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We demarcate the unstable regimes of superfluids in a Rabi-coupled two-component Bose-Einstein condensate
in the presence of optical lattices. We find that the Rabi coupling can stabilize superfluids. A significant
separation between Landau and dynamical instabilities is presented in a Rabi-coupled Zeeman lattice.
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I. INTRODUCTION

Atomic Bose-Einstein condensates (BECs) loaded into
optical lattices [1] offer versatile and important quantum
many-body platforms [2]. The study on lattice BECs not only
enables good services for purposes of quantum simulation
[3], but also provides fundamental physics which are essen-
tially relevant to the interplay between quantum many-body
interactions and periodic potentials. Among these physics,
lattice superfluidity is of interest [4–19]. It has been predicted
that there are two different mechanisms for the breakdown of
lattice superfluidity [4,9]. They are dynamical and Landau in-
stabilities, both of which are relevant to collective excitations
[4,11,12,20]. In the presence of optical lattices, the sys-
tems feature Bloch band-gap structures associated with Bloch
states. The precise controllability of optical lattices makes
it possible to experimentally load BECs into selected Bloch
states in an arbitrary band [21]. With many-body interactions,
the Bloch state can be characterized by a set of collective
excitations [22,23]. If there are some modes in collective ex-
citations growing up exponentially, the corresponding Bloch
state is dynamically unstable. Although, Landau instability
occurs if some modes in collective excitations possess neg-
ative energies, in this situation, the relevant Bloch state is not
the local minimum of energy functional and is energetically
unstable. Both the instabilities for destroying lattice superflu-
ids have been experimentally confirmed and explored [11,13].

The study of lattice superfluidity has been generalized from
a single-component BEC to multiple components [24–30].
Multicomponent BECs possess more degrees of freedom
comparing with the single component. The presence of in-
tercomponent interactions gives instabilities rich structures
[28] and can stabilize certain Bloch states that are unstable
in single-component analogs [27,30].

In the present paper, we study the breakdown of lat-
tice superfluidity in the two-component BEC that is linearly
and coherently Rabi coupled. Ever since the achievement of
atomic BECs, the Rabi coupling has been an outstandingly
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experimental means to coherently control over population
between components and to introduce new phenomena,
such as bringing topological defects into BECs [31]. De-
pending on the energy splittings between components and
experimental purposes, the Rabi coupling can be experimen-
tally implemented via the interactions between matters and
external fields, including microwave [32], radio-frequency
radiations [33], and lights [34]. Collisional interactions of
two-component BECs do not exchange particles between
components, whereas the Rabi coupling prefers population
balance via components mixing. There is a competition be-
tween interactions and the Rabi coupling. The Rabi-coupled
two-component BECs represent active platforms for explor-
ing nonlinear phenomena [35–51]. In recent experiments,
the Rabi coupling is accompanied by the generation of ar-
tificial spin-orbit coupling [52]. A spin-orbit-coupled and
Rabi-coupled two-component BEC has been loaded into an
optical lattice [53]. Dynamical instability of this joint system
has experimentally and theoretically shown the asymmetry of
superfluidity originating from spin-orbit coupling [53–55].

The breakdown of lattice superfluidity in a Rabi-coupled
BEC is analyzed from Landau and dynamical instabilities.
Three typical configurations of optical lattices are studied,
they are spin-independent lattice, Zeeman lattice, and matter
grating. The interplay among interactions, the Rabi coupling,
and optical lattices generates interesting features in the insta-
bilities of lattice superfluids. We find that the Rabi coupling
can play an important role in stabilizing superfluids which
are unstable in the absence of the Rabi coupling. There is
an obvious competition between the Zeeman lattice and the
Rabi coupling. The coexistence of them results in a particular
translational symmetry, which changes the spectrum in a very
interesting way. Due to this symmetry, the regime of the Lan-
dau instability is significantly separated from the dynamical
instability. This paper is organized as follows. In Sec. II,
we present the theoretical frame for the stability analysis of
nonlinear Bloch states. In Sec. III, we show the stabilization
of superfluids by the Rabi coupling in the spin-independent
optical lattice. The extension of first Brillouin zone and the
significant separation between Landau and dynamical insta-
bilities for the Rabi-coupled Zeeman lattice are demonstrated
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in Sec. IV. In Sec. V, we discuss the instabilities of superfluids
in the Rabi-coupled matter grating, and the conclusion follows
in Sec. VI.

II. MODEL

The dynamics of the Rabi-coupled two-component BEC in
optical lattices is described by the following Gross-Pitaevskii
equation (GPE),

i
∂�1

∂t
= [H1 + v1 cos(x)]�1 + �

2
�2,

i
∂�2

∂t
= [H2 + v2 cos(x)]�2 + �

2
�1, (1)

with

H1 = −1

2

∂2

∂x2
+ g|�1|2 + g12|�2|2,

H2 = −1

2

∂2

∂x2
+ g12|�1|2 + g|�2|2. (2)

The GPE is quasione dimensional on account of the tight
traps in the transversal direction. � = (�1, �2)T ’s are the
two-component wave functions. The optical lattices are mod-
eled as spin dependent; the first component feels the depth of
lattice as v1, and the depth for the second component is v2. The
spin-dependent optical lattices can be experimentally realized
in the hyperfine states |1,−1〉 and |2,−2〉 of 87Rb atoms
by dressing two far-detuned linearly polarized lasers [56,57].
The incident angle between linear polarization of lasers plays
an essential role if the angle vanishes the lattices become
spin independent. Meanwhile, the two hyperfine states can be
coupled by a microwave field [56]. Such coupling causes the
existence of the Rabi coupling in the above GPE. The strength
of the Rabi coupling is �. The mean-field interactions are
characterized by the coefficients gi j which are proportional to
s-wave scattering lengths. For simplicity, we assume the co-
efficients of intracomponent interactions are the same and are
equal to g. The coefficient of intercomponent interactions is
g12. For the convenience of numerical calculations, the GPE is
dimensionless. The unit of energy is 8ER with ER = h̄2k2

L/2m,
where kL is the wave vector of optical lattice lasers, and m is
the mass of the 87Rb atom. The units of coordinate and time

are chosen as 1/2kL and h̄/8ER, respectively. In the presence
of the Rabi coupling, the total atom number

∫ 2π

0 dx(|�1|2 +
|�2|2) is conserved, here the integration is taken over a unit
cell. We renormalize it as 1/(2π )

∫ 2π

0 dx(|�1|2 + |�2|2) = 1.
The superfluidity of our system relates to the stability

of Bloch states. We systematically study the instabilities of
Bloch states to analyze superfluidity breakdown. The Bloch
states are the stationary solutions of the GPE and are defined
as

�(x, t ) = e−iμt+ikx

(
�1(x)
�2(x)

)
, (3)

here, μ is the chemical potential, and k is the quasimo-
mentum with the unit being 2kL. Periodic functions �(x) =
[�1(x),�2(x)]T have the same period as optical lattices
�(x) = �(x + 2π ). It is worth noting that the two compo-
nents have a same quasimomentum k in the presence of the
Rabi coupling.

The stability analysis of the Bloch state is performed by
studying their collective excitations. To proceed, we add per-
turbations into the stationary Bloch state,

�1,2 = e−iμt+ikx[�1,2(x)+ U1,2(x)eiqx−iωt + V ∗
1,2(x)e−iqx+iω∗t ],

where Uj (x) and Vj (x) are perturbation amplitudes, q and
ω are the quasimomentum and energy of perturbations, re-
spectively. The relationship ω(q) is the collective excitation
spectrum of the selected Bloch state e−iμt+ikx�(x). After
substituting the above wave-functions � into the GPE and
keeping only linear terms of perturbation amplitudes, we get
the following Bogoliubov–de Gennes (BdG) equation,

ω

⎛
⎜⎝

U1

V1

U2

V2

⎞
⎟⎠ = HBdG

⎛
⎜⎝

U1

V1

U2

V2

⎞
⎟⎠, (4)

with

HBdG = L + �

2

⎛
⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎠, (5)

and

L =

⎛
⎜⎜⎜⎝

L1(k, q) g�2
1 g12�

∗
2�1 g12�1�2

−g�∗2
1 −L1(−k, q) −g12�

∗
2�

∗
1 −g12�2�

∗
1

g12�
∗
1�2 g12�1�2 L2(k, q) g�2

2

−g12�
∗
1�

∗
2 −g12�1�

∗
2 −g�∗2

2 −L2(−k, q)

⎞
⎟⎟⎟⎠.

Here, L1(k, q) = − 1
2 [ ∂

∂x + i(k + q)]2 + v1 cos(x) − μ +
2g|�1|2 + g12|�2|2 and L2(k, q) = − 1

2 [ ∂
∂x + i(k + q)]2 +

v2 cos(x) − μ + 2g|�2|2 + g12|�1|2. For a given Bloch state
�, we can calculate its collective excitation spectrum ω(q)
by diagonalizing the BdG equation. The Hamiltonian HBdG

in the BdG equation is non-Hermitian. Therefore, there is no
guarantee that eigenvalues ω are real valued. If some modes
in ω become complex, the perturbation amplitudes grow up

exponentially, which indicates that the corresponding Bloch
state � is dynamically unstable. Such dynamical instability
eventually destroys the BEC Bloch states by blowing up
perturbations exponentially.

The Landau instability relates to the collective excitation
spectrum of τzHBdG [4,8,14,17,20,28], where τz = (σz 0

0 σz
)

and σz = (1 0
0 −1). τzHBdG is Hermitian so that its excitation

spectrum is real valued. The collective excitation spectrum
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can be considered as the excited energy above a chosen Bloch
state [4]. If some modes in the spectrum become negative,
the chosen Bloch state is not energetically preferable. Such
energetic instability is named as Landau instability.

For a homogeneous two-component BEC, the competition
between intra- and intercomponent interactions gives rise to
phase separation instability: miscible states are unstable if
γ > 1 with γ = g12/g. In the presence of the Rabi coupling,
phase separation occurs if γ > 1 + �/gn, where n is the
density of the homogeneous BEC [26,42]. The Rabi coupling
dramatically changes the critical condition of the phase sepa-
ration instability. In the following, we study the instabilities
of Bloch states for three different configurations of optical
lattices. In each configuration, we choose two typical sets
of interaction coefficients, γ = 3 and γ = 1/3 in order to
emphasize the role of the Rabi coupling.

III. SPIN-INDEPENDENT LATTICE WITH v1 = v2

When v1 = v2, the lattice is spin independent. The insta-
bilities of Bloch states in the spin-independent lattice without
the Rabi coupling have been investigated [24,26,27]. In the
absence of the Rabi coupling, the two components can carry
different quasimomenta. For the same-quasi-momentum-
carrying Bloch states, the instability with miscible interactions
γ < 1 is analogous to that in the single-component case; all
of them are dynamically unstable with immiscible interac-
tions γ > 1 [24,26,27]. For the different-quasi-momentum-
carrying Bloch states, the instability exhibits rich features
[27].

We analyze the instabilities of Bloch states in the presence
of the Rabi coupling. The spin-independent lattice defines
first Brillouin zone with edges at k = ±1/2. All interaction
coefficients we consider are repulsive. Due to this, nonlinear
Bloch spectrum μ(k) is displaced upwards with respect to the
linear spectrum (at gi j = 0). A typical nonlinear Bloch spec-
trum is demonstrated in Fig. 1(a). Comparing with the linear
spectrum, there is no obvious change in the structure in the
nonlinear spectrum. Figures 1(b) and 1(c) show the profiles of
nonlinear Bloch states in the lowest band at the Brillouin-zone
center and edge, respectively. Two components stay in each
well of cos(x) and spatially overlap. We study the stabil-
ity of these states in the lowest band with quasimomentum
k ∈ (−1/2, 1/2] for different �’s. Two representative results
are shown in Figs. 2(a1) and 2(b1) for g = 0.15, γ = 1/3
and g = 0.05, γ = 3, respectively, with � = 1. For the Bloch
state with a fixed k, the quasimomentum of perturbations q
can choose the values of (−1/2, 1/2]. With the given values
of (q, k), we calculate Eq. (4) and the eigenvalue of τzHBdG to
judge the stability of the corresponding Bloch state. Consid-
ering the symmetry k → −k and q → −q, we only show the
results with parameters (q, k) ∈ [0, 1/2]. On the (q, k) plane,
in Figs. 2(a1) and 2(b1), the stable states are represented by
the light gray areas. Out of the gray areas denote Landau
unstable states, and dark colored areas denote dynamically
unstable modes. The color scale is used to label the growth
rate of the dynamical instability, which is defined as the
maximum of imaginary parts of ω in Eq. (4). The structure
of the dynamical instability on the (q, k) plane is analogous
to two components without the Rabi coupling [24,27]. From
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FIG. 1. Nonlinear spectrum and nonlinear Bloch states in the
Rabi-coupled spin-independent lattice v1 = v2 = 0.5 and � = 1.
(a) Nonlinear spectrum (dotted red lines) and linear spectrum (dashed
blue lines). Only the lowest two bands are shown. Nonlinear spec-
trum at g = 0.15, γ = g12/g = 1/3 and at g = 0.05, γ = 3 are
exactly same. (b) and (c) Nonlinear Bloch states in the lowest band
at Brillouin zone center and edge, respectively [labeled by squares in
(a)].

these two plots, we can know that there is a sharp boundary
between stable and unstable Bloch states. From the bound-
ary, we define the critical quasimomenta kD(L)

c . Beyond the
critical values |k| > kD(L)

c , the Bloch states are dynamically
unstable (Landau unstable). The dependence of kD(L)

c on the

FIG. 2. The instability of Bloch states in the Rabi-coupled spin-
independent lattice v1 = v2 = 0.5. (a1) Unstable regimes on the
(q, k) plane with g = 0.15, γ = 1/3. The light gray area represents
the stable, the out of the light gray area is Landau unstable, and
the dark colored shadow area indicates dynamical instability with
the color scale labeling the amplitude of the growth rate which is
defined as the maximum of the imaginary parts of ω in Eq. (4)
� = 1. (a2) The critical quasimomenta kD,L

c as a function of �

for g = 0.15, γ = 1/3, and kL
c overlap. (b1) and (b2) show same

quantities as in (a1) and (a2), respectively, but in (b1) and (b2) the
parameters are g = 0.05, γ = 3.
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Rabi coupling is presented in Figs. 2(a2) and 2(b2). For the co-
efficients satisfying γ < 1, the Rabi coupling has no effect on
the critical quasimomenta, i.e., kD(L)

c are constant as a function
of the Rabi coupling [see Fig. 2(a2)]. Although, for the case
of γ > 1 shown in Fig. 2(b2), the Rabi coupling changes the
stability of the Bloch states. When � = 0, the critical quasi-
momenta kD(L)

c = 0, this result is consistent with the findings
in Refs. [24,26,27]. The phase-separation instability due to
γ > 1 makes all Bloch states in the lowest bands unstable.
A small � is useless, and the critical quasimomenta remain
at 0. Once � is beyond a threshold value, kD(L)

c ’s abruptly
change into finite constants. Therefore, the Rabi coupling can
overcome the phase-separation instability and can stabilize the
Bloch states around the Brillouin-zone center. Such stabiliza-
tion is reminiscent of the modification of the phase-separation
criterion by the Rabi coupling in homogeneous BECs. Further
increasing �, kD(L)

c always keep constant ≈0.25 which is
the same value as the case of γ < 1 shown in Fig. 2(a2).
The constant value approximately corresponds to the middle
between the Brillouin-zone center and the edge.

IV. ZEEMAN LATTICE WITH v1 = −v2

When v1 = −v2 = v, the lattice is a Zeeman lattice. The
Zeeman lattice has been used to effectively manipulate inter-
actions between components [58]. The instability of Bloch
states in the Zeeman lattice without the Rabi coupling have
been studied in Ref. [25]. It was found that for miscible
interactions γ < 1 the instability is qualitatively similar to the
result in the single-component BEC. For immiscible interac-
tions γ > 1 all Bloch states in the lowest band are unstable
when the depth v is small, and a large depth can stabilize the
Bloch states around the Brillouin-zone center [25].

We study the effect of the Rabi coupling in the Zeeman
lattice. In the spinor basis of � = (�1, �2)T , the linear part
of the Hamiltonian according to Eq. (1) is

Hlin = −1

2

∂2

∂x2
+ v cos(x)σz + �

2
σx, (6)

where σ ’s are Pauli matrices. The noncommutation of Pauli
matrices gives rise to a competition between the Zeeman
lattice and the Rabi coupling in Hlin. The competition endows
a half-period translational symmetry,

T = σxeiπ p̂, (7)

with p̂ = −i∂/∂x and [T, Hlin] = 0 [59,60]. This symme-
try extends the first Brillouin zone to k ∈ (−1, 1]. With the
symmetry, Hlin can be block diagonalized into two uncou-
pled subsystems so that the energy spectrum of Hlin can be
grouped into two sets belonging to the eigenvalues of the
subsystems [60]. Figures 3(a) and 3(b) demonstrate the lowest
two bands of Hlin (dashed blue lines in the bottom). One of
them corresponds to the eigenvalues of one of the subsystems.
Band crossings exist at k = ±1/2 due to the uncoupling of
the subsystems. These two bands are same if displacing the
quasimomentum by 1 because of the standard translational
symmetry ei2π p̂. From Figs. 3(a) and 3(b), it is noted that the
Rabi coupling alters the geometries of the linear spectrum.
Although, the interactions do not dramatically change the
structure of the linear spectrum [see Figs. 3(a) and 3(b)].
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FIG. 3. Nonlinear spectrum and nonlinear Bloch states in the
Rabi-coupled Zeeman lattice v1 = −v2 = 0.5. (a) Linear (dashed
blue lines), nonlinear spectrum with g = 0.05, γ = 3 (dotted red
lines), and with g = 0.15, γ = 1/3 (solid black line). Only the
lowest two bands are shown � = 0.05. (b) demonstrates the same
quantities as in (a) with � = 1. Circles are the explicit dispersion
relation k2/(2m∗) after a proper vertical displacement in the neigh-
borhood of k = 0 with effective mass m∗ = 1. The nonlinear Bloch
states labeled by squares are illustrated in (c)–(f) where black lines
are |�1|2, and dotted red lines are |�2|2.

With the interactions, the band crossings at k = ±1/2 and the
extension of the first Brillouin zone still exist. Nevertheless,
the interactions bring interesting features to the instability of
Bloch states. Taking into account the displacement symmetry
between the lowest two bands, we only focus on the band
having a minimum at k = 0. The typical profiles of nonlin-
ear Bloch states in the focused band labeled by squares in
Fig. 3(b) are presented in Figs. 3(c)–3(f). These Bloch states
fully reflect the symmetry T . The first component is centered
at the minima of cos(x), whereas the second component is
accumulated at the minima of − cos(x). The spatial separa-
tion between the two components at k = 0 is very obvious
[see Figs. 3(c) and 3(e)]. Although at k = 1, there is a small
overlapped part in Figs. 3(d) and 3(f). Even though the first
Brillouin zone is extended, the Bloch states at k = 1 still have
the period of 2π .

The instability results are presented in Fig. 4. In the pres-
ence of the Rabi coupling, the dynamical instability features
a �-like shape on the (q, k) plane [see the colored areas in
Figs. 4(a1) and 4(b1)]. The right-hand branch of � is sim-
ilar with the structure without the Rabi coupling as found
in Ref. [25], and the branch on left-hand side is new due to
the Rabi coupling. The development of dynamically unstable
modes in collective excitations is shown in Fig. 5. The collec-
tive excitation spectrum has the symmetry ω(q) = −ω(−q).
The nonlinear Bloch state at k = 0.5 is dynamically stable,
and all spectra are real valued [see Fig. 5(a)]. For the state at
k = 0.6, the imaginary modes appear around q = 0, which is
demonstrated in Fig. 5(b), this instability corresponds to the
left-hand branch of � shown in Fig. 4(a1). These imaginary
modes move from the q = 0 towards the edges q = ±1/2
with increasing k. At k = 0.7 in Fig. 5(c), more imaginary
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FIG. 4. The instability of Bloch states in the Rabi-coupled Zee-
man lattice, v1 = −v2 = 0.5. All panels show the same quantities as
in Fig. 2.

modes arise, and they correspond to the right-hand branch of
�. From the results in Figs. 4(a1) and 4(b1), it can be seen
that the separation of dynamical (colored areas) and Landau
(out of the gray areas) is very obvious. Such separation is
more evident for the critical quasimomenta kD,L

c shown in
Figs. 4(a2) and 4(b2). In the Rabi-coupled spin-independent
lattice in the previous section, kD

c and kL
c coincide, whereas in

the Zeeman lattice both kD,L
c increase as a function of � when

� is small. When � is large, kD,L
c saturate to different values.

When � = 0, although the half-period translational symmetry
T still commutes with the linear Hamiltonian, it is trivial due
to the uncoupling between two components. The first Bril-
louin zone edges are not extended and are at k = ±1/2. kD

c is
nearby 1/4 laying at the middle between the center and the
edge of the Brillouin zone, which is consistent with the result
in Ref. [25]. In the presence of the Rabi coupling, the first
Brillouin-zone edges are extended at k = ±1. We find that kD

c
follows the extension, and the saturated value is nearby the
middle of the extended edge kD

c ≈ 0.5.
Unlike the dynamical instability, the Landau instability

does not follow the extension of Brillouin zone, kL
c is always

around 0.3, which is demonstrated in Figs. 4(a2) and 4(b2).
We provide a physical insight into the understanding of this

FIG. 5. The collective excitation spectrum ω(q) of Bloch states
at k = 0.5 (a), 0.6 (b), and 0.7 (c) in the Rabi-coupled Zeeman lattice.
The solid blue lines are the real part of ω, and dashed red lines are
the imaginary part.

behavior. In the long-wavelength limit, i.e., k → 0 and q → 0,
the spatial modulation of the Zeeman lattice can be approxi-
mately neglected, and its other effects can be absorbed into
the effective mass m∗ [24]. When � is small, the effective
mass is much larger than the original mass (which is 1 in the
dimensionless unit), m∗ > 1; if � takes a large value m∗ = 1,
this can be seen from the fitting of the spectrum around
k = 0 in Fig. 3(b). In the long-wavelength limit, the system
can be approximately described by the two-coupled spatially
homogeneous BEC with dressed mass m∗. For a two-coupled
homogeneous BEC, it has been analytically uncovered that the
lowest collective excitation branch is independent of �, and
the Landau critical velocity is vL = √

(g + g12)n/(m∗) where
n is the atomic density [42,51]. We approximate the density
by an average density n = 0.5 from the nonlinear Bloch states
shown in Figs. 3(c) and 3(e). Applying m∗ = 1 and n = 0.5,
we know vL = 0.32 using interaction parameters of Fig. 4.
According to the Landau criterion of superfluidity, the critical
value is kL

c = vL [14], and it is independent of � when � takes
dominating values.

The large separation between kL
c and kD

c in Figs. 4(a2) and
4(b2) is due to the extension of the Brillouin zone originating
from the half-period translational symmetry. The separation
between kD

c and kL
c can even exist in a single-component BEC

if the lattice depth is small [4,12], and if the depth is large, two
values coincide [6]. However, the separation is not obvious
in all existed systems studied in literature. Above significant
separation is a unique feature of the Rabi-coupled Zeeman
lattice which provides an ideal platform to study dynamical
and Landau instabilities of lattice superfluids separately.

We also observe that the difference between the cases with
γ = 1/3 in Figs. 4(a1) and 4(a2) and γ = 3 in Figs. 4(b1) and
4(b2) is not obvious. This is because we use a large Zeeman
lattice depth (v = 0.5). The competition between the Zeeman
lattice and the Rabi coupling completely dominates over the
effect of interactions.

V. MATTER GRATING WITH v1 �= 0, v2 = 0

If only the one component feels optical lattices (i.e., v1 �=
0 and v2 = 0), its density is distributed periodically due to
Bloch states. Via the intercomponent interactions, the other
component suffers a matter grating. The instability of Bloch
states in the matter grating without the Rabi coupling has been
thoroughly identified in Ref. [28]. Their two components are
from different species of atoms, so the masses of two com-
ponents are not equal. They found that the phase-separation
instability for γ > 1 still makes all Bloch states unstable and,
furthermore, the dynamical instability has complex structures
on the (q, k) plane [28].

We incorporate the Rabi coupling into the matter grating.
The nonlinear spectrum shown in Fig. 6(a) is very different
from that in the Zeeman lattice (in Fig. 3) even though both
lattices are spin dependent. There is no half-period transla-
tional symmetry in the Rabi-coupled matter grating, so the
first Brillouin zone is k ∈ (−1/2, 1/2]. In fact, the lowest
band is similar to that of the spin-independent lattice demon-
strated in Fig. 1(a). However, the density profiles of Bloch
states are different from the spin-independent case. Two com-
ponents are still centered at the minima of cos(x) but have
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FIG. 6. Nonlinear spectrum and nonlinear Bloch states in the
Rabi-coupled matter grating. v1 = 0.5, v2 = 0, and � = 1. All pan-
els show the same quantities as in Figs. 3(b)–3(f).

different amplitudes. The first component is always larger than
the second component [see Figs. 6(b)–6(e)].

The instability results for � = 1 are described on the (q, k)
plane in Figs. 7(a1) and 7(b1) for γ = 1/3 and γ = 3, re-
spectively. The structures of the instabilities are similar to
these of the spin-independent lattice. However, the critical
quasimomenta of dynamical and Laudau instabilities are not
equal. kD

c is always slightly larger than kL
c , which is presented

in Figs. 7(a2) and 7(b2). kD,L
c increase as a function of �

and then slowly saturate for γ = 1/3, whereas for γ = 3 they
rapidly saturate. In the spinor basis, the lattice corresponds
to v1/2 cos(x) + v1/2 cos(x)σz including a spin-independent
part and a Zeeman lattice part. It looks that the behaviors of
kD,L

c neutralize the features of the spin-independent lattice and
the Zeeman lattice. On the other hand, the energy functional
of interactions and the Rabi coupling are g/2(1 + γ )(|�1|2 +
|�2|2)2 + g/2(1 − γ )〈σz〉2 + �〈σx〉, where 〈σz〉 = |�1|2| −
|�2|2 and 〈σx〉 = �1�

∗
2 + �∗

1 �2. When γ > 1, the minimiza-
tion of the second term in the energy functional needs to
〈σz〉 �= 0. Oppositely, the minimization of the Rabi coupling
prefers to 〈σx〉 �= 0 and 〈σz〉 = 0. However, when γ < 1, the
minimization of the second term requires 〈σz〉 = 0, having the
same purpose as the Rabi coupling. Therefore, the interactions
with γ > 1 and the Rabi coupling constitute a direct competi-
tion. The effect of the Rabi coupling may be more distinct for
γ > 1 and gives rise to the dramatical dependence of kD,L

c on
� in Fig. 7(b2).

VI. CONCLUSION

In conclusion, we systematically demarcate the insta-
bility regimes of lattice superfluids (represented by Bloch
states) for a two-coupled BEC. Without the Rabi coupling,
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FIG. 7. The instability of Bloch states in the Rabi-coupled matter
grating v1 = 0.5 and v2 = 0. All panels show the same quantities as
in Figs. 2 and 4.

the phase-separation instability makes superfluids unstable
both dynamically and energetically. We find that the Rabi
coupling can stabilize superfluids around the Brillouin-zone
center. Such stabilization is very important for experimental
realizations. In experiments, BECs are adiabatically loaded
into optical lattices. The experimental implementation pre-
pares BECs into the lowest-energy state which is at the
Brillouin-zone center. If the lowest-energy state is unstable,
the adiabatic process will destroy loading. The Rabi coupling
is a possible way to make loading successful.

Both dynamical and Landau instabilities may exist in a
same BEC Bloch state [4,6,10,12]. A Bloch state that is
dynamically unstable must be Landau unstable. However,
the Landau unstable Bloch state does not necessarily mean
dynamically unstable. We uncover that there exists a sig-
nificant regime where Bloch states are Landau unstable but
dynamically stable. Such a unique feature is provided by the
Rabi-coupled Zeeman lattice. The extension of the first Bril-
louin zone to double its value is due to a specific half-period
translational symmetry. The regime of dynamical instability
follows the extension. Although, Landau instability conser-
vatively happens around the Brillouin-zone center. Therefore,
the separation between Landau and dynamical instabilities
becomes very significant. The Rabi-coupled Zeeman lattice
represents an outstanding system to identify the structures of
Landau instability which can be separated from dynamical
instability.
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