r, z)
R∗(r, r, z) Q(r, r, z)

)
(22)

and

W±η
u (r, r, z) =

(
U (r, r, z) 0

0 U (r, r, z)

)
. (23)

The elements of CSD matrices of polarized and unpolarized parts are [3]

U (r, r, z) = 1

2

(
W ±η

xx (r, r, z) + W ±η
yy (r, r, z) −

√(
W ±η

xx (r, r, z) − W ±η
yy (r, r, z)

)2 + 4
∣∣W ±η

xy (r, r, z)
∣∣2)

, (24)

P(r, r, z) = 1

2

(
W ±η

xx (r, r, z) − W ±η
yy (r, r, z) +

√(
W ±η

xx (r, r, z) − W ±η
yy (r, r, z)

)2 + 4
∣∣W ±η

xy (r, r, z)
∣∣2)

, (25)

Q(r, r, z) = 1

2

(
W ±η

yy (r, r, z) − W ±η
xx (r, r, z)

√(
W ±η

xx (r, r, z) − W ±η
yy (r, r, z)

)2 + 4
∣∣W ±η

xy (r, r, z)
∣∣2)

, (26)

R(r, r, z) = W ±η
xy (r, r, z). (27)

The intensities of the corresponding polarized and unpolarized parts can be simply obtained as

I±η
j (x, y) = TrW±η

j (r, r, z) ( j = p, u). (28)

To study the propagation properties of the partially coherent PSVBs, we assume that the beam generated at the source plane
passes through a thin lens (z = 0) of focal length f . The elements of the ABCD transfer matrix between source plane and
observation plane are calculated as(

A B
C D

)
=

(
1 z
0 1

)(
1 0

−1/ f 1

)(
1 f
0 1

)
=

(
1 − z/ f f
−1/ f 0

)
. (29)

Equations (20) and (28) can then be used to study variation
in the intensity distribution of the partially coherent PSVBs
on propagation for distinct values of input spatial coher-
ence length. In Fig. 1, the evolution of intensity distribution
on propagation (polarized and unpolarized component’s) of
partially coherent PSVBs possessing |η| = 1, 2, and 3 for
δ = 1.2 mm is presented. As expected, it is observed that
the dark hollow doughnut beam gradually transforms into a
Gaussian beam profile on propagation. This transition from

one profile-type to the other happens slowly in the case of
higher-index partially coherent PSVBs carrying a bigger core-
size. Moreover, the unpolarized intensity distribution of the
generic partially coherent PSVB possesses a Gaussian profile
even at the converging lens plane (z = 0). On the contrary,
the unpolarized intensity distributions of higher-index par-
tially coherent PSVBs initially have a doughnut profile. The
energy transfer from the high-intensity region into the dark
core region on propagation results in the evolution of the
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FIG. 1. Evolution of the intensity distribution of various index partially coherent PSVBs (|η| = 1, 2, and 3) on propagation. The far-field
beam profiles are computed at propagation distances z = 0, 260, 280, and 300 mm for δ = 1.2 mm. The intensity distribution of unpolarized
(red-borderline) and polarized parts (green-borderline) are also shown with their respective color-maps.

Gaussian profile. Interestingly, the intensity distribution of the
polarized part remains invariant for a particular η. Similar to
the case of fully coherent completely polarized PSVBs, the
core-size of the polarized intensity distribution of partially
coherent PSVBs increases with increasing η (as can be seen
from Fig. 1).

The total intensity and the DOP of the beam can also be
interpreted in terms of power contained in the unpolarized
and polarized parts of the beam. The normalized power of
polarized and unpolarized components can be obtained from

P±η
j (z) =

∫∫
I±η

j ρdρdφ∫∫
I±ηρdρdφ

( j = p, u), (30)

where P±η
p and P±η

u represent the normalized powers of
the polarized and unpolarized parts, respectively. Beam
shaping of partially coherent PSVBs occurs on propaga-
tion and with changing input spatial coherence length. In
Figs. 2(a) and 2(b), the variation in normalized power of
unpolarized/polarized parts of focused partially coherent
PSVBs has been plotted as a function of δ and z, respectively.
The crossover point is marked with a filled-dot representing
the semidepolarization point where the contribution from the
polarized and unpolarized part is equal. For higher-index par-
tially coherent PSVBs, this semidepolarization point shifts

toward higher values of the spatial coherence length (δ||η=1| =
1.8 mm < δ||η=2| = 3.1 mm < δ||η=1| = 4 mm). This in-
dicates that the coherence-induced depolarization is more
prominent in higher-index beams. Notably, only in the case
of generic partially coherent PSVBs, the semidepolarization
point corresponds to a flat-top profile [13]. This condition
does not hold true for higher-index partially coherent PSVBs.
A similar depolarization effect is observed in far-field propa-
gation. It is found that the semidepolarization point occurs at a
shorter propagation distance in higher-index partially coherent
PSVBs (z||η=1| = 292 mm > z||η=2| = 278 mm > z||η=1| =
264 mm). For a fixed δ (or z), the polarized power content of a
higher-index PSVB is always lesser, i.e., Pp||η|=1 > Pp||η|=2 >

Pp||η|=3.
The polarization properties of a partially coherent PSVB

can be determined from Stokes parameters [Sj, ( j =
0, 1, 2, 3)], which are related to CSD matrix elements as [2]

S0(r, z) = W ±η
xx (r, r, z) + W ±η

yy (r, r, z), (31a)

S1(r, z) = W ±η
xx (r, r, z) − W ±η

yy (r, r, z), (31b)

S2(ρ, z) = W ±η
xy (r, r, z) + W ±η

yx (r, r, z), (31c)

S3(r, z) = i
[
W ±η

yx (r, r, z) − W ±η
xy (r, r, z)

]
. (31d)
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FIG. 2. Dependency of the polarized and unpolarized components’ power of partially coherent PSVBs of |η| = 1 (blue curve), 2 (red
curve), and 3 (black curve) on (a) spatial coherence length, δ and (b) propagation distance, z. The semidepolarization point is marked with a
filled circle in each case.

For the analysis of V-point polarization singularities, one
can construct a mathematical complex field distribution from
Stokes parameter distribution as

S12(r, z) = S1(r, z) + iS2(r, z). (32)

The Stokes phase corresponding to this constructed field rep-
resents the azimuth distribution

φ12(r, z) = tan−1

(
S2(r, z)

S1(r, z)

)
= 2γ . (33)

The phase vortices present in the Stokes field are identified
as V-point polarization singularities with Stokes index σ12 =
2η. In such fields, S3 = 0. The polarized component of the
partially coherent PSVBs can have unique polarization distri-
bution in the form of radial, azimuthal, flowerlike, spider-web,
etc. [33,53], depending upon the OAM and SAM states of the
superposing beams. The Stokes intensity corresponding to the
polarized field possesses a doughnut intensity profile and can
be mathematically described as

|S12(r, z)|2 = |S1(r, z)|2 + |S2(r, z)|2. (34)

The degree of polarization can be defined as [2]

P±η(r, z) = Ip(r, z)

I (r, z)
=

√
S2

1 (r, z) + S2
2 (r, z) + S2

3 (r, z)

S0(r, z)
.

(35)
Intensity results indicate that self-shaping of the beam is

attributed to the change in the unpolarized intensity distribu-
tion and its strength in the transverse plane. Subsequently,
the DOP, which is a measure of the polarized contribution
of the total intensity, is investigated. In Fig. 3, the vari-
ation of transverse DOP profiles corresponding to δ = 2.5
and 1.5 mm at different propagation distances is shown. The
DOP distribution possesses a doughnut profile whose line-
scan depicts that the on-axis point always has a zero-DOP
due to the absence of a polarized field. The DOP increases
gradually in the radial direction and falls off toward the edge
of the beam. The maximum value of DOP depends upon
the strength of the correlation between orthogonal electric
field components at a single point. The single point correla-
tion is not disturbed much for short propagation distances,

and therefore coherence-induced depolarization is found to
be prominent only in the far-field propagation. It is inter-
esting to note that as the two-point correlation (coherence
length) at the source plane decreases, the maximum extent of
single-point correlation also reduces in the observation plane.
Such a DOP-modulation is expected for inhomogeneously
polarized vector beams because the correlation between two
transverse points in the source plane depends on the state of
polarization at these points as well [54,55]. In the case of
higher-index partially coherent PSVBs, the DOP deteriorates
[P|η|=1

max (δ, z) > P
|η|=2
max (δ, z) > P

|η|=3
max (δ, z)] more quickly. This

is due to the fact that the higher-index partially coherent
PSVBs are highly unstable and even a slight perturbation dis-
sociates these beams into unit-index generic PSVBs [56,57],
which are spatially uncorrelated. Therefore, higher-index par-
tially coherent PSVBs are more robust toward atmospheric
turbulent scintillation leading to better information preserva-
tion in free-space optical communication [9]. Additionally, the
DOP-dip becomes wider in a higher-index partially coherent
PSVB due to the bigger dark-core region. The width of the
dip also increases on decreasing spatial coherence length,
which can be readily observed in the far-field plane. The DOP
profile of a partially coherent PSVB is much different from
a phase-vortex beam or a vortex-induced radially polarized
beam. Scalar phase vortices have a nonvarying transverse
distribution of the DOP due to the homogeneous SOP distri-
bution [58]. However, the vortex-induced radially polarized
beam possesses a transverse DOP-distribution in which the
on-axis DOP is nonzero and its strength is governed by the
topological charge of the added vortex [46,47,58]. So, here
rather than coherence-induced depolarization, an opposite an-
tidepolarization effect was observed.

Now, we theoretically investigate the coherence properties
of the partially coherent PSVBs on propagation. The degree
of coherence of a beam at two transverse points r1 (x1, y1) and
r2 (x2, y2) is mathematically expressed as [2]

|μ(r1, r2, z)| = Tr[W±η(r1, r2, z)]√
Tr[W±η(r1, r1, z)]

√
Tr[W±η(r2, r2, z)]

.

(36)
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FIG. 3. Dependency of the DOP profile of various index partially coherent PSVBs (|η| = 1, 2, and 3) on propagation distance. The
evolution of the DOP is investigated considering two δ values 2.5 mm (red curve) and 1.5 mm (blue curve) at z = 200, 250, and 300 mm. The
DOP-distribution is shown as an inset in respective line-scans. It can be readily observed that the coherence-induced DOP degradation is more
prominent in a higher-index partially coherent PSVBs.

Equation (36) together with Eqs. (8a) and (8d) can be used to
determine the modulus of DOC at distance z. In Fig. 4, the
variation of modulus of DOC at several propagation distances
corresponding to spatial coherence length δ = 1.2 and 2.3 mm
is plotted for partially coherent PSVBs having |η| = 1, 2,
and 3, respectively. At the source plane, all the partially co-
herent PSVBs (|η| = 1, 2, 3) possess a Gaussian distribution
of DOC. The spread of the distribution is governed by the
spatial coherence length of the input beam. Interestingly, it
is observed that the DOC-profile changes from a Gaussian
to a non-Gaussian profile over propagation. The multi-ring
structure formed at the far-field also contains the information
of the PHI (|η|) of the beam. The number of dark-rings (ring-
dislocations) is as many as |η| of the partially coherent PSVB.
These ring-dislocations appear gradually over propagation.
The dislocations where the DOC is zero depict no correlation
between two transverse points. At these positions, the phase
of DOC becomes undetermined. This transformation suggests
the conversion of phase singularity of PSVBs into correlation
singularities. It is found that the visibility of the interfer-
ence pattern, which is a measure of the modulus of DOC,
depends on both the polarization and coherence properties
at the source-plane [55]. The significance of the outermost
bright ring (the strength of the extreme end of the side-lobes)
increases in a more correlated field having a larger δ value.
In addition, the spread of DOC-distribution is more for a

higher-index partially coherent PSVB due to their inherent
diffraction properties. The elements of the matrix Wp(r, r, z)
[Eqs. (25)–(27)] define the polarization state at the respective
spatial point in the beam cross-section, i.e., the size, shape,
and the orientation of the polarization ellipses. Considering
the equivalence of polarized matrix (W±η

p ) elements with the
spatially varying polarized field at the observation plane to be
composed of Eobs

x (r, z) and Eobs
y (r, z) components, one can

obtain the master equation governing the SOP distribution of
polarization ellipses in the beam cross-section as

Q(r, z)
(
Eobs

x (r, z)
)2 − 2 Re[R(r, z)]Eobs

x (r, z)Eobs
y (r, z)

+ P(r, z)
(
Eobs

y (r, z)
)2 = {Im[R(r, z)]}2. (37)

It is noteworthy that here Eobs
x (r, z) and Eobs

y (r, z) are time-
independent parts of the complex monochromatic component
at each of the spatial points. P(r, z), Q(r, z), and R(r, z)
are defined by Eqs. (25)–(27). The phase difference at the
respective positions is given by �φ = arg[R(r, z)]. Now to
obtain the azimuth (γ ) and the magnitude of major (A+) and
minor (A−) axes for each of the polarization ellipses in the
distribution, we will eliminate the second term by arbitrary
rotation of the coordinate system (with respect to each trans-
verse position).

After some simplification, one can get the parameters
characterizing the inhomogeneous polarization ellipse
distribution as

γ (r, z) = 1

2
tan−1

(
2 Re

[
W ±η

xy

]
W ±η

xx − W ±η
yy

)
= 1

2
tan−1

(S2

S1

)
, (38)

A2
±(r, z) =

√(
W ±η

xx − W ±η
yy

)2 + 4
∣∣W ±η

xy

∣∣2

2
±

√(
W ±η

xx − W ±η
yy

)2 + 4 Re
[
W ±η

xy
]2

2
.

(39)
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FIG. 4. Far-field DOC characteristics of partially coherent PSVBs having |η| = 1, 2, and 3 respectively. The evolution of the DOC on
propagation is shown as the line-scan at z = 0, 100, 200, and 300 mm. The input spatial coherence length is considered to be δ = 2.3 mm (red
curve) and δ = 1.2 mm (black curve). The focused DOC contains ring-dislocations (= |η|), which are shown as insets.

Here, the arguments (r, z) of Wαβ are omitted due to space
constraints. It is seen that the azimuth in the observation plane
is half of the Stokes phase, and the magnitude of the respective
minor axis is zero over the entire beam cross-section. This
implies that the polarization distribution is invariant on
changing the input spatial correlation of an isotropic source
(δxx = δyy = δxy = δ). In Fig. 5, the polarization distributions
and degeneracies present in the PSVBs are shown for a fixed
δ = 1.2 mm. For all four types of partially coherent PSVBs of
a fixed η, the focused intensity profile, Stokes intensity profile,
DOP distribution, and DOC distribution are degenerate. Ac-
tually, these distributions are dependent upon the OAM states

of the superposing beams [see Eq. (1)]. The invariant profile
of the Stokes intensity distribution (although the magnitude
deteriorates uniformly) indicates that the polarization vortices
are preserved in the polarized part of the intensity in this
process of coherence-induced degradation. The charge (σ12)
of the Stokes phase vortex depicts the magnitude and polarity
of the partially coherent PSVB. For a higher-index partially
coherent PSVB, the SOP distribution is flower (spider-web)
patterned for positive (negative) polarity of η, and the
number of petals (sector-of-web) is 2[η − 1] (2[η + 1]). The
invariance of SOP distribution suggests that one can control
the longitudinal and transverse trapping ranges of the particles
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FIG. 5. Schematic describing the inherent degeneracies present in the partially coherent PSVBs. Beams with |η| = 1, 2, and 3 are
considered to carry out this study. The SOP distributions and the Stokes phases of the polarized component of partially coherent PSVBs
for all four types of V-point polarization singularities are shown. The SOP distribution is preserved in the polarized part of the beam even on
reducing the spatial coherence length (δ = 1.2 mm) of the beam.

through the input spatial coherence length, appropriate beam
index (η), and type (SOP distribution) [36].

III. SYNTHESIS OF PARTIALLY COHERENT PSVBs

The schematic of our experimental setup used to generate
and investigate the statistical properties of partially coherent
PSVBs is shown in Fig. 6. A linearly polarized light-beam of a
He-Ne laser (λ = 632.8 nm) is collimated with a combination
of MO-PH and lens L1. The collimated beam is then directed
by lens L2 toward a rotating ground glass diffuser (RGGD)
to obtain a spatially incoherent light source. The RGGD and
spatially varying wave-plate (SWP) are placed at the front

and back focal plane of lens L3, respectively, such that a
partially spatially coherent beam falls at the SWP [59]. The
SWP embeds the requisite polarization distribution on the
incoming beam while maintaining unit-DOP across the beam
profile. The spatial coherence length at SWP can be calculated
from δ = 3.832λ f3

2πd [59], where λ is the wavelength of light, f3

is the focal length of lens L3, and d is the beam-size at the
diffuser plane. Partially coherent light with different spatial
coherence length is obtained by varying the beam-size (d) at
the diffuser plane by translating lens L2. The generated beam
is then focused by a lens L4 of focal length f4 = 300 mm to
study its far-field propagation properties. The input polarizer
is rotated by π

2 in order to obtain the counterpart of the or-

FIG. 6. Schematic of the experimental setup used to synthesize and investigate the far-field propagation characteristics of partially coherent
PSVBs. Abbreviations are as follows: L1, L2, L3, L4, L5: lens; MO: microscope objective; PH: pinhole; P: polarizer; SWP: spatially varying
wave plate; HWP: half-wave plate; RGGD: rotating ground glass diffuser; CCD: charged coupled device; and SC: Stokes camera. Translating
lens L2 provides the control over the spatial coherence length of the generated partially coherent PSVBs. The SOP distribution of the output
beam is governed by the orientation of the polarizer and the HWP. The PSVB of |η| = 3 is generated using two SWPs of |η| = 1 and 2 in
concatenation with a HWP as shown in the inset (yellow background). The SC plane is imaged onto the CCD camera using the configuration
shown in the green-background inset. RGGD is replaced with a beam profiler to measure the focal spot size (pink background inset).
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FIG. 7. Experimental plots of focused intensity of partially coherent PSVBs of PHI |η| = 1 (cyan background), |η| = 2 (yellow back-
ground), and |η| = 1 (green background) for different values of δ. The insets encircled with red and yellow are the polarized and unpolarized
parts of the total intensity. The beam-shaping aspect with reducing δ can be readily observed. The transformation from a doughnut to a Gaussian
beam profile occurs slowly for higher η partially coherent PSVBs.

thogonal pair (type I ↔ type III) of the respective PSVBs. An
additional half-wave plate (HWP) is used to generate negative
polarity counterparts (type II and type IV) of the PSVBs [60].
In this way, all four types of partially coherent PSVBs of a
particular |η| are obtained. The Stokes parameters (S j ; j = 0
to 3) of the partially coherent PSVBs are recorded by Stokes
camera (SALSA, Bossa Nova Technologies, USA) having a
resolution of 1040 × 1040 pixels. PSVBs of |η| = 1 and 2
are generated by directly illuminating SWP of order 1 and 2,
respectively (SWP, Model: WPV10L-633, Thorlabs), while a
PSVB of |η| = 3 is generated using SWPs of η = 1 and 2 in
concatenation with HWP (see the inset of Fig. 6). The fast axis
angle distributions of SWP having η = 1 and 2 are shown in
the inset of Fig. 6.

IV. EXPERIMENTAL: PROPAGATION
CHARACTERISTICS OF PARTIALLY COHERENT PSVBs

In this section, we present our experimental results pertain-
ing to the statistical properties (intensity distribution, DOP
profile, DOC profile, and SOP distributions) of the partially
coherent PSVBs and we justify/verify the claims made on
the basis of theoretical formulation detailed in Sec. II. The
experimentally obtained focused intensity profiles of partially
coherent PSVBs having |η| = 1, 2, and 3 with input spatial
coherence length as a variable parameter are shown in Fig. 7.
The intensity profiles of the corresponding polarized (red
borderline) and unpolarized (yellow borderline) parts are also

plotted. With the decrease in spatial coherence length, the
intensity profile changes from doughnut to flat-top and finally
evolves to Gaussian distribution. Different beam profiles of
PSVBs are useful for different applications; for example, flat-
top PSVBs show their usefulness in high-resolution confocal
microscopy [61], and doughnut beam profiles are effective
in particle trapping. For all |η|’s, the intensity profile of the
polarized part remains a doughnut. On the other hand, the
unpolarized part has a Gaussian distribution for |η| = 1 irre-
spective of the value of input spatial coherence length. But,
for |η| = 2 and 3, the unpolarized part has a dark-core at
the center that keeps on shrinking with the decreasing input
spatial coherence length and finally acquires a Gaussian dis-
tribution. A similar effect has been observed with varying z
as depicted in Fig. 8 and theoretically claimed in Fig. 1. A
detailed explanation of observed intensity profile variation is
given in Sec. II. The experimentally obtained transverse DOP
profiles for |η| = 1, 2, and 3 with propagation distances are
shown in Fig. 9. It can be observed that the DOP-variation
is insignificant for short distances. But near to the focus
(�270 mm), the maximum DOP value is governed by the
input spatial coherence length [45]. For the presented result
in Fig. 9 with δ = 1.8 mm, the maximum values of DOP
are obtained as 0.35, 0.18, and 0.08 for |η| = 1, 2, and 3,
respectively. As predicted from the theory, the width of the
DOP-dip increases with the increasing PHI of the partially
coherent PSVB.
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FIG. 8. Changes observed in the intensity profile in far-field
propagation of partially coherent PSVBs (|η| = 1, 2, and 3) are
presented as the line-scan of intensity distribution for z = 260, 280,
and 300 mm. The input spatial coherence length was fixed at δ =
2.3 mm. Here the solid line is the predicted theoretical profile, and
the filled spheres are the experimentally obtained data points. The
profile transition rate from a doughnut to a Gaussian is slower for a
higher-index partially coherent PSVB.

The dotted inset (green background in Fig. 6) of the experi-
mental setup is used to measure the degree of coherence of the
focused partially coherent PSVB. The focused beam is passed
through a lens L5 and the instantaneous intensity is recorded
using a charge-coupled device (CCD). The distance from
Stokes camera (SC) plane to lens (L5) and from lens to CCD is
kept at 2 f5 to image the SC plane onto the CCD camera. In this
imaging process, the degree of coherence at the CCD plane
is the same as that of the SC plane. In our experiment, we
have recorded 2000 instantaneous and continuous images for
a particular value of input coherence length δ = 2.3 mm. The
recorded images are then processed in MATLAB to determine
the square of the DOC. The square of the DOC is obtained
using the formula [43]

|μ(r1, r2, f5)|2 =
1
N

∑N
u=1 I (u)(x1, y1)I (u)(0, 0)

I (v)
avg(x1, y1)I (v)

avg(0, 0)
− 1, (40)

where I (u)
avg(x1, y1) = 1

N

∑N
u=1 I (u)(x1, y1) and I (u)

avg(0, 0) =
1
N

∑N
u=1 I (u)(0, 0). The modulus of DOC of the focused

partially coherent PSVBs with |η| = 1, 2 and 3 is plotted in
Fig. 10. As detailed in Sec. II, DOC distribution shows ring
dislocations that are equivalent to |η| of the beam. Next, in
Fig. 11, the experimentally obtained SOP distributions and
Stokes phases of all four types of partially coherent PSVB
of η = 1, 2, and 3 are shown for two different δ values (3.8

FIG. 9. Changes observed in the DOP in far-field propagation of
partially coherent PSVBs (|η| = 1, 2, and 3) are presented as the line
profile of a DOP for z = 0, 270, and 300 mm. These DOP profiles
are extracted for the input δ = 2.3 mm. Here the solid line is the
predicted theoretical profile, and filled spheres are the experimentally
obtained data points. It can be observed that the depolarization of
higher-index partially coherent PSVBs is more rapid with a wider
zero-dip profile.

and 2.3 mm). Notably, all four types of partially coherent
PSVBs of a particular |η| corresponding to a fixed δ have
a degenerate intensity and Stokes-intensity distributions. It
can be readily observed that the SOP distribution remains
invariant upon changing the input spatial coherence length.
This suggests that the phase and polarization vortices are
preserved in the polarized part of the intensity. In addition, it
is anticipated that the invariant polarization distribution with
a tunable transverse-DOP can provide an additional degree
of freedom in applications projected for such PSVBs in a
classical [27,36,62] and a quantum domain [63].

V. CONCLUSION

In this article, we have investigated the statistical proper-
ties of partially coherent polarization singular vector beams
of various indices |η| = 1, 2, and 3. The well-known four
types of V-point polarization singular beam are considered
corresponding to a particular |η| to carry out this study. A
generalized analytical theoretical framework for the cross-
spectral density matrix is developed to investigate the various
statistical properties, namely intensity, total power, degree of
polarization, degree of coherence, and state of polarization
distributions for the whole family of partially coherent PSVBs
propagating through a paraxial ABCD optical system. The
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FIG. 10. Distribution of the degree of coherence of different index partially coherent PSVBs (|η| = 1, 2, and 3) having δ = 2.5 mm under
far-field propagation.

intensity modulation and the coherence-induced depolariza-
tion in partially coherent PSVBs are found to be dependent
on both the input spatial coherence length and PHI (|η|)
of the beam. Also, the DOP profile of a partially coherent
PSVB beam on propagation is found to be much different
from the isotropic phase vortex beams and vortex-induced

radially polarized beams. It is observed that the Gaussian
profile of DOC distribution at the source plane evolves into
a non-Gaussian profile at the focus. The far-field DOC car-
ries ring-dislocations that are equal to the magnitude of the
PHI of the input beam. It is found that in this process of
coherence-induced depolarization, the Stokes vortices (S12)

FIG. 11. Experimental results: Degenerate distributions of partially coherent PSVBs of |η| = 1, 2, and 3, respectively. The SOP distribu-
tions of all four types of V-point polarization singularity for a particular |η| are also presented corresponding to δ1 = 3.3 mm and δ2 = 2.3 mm.
The invariance of SOP-distribution on reducing field-correlation (δ) can be observed.
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are preserved. The depolarization only results in an enhance-
ment of the unpolarized component that finally modulates the
beam-shape and the DOP profile. The associated degeneracy
in the intensity profile, the Stokes intensity distribution, and
the DOP and DOC profiles for the beams carrying different
PHI (or SOP distribution) are also discussed to complete this
study. Our results will be useful for trapping and rotating
particles, free-space optical communications, and detection of
phase objects [18,19,26].
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