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Nonreciprocal phonon laser in a spinning microwave magnomechanical system
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A nonreciprocal phonon laser in a spinning microwave magnomechanical system is proposed. The system
consists of a spinning microwave resonator coupled with an yttrium iron garnet sphere. The Fizeau light-dragging
effect caused by the spinning of the resonator leads to a significant difference in the mechanical gain and the
threshold power for driving the resonator from the opposite directions, which results in a nonreciprocal phonon
laser. The nonreciprocal phonon laser is highly tunable by the spinning speed and direction of the resonator.
These results provide an experimentally feasible approach for exploring various nonreciprocal effects in cavity
magnomechanical systems, and may find applications in photon, magnon, and phonon manipulations in many-
body coupled systems.
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I. INTRODUCTION

Since the realization of the first laser by Maiman in 1960
[1], lasers have spawned the emergence of various new re-
search areas and the discovery of miscellaneous new physical
phenomena. Inspired by optical lasers, many researchers have
drawn their attentions to phonon lasers (i.e., phonon amplifi-
cation by stimulated emission) due to the similarity between
the bosonic photons and phonons. As early as in 2003, Chen
and Khurgin proposed the possibility of realizing phonon
lasers in a practical scheme [2]. Soon after, phonon lasers
have been experimentally achieved in single trapped ions [3],
semiconductor superlattices [4], and cavity optomechanical
systems [5]. Phonon lasers provide an important platform
for quantum acoustics [6,7], functional phononic devices
[8,9], and nondestructive precision measurements or imaging
[10–12].

Nonreciprocal transmission and amplification of phonons
are of great interest in energy and mechanical engineer-
ing [13–18], such as phononic diodes, acoustic sensing,
and phonon-based information processing. Recently, by cou-
pling an optomechanical resonator with a spinning optical
resonator, a nonreciprocal phonon laser was theoretically pro-
posed [19]. However, the proposed scheme is technically
challenging, as it requires spinning the optical resonator while
maintaining a stable inter-cavity coupling strength. Thus, non-
reciprocal phonon laser designs with improved experimental
feasibility are highly desired.

Spinning magnomechanical microcavities may provide a
promising alternative. Yttrium iron garnet (YIG) is one of the
widely adopted ferrimagnetic materials in magnomechanical
systems due to its high spin density and low damping rate
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[20]. Strong and even ultrastrong coupling between the Kittel
mode [21] (the ferromagnetic mode) in a YIG sphere and the
microwave cavity photons have been experimentally achieved
[20,22–27], which results in cavity-magnon polaritons. Be-
sides, a YIG sphere can also serve as an excellent mechanical
resonator [28], in which magnon and phonon modes are cou-
pled via a nonlinear magnetostrictive interaction. In contrast
to the radiation force [29–32], electrostatic force [33,34],
and piezoelectric force [35] used for the photon-phonon cou-
pling in cavity opto- and electromechanical systems, such a
radiation-pressure-like magnetiostrictive force is highly tun-
able via external magnetic fields, providing new opportunities
to achieve actively controllable hybrid quantum systems [28].
Recently, nonreciprocal transmission and entanglement in
magnomechanical systems have been theoretically proposed
[36] by exploiting the Fizeau light-dragging effect [37,38].

The proposed nonreciprocal phonon laser is composed of
a spinning microwave magnomechanical system with a YIG
sphere placed inside. Such a spinning resonator device with
whispering gallery modes (WGMs) has already proved to
be experimentally accessible [37]. The phonon lasing can
be enhanced for driving the system from one direction and
suppressed for driving from the opposite direction. This non-
reciprocity originates from the Fizeau light-dragging effect
by spinning the microcavity, which modulates both the me-
chanical gain and threshold power. Therefore, a highly tunable
nonreciprocal phonon laser can be achieved by adjusting the
spinning speed and direction of the resonantor.

II. THEORETICAL MODEL

A schematic of the cavity magnomechanical system is
shown in Fig. 1(a). It consists of a microwave resonator
with resonance frequency ωa and a YIG sphere placed inside
near the maximum magnetic field of the system. The WGM
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FIG. 1. (a) Schematic of the system. Driving the resonator from
the left (y axis) results in a Fizeau shift �F > 0, while �F < 0
for driving from the right (−y axis). (b) Interactions among the
subsystems. (c) The equivalent two-level phonon laser energy-level
diagram.

geometry that support two counterpropagating modes is crit-
ical to introduce the Fizeau shift and noneciprocity. The YIG
sphere supports both the magnon and phonon modes [28].
By spinning the resonator along the clockwise direction, the
microwave circulating in the resonator undergoes a Fizeau
shift [37]

�F = ±�
nrωa

c

(
1 − 1

n2
− λ

n

dn

dλ

)
. (1)

Here, � is the angular velocity of the spinning resonantor;
n and r are the refractive index and radius of the resonator,
respectively. c and λ are the speed of the light and the wave-
length of the microwave photon in vacuum, respectively. The
dispersion term (λ/n)(dn/dλ) is typically small and thus neg-
ligible [19,37]. �F > 0 denotes driving the resonator from
the left, corresponding to the situation in which the resonator
spinning and microwave rotation are along the same direction
[see Fig. 1(a)]. In contrast, driving the resonator from the
right results in �F < 0, where the resonator spinning and
microwave rotation are in opposite directions.

The Hamiltonian of the system in the frame rotating at the
cavity drive frequency ωd can be written as

H = h̄(−�a − �F)a†a − h̄�mm†m + h̄ωbb†b

+ h̄gma(m†a + a†m) + h̄gmbm†m(b + b†)

+ ih̄εd (a† − a) (2)

with the rotating-wave approximation (see Appendix A).
Here, a (a†) and b (b†) are the annihilation (creation) oper-
ators of the cavity photon and phonon modes, respectively.
The annihilation and creation operators of the magnon mode
are denoted as m and m†, respectively. ωb and ωm represent
the resonance frequencies of phonon and magnon modes,
respectively. �a = ωd − ωa (�m = ωd − ωm) is the detuning
between the driving field and the photon (magnon) mode.

The first term of the Hamiltonian in Eq. (2) describes the
cavity photon mode in the spinning resonator, while the sec-
ond and third terms describe the phonon and magnon modes,
respectively. The fourth (fifth) term denotes the coupling be-
tween photon (phonon) and magnon modes with the coupling
strength gma (gmb). In contrast to the linear magnon-photon
coupling, the magnon and phonon modes are coupled via a
nonlinear magnetostrictive interaction. A microwave driving
field with the amplitude εd = √

2κaPin/h̄ωd is applied to the
resonator, and is described by the last term in Eq. (2). Here, κa

is the decay rate of the cavity mode, and Pin is the input power
of the driving field.

The steady-state solutions of the system can be obtained as
(see Appendix A)

bs = igmb|ms|2
−iωb − κb

,

as = igmams − εd

i�a + i�F − κa
,

ms = igmaas

(i�m − κm) − igmb(bs + b∗
s )

. (3)

Here, κb is the dissipation rate of the mechanical mode, and
κm is the decay rate of the magnon mode. The steady-state
mechanical displacement xs is proportional to

bs + b∗
s = i�m − κm

igmb
+ gma(εd − igmams)

gmbms(i�a + i�F − κa)
, (4)

which clearly depends on the Fizeau shift �F. A mechanical
displacement amplification factor η>,< is defined to describe
the enhanced steady-state mechanical displacement of the
spinning resonator compared to the static resonator,

η>,< = xs(�F > 0,< 0)

xs(�F = 0)
. (5)

Using the supermode operators 	± = (a ± m)/
√

2, the
Hamiltonian of the system can be rewritten as

H = h̄ω+	
†
+	+ + h̄ω−	

†
−	− + h̄ωbb†b

− h̄gmb

2
(	†

+	−b + b†	
†
−	+)

+ h̄

2
(	†

+	− + 	
†
−	+)(�m − �a − �F)

+ i
h̄εd√

2
[(	†

+ + 	
†
−) − (	+ + 	−)] (6)

after applying the rotating-wave approximation. The first and
second terms describe the Hamiltonian of the supermodes 	+
and 	− with the frequencies ω+ = −(�a + �m + �F)/2 +
gma and ω− = −(�a + �m + �F)/2 − gma, respectively. The
third term describes the absorption and emission of phonons
between two nondegenerate supermodes 	±. The interaction
of the system thus can be understood by the energy diagram
in Fig. 1(c), analogous to a photon laser based on two-level
atomic ensembles [39,40]. The fourth term adds a nonrecip-
rocal detuning between the magnon and the cavity photon,
which modifies the supermode energies and thus the phonon
lasing process [5,19,41]. The last term denotes the interactions
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between the driving field and the two nondegenerate super-
modes 	±.

The mechanical gain G can be obtained from the Hamilto-
nian in Eq. (6) (see Appendix B):

G = g2
mbγ δn/κb

8γ 2 + 2(2gma − ωb)2

− g2
mbε

2
dγ (�m + �a + �F)(2gma − ωb)/κb

[16γ 2 + 4(2gma − ωb)2][β2 + γ 2(�m + �a + �F)2]
.

(7)

Here, γ = (κa + κm)/2, and δn = 	
†
+	+ − 	

†
−	− is the

population difference between the supermodes 	+ and
	−. β = β0 − �m�F − gmb(�m − �a − �F) Re[b]/2, β0 =
g2

ma + γ 2 − �m�a + g2
mbnb/4, and nb = b†b is the phonon

number.
The first term of the mechanical gain G is proportional to

the population inversion δn, while the second term originates
from the driving terms for the unpaired supermode operators
in Eq. (B1) [39]. Note that both δn and the second term
of G depend on �F, which is quite different from the con-
ventional phonon laser system without spinning components
[5,39,41]. Thus, different mechanical gains G can be obtained
for the �F > 0 and �F < 0 cases, which makes it possible
to achieve a nonreciprocal phonon laser. With the mechanical
gain G > 1, the phonon mode can be amplified [see Eq. (B4)].
The threshold condition for phonon lasing is G = 1, and the
stimulated emitted phonon number is

Nb = exp[2(G − 1)]. (8)

The corresponding threshold pump power Pth can be evaluated
with the threshold condition and Eq. (7).

III. RESULTS AND DISCUSSION

The supermode operators are generally adopted for the
coupled degenerate resonators [5,19,39,41–43]. Here, the
magnon and photon modes are assumed to be in resonance,
that is �a = �m = �. The steady-state populations of pho-
ton and magnon modes are investigated as a function of the
normalized detuning �/ωb, as shown in Figs. 2(a) and 2(b),
respectively. It is found that different driving directions (the
left or right) result in different steady-state magnon numbers
|ms|2 and photon numbers |as|2. Compared with the stationary
magnomechanical system (i.e., no spinning with �F = 0), the
magnon number |ms|2 (photon number |as|2) of the spinning
magnomechanical system increases (decreases) for �F > 0,
while it decreases (increases) for �F < 0. This variations
of magnon number then modifies the magnetostrictive force
(radiation-pressure-like). Therefore, the magnon-phonon cou-
pling strength can be tuned by the driving direction (or the
spinning direction) and the spinning speed of the resonator.
As a result, the steady-state mechanical displacement xs of
the spinning magnomechanical system can be enhanced (i.e.,
η>,< > 1), as shown in Fig. 2(c). This indicates the enhance-
ment of photon generation in the spinning system.

In Fig. 3(a), the mechanical gain G is plotted as the func-
tion of the normalized detuning �/ωb and the magnon-photon
coupling strength gma for �F < 0. The mechanical gain G > 1
is available with the proper selection of �a and gma, making
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FIG. 2. The (a) steady-state photon number |as|2, (b) steady-state
magnon number |ms|2, and (c) mechanical amplification factor η>,<

as a function of the normalized detuning �/ωb. Here, a set of ex-
perimentally feasible values are used [28]: ωb/2π = 11.42 MHz,
gma = 0.5ωb, gmb/2π = 4.1 mHz, 2κa/2π = 3.35 MHz, 2κm/2π =
1.12 MHz, 2κb/2π = 300 Hz, Pin = 10 mW, and ωd/2π = 8 GHz.
The Fizeau shift is |�F| = 0.12ωb.

phonon lasing possible. A maximum mechanical gain G ≈
5.6 is obtained with gma/ωb = 0.49 and �/ωb = 0.55. Specif-
ically, the mechanical gain G as a function of the normalized
detuning �/ωb with gma/ωb = 0.49 is shown in Fig. 3(b).
For the stationary magnomechanical system (�F = 0), the
mechanical gain G is always the same no matter whether the
resonator is driven from the left or the right. The maximum G
is located at �/ωb ≈ 0.5, as shown in Fig. 3(b). By spinning
the resonator, the peak position of the mechanical gain moves
towards the left (right) with �F > 0 (�F < 0). Then by ad-
justing the detuning �, we can get enhanced mechanical gain
for driving the resonator from one direction and suppressed
mechanical gain for driving from the opposite direction. For
example, within the normalized detuning �/ωb in the range
from 0.68 to 0.76, the mechanical gain G is enhanced for
the �F < 0 case, while it is suppressed for the �F > 0 case.
This spinning-induced direction-dependent mechanical gain
can be attributed to the nonreciprocal microwave transmis-
sion, which was theoretically investigated in a recent work
[36]. This nonreciprocal microwave transmission results in
different magnetostrictive forces for driving the resonator in
opposite directions, which in turn shows enhanced or sup-
pressed mechanical gain for different driving directions.
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chanical gain G as a function of the normalized detuning �/ωb with
gma/ωb = 0.49. The other parameters are the same as those in Fig. 2.

With the enhanced mechanical gain G > 1, the phonon
mode can be amplified. The stimulated emitted phonon num-
ber Nb as a function of the pump power Pin with gma/ωb =
0.49 and �/ωb = 0.7 is shown in Fig. 4(a). The choice of
�/ωb = 0.7 gives G > 1 for the �F < 0 case and G < 1 for
the �F > 0 case. It is clearly seen that the Fizeau shift has a
significant impact on the threshold power Pth. For the station-
ary case (�F = 0), the threshold power is about 11.44 mW.
The threshold power is then reduced to 5.99 mW by spinning
the resonator with �F < 0, which is attributed to the enhanced
mechanical gain [see Fig. 3(b)]. In contrast, the mechanical
gain for the �F > 0 case is suppressed, and a larger pump
power (∼18.98 mW) is required to realize the phonon lasing.
In addition, the threshold power Pth can be further reduced to
1.75 mW when the maximum mechanical gain is achieved at
�/ωb = 0.55 for the �F < 0 case [see Fig. 3(b)].

The Fizeau shift �F can be easily tuned by adjusting the
spinning speed � [see Eq. (1)]. The effect of the Fizeau
shift �F on the threshold power Pth is shown in Fig. 4(b).
The threshold power Pth decreases with |�F| for the �F < 0
case and increases for the �F > 0 case. Therefore, lower
threshold power Pth is needed for the �F < 0 case, compared
with the stationary resonator case (�F = 0). For example, the
threshold power is Pth = 4.98 mW with �F/ωb = −0.15. In
contrast, more than two times input power (Pth = 11.43 mW)
is required for the stationary resonator case. For the �F > 0
case, much higher threshold power (Pth = 21.2 mW) is needed
to achieve the phonon lasing due to the suppressed mechanical
gain at �/ωb = 0.7.
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FIG. 4. (a) The stimulated emitted phonon number Nb as a func-

tion of the pump power Pin with the Fizeau shift |�F|/ωb = 0.12. The
threshold power Pth denoted by the thick point is obtained from the
threshold condition. (b) The threshold power Pth as a function of the
Fizeau shift |�F|. Here, gma/ωb = 0.49 and �/ωb = 0.7. The other
parameters are the same as those in Fig. 2.

To clearly see the effect of spinning on the nonreciprocal
phonon laser, an isolation parameter

� = 10 log10
Nb(�F < 0)

Nb(�F > 0)
(9)

is introduced. For a phonon laser without the spinning res-
onator (i.e., a conventional reciprocal phonon laser), the
isolation parameter is � = 0. A nonzero � indicates the
emergence of nonreciprocity in the phonon lasing action. The
isolation parameter � as the function of the Fizeau shift |�F|
and the normalized detuning �/ωb is shown in Fig. 5, in
which only the phonon lasing regime (i.e., Nb � 1) is pre-
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FIG. 5. The isolation parameter � versus the Fizeau shift |�F|
and normalized detuning �/ωb. The black and magenta curves corre-
spond to Nb = 1 for the �F > 0 and �F < 0 cases, respectively. The
white regions denote Nb < 1. Here, gma/ωb = 0.49, and the other
parameters are the same as those in Fig. 2.
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FIG. 6. The threshold power Pth as a function of the normal-
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�a )/ωb. Here, �F/ωb = −0.12, gma/ωb = 0.49, and �a/ωb = 0.7.
The other parameters are the same as those in Fig. 2.

sented. A nonreciprocal phonon laser can be obtained by
adjusting the normalized detuning, and the maximum isola-
tion rate � ∼ 34 dB can be achieved. In addition, the regimes
where phonon lasing only occurs for one driving direction
but not the opposite can easily be found in Fig. 5. Therefore,
phonon lasing can be readily switched on and off by adjusting
the driving direction or the spinning direction of the resonator.

The magnon-photon coupling strength gma depends on the
cavity mode volume, magnetic dipole moment, and the po-
sition of YIG sphere in the resonator, which may vary in
different cavity designs. However, we should note that, the
nonreciprocity is insensitive to the absolute value of gma.
Although a smaller gma results in smaller mechanical gain
and higher threshold power for the system, a nonreciprocal
phonon laser can still be achieved (see Fig. 7). In an experi-
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�/ωb = 0.32. The other parameters are the same as those in Fig. 2.
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FIG. 8. The mechanical gain G as a function of the normalized
detuning �/ωb with (a) κa/κa0 = 0.5, and (b) κa/κa0 = 2. (c) The
threshold power Pth as a function of the normalized decay rate of
photon mode κa/κa0 with �/ωb = 0.7. Here, 2κa0/2π = 3.35 MHz,
gma/ωb = 0.49, and the other parameters are the same as those in
Fig. 2.

ment, the decay rate of the photon mode κa can be engineered,
while the decay rate of magnon mode κm is given by the
material system. The effect of κa and κm on the mechanical
gain and threshold power are shown in Figs. 8 and 9, respec-
tively. It is found that a larger mechanical gain can be achieved
with smaller κa (κm). The nonreciprocity in the phonon lasing
action can still be obtained with smaller or larger κa (κm).
The nonreciprocity is introduced by the Fizeau shift, which
is proportional to the radius and the spinning speed of the
resonator. For example, in a microwave resonator with radius
of 6 cm and the relative permittivity of 80 [44], a spinning
speed of 12.9 kHz gives rise to the Fizeau shift of 0.1ωb.
As a much smaller Fizeau shift (e.g., 0.03ωb) can already
introduce a pronounced nonreciprocity sufficient for phonon
laser applications [see Fig. 4(b)], the spinning speed required
in this proposal is experimentally feasible [37].

The magnon and photon modes are assumed have the same
frequencies (i.e., �a = �m = �) in the studies above. Noted
that the magnon frequency is tunable with the external bias
magnetic field [20,28]. Thus the threshold power Pth can be
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rate of magnon mode κm/κm0 with �/ωb = 0.7. Here, 2κm0/2π =
1.12 MHz, gma/ωb = 0.49, and the other parameters are the same as
those in Fig. 2.

further tuned by controlling the external bias magnetic field
(i.e., the magnon mode detuning �m), as shown in Fig. 6. For
the �F < 0 case, the threshold power Pth is reduced to ∼3.68
mW with �m = �a + �F.

IV. CONCLUSION

In summary, we have studied a nonreciprocal phonon
laser in a spinning microwave magnomechanical system. By
spinning the microwave resonator, the Fizeau light-dragging
effect is introduced into the system, which significantly mod-
ifies the steady-state magnon number, photon number, and
the steady-state mechanical displacement. The mechanical
gain for phonon lasing in the spinning microwave magnome-
chanical system depends on the driving direction, making
it possible to achieve a nonreciprocal phonon laser. The
mechanical gain and the threshold power can be actively mod-
ulated by adjusting the spinning speed, spinning direction or
external bias magnetic field. These results provide a differ-
ent route for manipulating cavity magnomechanical systems

through the Fizeau light-dragging effect, and may lead to
applications in various acoustic devices.
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APPENDIX A: SYSTEM HAMILTONIAN AND THE
STEADY-STATE SOLUTIONS

The Hamiltonian of the investigated system can be written
as

H = h̄(ωa − �F)a†a + h̄ωbb†b + h̄ωmm†m

+ h̄gma(a + a†)(m + m†) + h̄gmbm†m(b + b†)

+ ih̄εd (a†e−iωd t − aeiωd t ). (A1)

Here, the first term describes the cavity photon mode in the
spinning resonator, while the second and third terms describe
the phonon and magnon modes, respectively. The fourth term
denotes the coupling between photon and magnon modes with
the coupling strength gma. The phonon-magnon interaction
with the coupling strength gmb arising from the magnetostric-
tive interaction is described by the fifth term. The last term
describes the interaction between the microwave driving field
and the resonator.

In the frame rotating at the cavity drive frequency ωd , the
Hamiltonian in Eq. (A1) is given as

H = h̄(−�a − �F)a†a − h̄�mm†m + h̄ωbb†b

+ h̄gma(m†a + a†m) + h̄gmbm†m(b + b†)

+ ih̄εd (a† − a) (A2)

with �a = ωd − ωa and �m = ωd − ωm. Here, the rotating-
wave approximation is adopted, in which the term gma(a +
a†)(m + m†) changes to gma(am† + a†m). This approximation
is valid for ωa, ωm � gma, κa, κm.

The quantum Langevin equations of the system are then
given as

ȧ = (i�a + i�F − κa)a − igmam + εd +
√

2κaain,

ṁ = (i�m − κm)m − igmaa − igmbm(b + b†)

+
√

2κmmin,

ḃ = −(iωb + κb)b − igmbm†m +
√

2κbbin. (A3)

Here, ain, min, and bin are the input noise operators affect-
ing the photon, magnon, and mechanical modes, respectively.
With strong driving conditions, the quantum noise terms in
Eq. (A3) can be safely ignored since only the mean-number
behaviors are interested in this work [5,19,41]. The steady-
state solutions of the system can be obtained as

bs = igmb|ms|2
−iωb − κb

, as = igmams − εd

i�a + i�F − κa
,

ms = igmaas

(i�m − κm) − igmb(bs + b∗
s )

. (A4)
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APPENDIX B: MECHANICAL GAIN

The dynamical equations for the supermodes 	± and
phonon mode b can be obtained from Eq. (6):

	̇+ = −(iω+ + γ )	+ + igmb	−b/2

− i(�m − �a − �F)	−/2 + εd/
√

2,

	̇− = −(iω− + γ )	− + igmbb†	+/2

− i(�m − �a − �F)	+/2 + εd/
√

2,

ḃ = −(iωb + κb)b + igmb	
†
−	+/2, (B1)

where γ = (κa + κm)/2.
The above dynamical equations can be rewritten as

ḃ = −(iωb + κb)b + igmb p/2,

ṗ = −2(igma + γ )p + i(�m − �a − �F − gmbb)δn/2

+ (	+ + 	
†
−)εd/

√
2, (B2)

with the definition of the ladder operator p = 	
†
−	+. δn =

	
†
+	+ − 	

†
−	− is the population difference between the su-

permodes 	+ and 	−.
From Eqs. (B1) and (B2), the steady-state values of 	± and

p can be obtained as

	+,s = εd [2iω− + 2γ + igmbb − i(�m − �a − �F)]

2
√

2[β − iγ (�m + �a + �F)]
,

	−,s = εd [2iω+ + 2γ + igmbb† − i(�m − �a − �F)]

2
√

2[β − iγ (�m + �a + �F)]
,

ps = i(�m − �a − �F − gmbb)δn + √
2(	+,s + 	

†
−,s)εd

2i(2gma − ωb) + 4γ
.

(B3)

Here, β = β0 − �m�F − gmb(�m − �a − �F) Re[b]/2,
β0 = g2

ma + γ 2 − �m�a + g2
mbnb/4, and nb = b†b is the

phonon number.
From Eqs. (B2) and (B3), we can get

ḃ = (−iωb − iω′ + G′ − κb)b + D. (B4)

Here,

D = −gmb(�m − �a − �F)δn

8γ + 4i(2gma − ωb)

+ igmbε
2
d [β(γ − igma) + γ�m(�m + �a + �F)]

[4γ + 2i(2gma − ωb)][β2 + γ 2(�m + �a + �F)2]
,

(B5)

ω′ = g2
mb(2gma − ωb)δn

16γ 2 + 4(2gma − ωb)2

+ g2
mbε

2
dγ

2(�m + �a + �F)

[8γ 2 + 2(2gma − ωb)2][β2 + γ 2(�m + �a + �F)2]
,

(B6)
and

G′ = g2
mbγ δn

8γ 2 + 2(2gma − ωb)2

− g2
mbε

2
dγ (�m + �a + �F)(2gma − ωb)

[16γ 2 + 4(2gma − ωb)2][β2 + γ 2(�m + �a + �F)2]
.

(B7)
The mechanical gain G is defined as

G = G′/κb, (B8)

which is the ratio between G′ and the damping rate of the
mechanical mode κb.

APPENDIX C: EFFECT OF gma, κa, AND κm ON THE
MECHANICAL GAIN AND THRESHOLD POWER

The magnon-photon coupling strength gma depends on the
cavity mode volume, magnetic dipole moment, and the po-
sition of YIG sphere in the resonator, which may vary in
different cavity designs. The mechanical gain G as a function
of the normalized detuning �/ωb with smaller magnon-
photon coupling strength gma/ωb = 0.25 is shown in Fig. 7(a).
Compared to the larger gma case in Fig. 3(b), smaller magnon-
photon coupling strength results in smaller mechanical gain
[see Fig. 7(a)]. In addition, a larger pump power is required
for the smaller gma case. However, the nonreciprocal phonon
laser can still be obtained, as shown in Fig. 7(b).

The mechanical gain G as a function of the normalized
detuning �/ωb with different decay rates of photon mode κa

is shown in Figs. 8(a) and 8(b). A larger (smaller) mechanical
gain G can be obtained with smaller (larger) κa as compared
to the results in Fig. 3(b). Similarly, a larger mechanical gain
can also be achieved with smaller κm [see Figs. 8(a) and 8(b)].
For the threshold power, it exhibits a nonlinear response to
κa and a linear response to κm. Although the decay rates of
the photon and magnon modes influence the mechanical gain
and threshold power, the nonreciprocity in the phonon lasing
action can still be obtained.
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