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Motivated by the recently observed failure of the kinetic theory for the bulk viscosity, we in turn revisit the
shear viscosity and the thermal conductivity of two-component fermions with a zero-range interaction both
in two and three dimensions. In particular, we show that their Kubo formula evaluated exactly in the high-
temperature limit to the lowest order in fugacity is reduced to the linearized Boltzmann equation. Previously,
such a microscopic derivation of the latter was achieved only incompletely corresponding to the relaxation-time
approximation. Here, we complete it by resuming all contributions that are naively higher orders in fugacity
but become comparable in the zero-frequency limit due to the pinch singularity, leading to a self-consistent
equation for a vertex function identical to the linearized Boltzmann equation. We then compute the shear
viscosity and the thermal conductivity in the high-temperature limit for an arbitrary scattering length and find that
the Prandtl number exhibits a nonmonotonic behavior slightly below the constant value in the relaxation-time
approximation.
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I. INTRODUCTION

The BCS-BEC crossover exhibited by two-component
fermions with their scattering length varied has been sub-
jected to comprehensive studies over the past two decades
in ultracold-atom physics [1–4]. In particular, the system at
infinite scattering length is referred to as the unitary Fermi gas
and has been highlighted because of its strong correlation and
scale invariance (nonrelativistic conformality [5–7]). These
two unique aspects are both reflected not only in its universal
thermodynamics but also in its transport properties.

Because the shear viscosity of a dilute gas tends to be
small as the interaction is strengthened, its smallness serves
as a measure of strong correlation. The shear viscosity of
the unitary Fermi gas was measured experimentally [8–11]
and found to be close to the conjectured quantum-mechanical
lower bound [12]. On the other hand, the bulk viscosity
of the unitary Fermi gas vanishes identically because of its
conformality [13]. Therefore, the bulk viscosity serves as
a measure of conformality breaking and its vanishment for
the unitary Fermi gas was confirmed experimentally [14].
Experimental measurements of other transport coefficients
have also been performed, such as the thermal conductivity
[15] and the sound diffusivity [16] of the unitary Fermi gas,
as well as the shear and bulk viscosities in two dimensions
[17].

Theoretically, one common approach to compute the trans-
port coefficients is the kinetic theory, which is founded on
the quasiparticle approximation supposed to be applicable
only in the weak-coupling or high-temperature limit [18–24].
As a matter of principle, the transport coefficients are to be
microscopically computed with the Kubo formula. In spite
of its difficulty in general situations, it can systematically be

evaluated with the quantum virial expansion, which adopts
the fugacity as a small expansion parameter in the high-
temperature limit [25–29]. Therefore, it is possible to contrast
the microscopic and kinetic theories in the high-temperature
limit, where they were found to disagree for the bulk viscosity
[26–28]. Such a discrepancy was attributed to the fact that the
Landau kinetic theory employed in Refs. [23,24] is not fully
grounded even in the high-temperature limit because of the
invalid quasiparticle approximation [30]. On the other hand,
the shear viscosity from the quantum virial expansion com-
bined with the approximate resummation scheme based on
the memory function formalism was found to agree with that
from the Boltzmann equation but only in the relaxation-time
approximation [25–27]. Therefore, the complete correspon-
dence between the microscopic and kinetic theories for the
transport coefficients is yet to be established, which consti-
tutes the main purpose of this paper.

To this end, we evaluate the Kubo formula for the shear
viscosity and the thermal conductivity exactly in the high-
temperature limit to the lowest order in fugacity. After
describing general formulations in Sec. II, we sum up all
contributions that are naively higher orders in fugacity but
become comparable in the zero-frequency limit due to the
pinch singularity [31–34]. Consequently, a self-consistent
equation for a vertex function is derived in Sec. III, which is
shown to be identical to the linearized Boltzmann equation.
Then, the linearized Boltzmann equation is solved numer-
ically in Sec. IV to compute the shear viscosity and the
thermal conductivity as well as the Prandtl number in the
high-temperature limit for an arbitrary scattering length both
in two and three dimensions. Finally, this paper is summa-
rized in Sec. V and some supplementary materials regarding
the spectral representation of three-point functions and the
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FIG. 1. Diagrammatic representations of the pair propagator
(top) and the fermion self-energy (bottom) in Eq. (4). The thin single
and double lines represent the bare fermion and pair propagators,
respectively, whereas the dot denotes a bare coupling constant.

Boltzmann equation for transport coefficients are presented in
Appendixes A and B, respectively.

In what follows, we will set h̄ = kB = 1 and implicit sum-
mations over repeated spin indices σ = ↑, ↓ are assumed
throughout this paper. The bosonic and fermionic frequencies
in the Matsubara formalism are denoted by w = 2πn/β and
v = 2π (n + 1/2)/β, respectively, for n ∈ Z. Also, an integra-
tion over d-dimensional wave vector or momentum is denoted
by

∫
p ≡ ∫

d p/(2π )d for the sake of brevity.

II. MICROSCOPICS

A. Hamiltonian

We consider two-component fermions with a zero-range
interaction in d spatial dimensions described by

Ĥ =
∫

dr ψ̂†
σ (r)

(
− �

2m
− μ

)
ψ̂σ (r)

+ g

2

∫
dr ψ̂†

σ (r)ψ̂†
σ ′ (r)ψ̂σ ′ (r)ψ̂σ (r). (1)

We work with the Matsubara formalism and the bare fermion
propagator in the Fourier space is denoted by

G(iv, p) = 1

iv − εp + μ
(2)

and the full fermion propagator by

G(iv, p) = 1

iv − εp + μ − �(iv, p)
, (3)

where εp = p2/(2m) is the energy of a single particle and
�(iv, p) is the fermion self-energy.

In the high-temperature limit where the fugacity z = eβμ ∼
N /T d/2 � 1 serves as a small expansion parameter [35], the
fermion self-energy to its lowest order is evaluated as

�(iv, p) = z
∫

q
e−βεq D(iv + εq − μ, p + q) + O(z2), (4)

whose diagrammatic representation is depicted in Fig. 1. Here,

D(iw, p) = 	d−1

m

d − 2

a2−d − [−m(iw − εp/2 + 2μ)]d/2−1
(5)

is the pair propagator in the vacuum, 	d−1 ≡ (4π )d/2/

[2
(2 − d/2)] = 2, 2π, 4π coincides with the surface area

of the unit (d − 1) sphere for d = 1, 2, 3, and the scattering
length a is introduced via

g = 	d−1

m

d − 2

a2−d − �d−2/[
(d/2)
(2 − d/2)]
(6)

in the cutoff regularization [30].
For later use, we note that the above pair propagator is

simply the two-body scattering T matrix and the transition
rate from initial (p′, q′) to final momenta (p, q) is provided by

W (p, q|p′, q′)

= |D(εp + εq − 2μ + i0+, p + q)|2

× (2π )d+1δ(εp + εq − εp′ − εq′ )δ(p + q − p′ − q′).

(7)

It is also related to the imaginary part of the pair propagator
via the optical theorem:

− 2 Im[D(εp + εq − 2μ + i0+, p + q)]

=
∫

p′,q′
W (p, q|p′, q′). (8)

B. Kubo formula

According to the linear-response theory, the transport co-
efficients are microscopically provided by the Kubo formula
[36,37],

η = lim
ω→0

Im[χ�xy (ω + i0+)]

ω
(9)

for the shear viscosity and

T κ = lim
ω→0

Im[χQx (ω + i0+)]

ω
(10)

for the thermal conductivity [38–40]. Here, χO(ω + i0+) is
a retarded correlation function at zero wave vector for an
operator Ô, which is most conveniently obtained from the
corresponding imaginary-time-ordered correlation function,

χO(iw) = 1

Ld

∫ β

0
dτ eiwτ 〈T Ô(τ )Ô(0)〉, (11)

with an analytic continuation of iw → ω + i0+ [41].
For our system described by Eq. (1), the off-diagonal stress

tensor operator is found to be

�̂i j =
∫

dr
∂iψ̂

†
σ (r)∂ jψ̂σ (r) + ∂ jψ̂

†
σ (r)∂iψ̂σ (r)

2m
(i �= j)

(12)

and the heat flux operator to be

Q̂i =
∫

dr

[
−�ψ̂†

σ (r)∂iψ̂σ (r) − ∂iψ̂
†
σ (r)�ψ̂σ (r)

4im2

− E + P
N

ψ̂†
σ (r)∂iψ̂σ (r) − ∂iψ̂

†
σ (r)ψ̂σ (r)

2im

+ g ψ̂†
σ (r)

ψ̂
†
σ ′ (r)∂iψ̂σ ′ (r) − ∂iψ̂

†
σ ′ (r)ψ̂σ ′ (r)

2im
ψ̂σ (r)

]
, (13)
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FIG. 2. Diagrammatic representation of the imaginary-time-
ordered correlation function in Eq. (16). The thick line represents
the full fermion propagator, whereas the square and the circle denote
bare and full vertex functions, respectively.

where N , E , and P are the number density, the energy density,
and the pressure, respectively [29,42].1 Whereas the off-
diagonal stress tensor operator is simply a one-body operator,
the heat flux operator consists of both one-body and two-body
operators. As we will see later, contributions of the one-body
operator to the transport coefficient are partly promoted from
O(z) to O(z0) due to the pinch singularity, but the two-body
operator is supposed to provide higher-order corrections at
O(z2). Therefore, as far as the transport coefficient to the low-
est order in fugacity is concerned, it is sufficient to consider
only the one-body operator in the form of

Ô =
∑

p

γp ψ̂†
σ pψ̂σ p, (14)

where ψ̂σ p = L−d/2
∫

dr e−ip·rψ̂σ (r) is a Fourier component of
the field operator. Obviously, the bare vertex function reads
γp = px py/m for the shear viscosity and γp = [εp − (E +
P )/N ] px/m for the thermal conductivity and the correspond-
ing transport coefficients are collectively denoted by

σO ≡ lim
ω→0

Im[χO(ω + i0+)]

ω
. (15)

Here, it is worthwhile to remark that Ô ∼
(mg)2

∫
dr ψ̂†

σ (r)ψ̂†
σ ′ (r)ψ̂σ ′ (r)ψ̂σ (r) for the bulk viscosity

is essentially a two-body operator up to conserved operators
[30,42,43]. Therefore, our discussion below does not apply to
the bulk viscosity, so that computing its leading term at O(z2)
is not reduced to the kinetic theory [26–28,30].

C. Pinch singularity

For the one-body operator in the form of Eq. (14), the
imaginary-time-ordered correlation function in Eq. (11) can
formally be expressed as

χO(iw) = − 2

β

∑
v

∫
p
γp G(iv + iw, p)G(iv, p)

× 
(iv + iw, iv; p), (16)

whose diagrammatic representation is depicted in Fig. 2.
Here, the spin degeneracy accounts for the prefactor of 2 and

(iv + iw, iv; p) is the full vertex function to be determined
in Sec. III A.

1(heat flux) = (energy flux)−(E+P )/N×(number flux) [38–40].

Im(ν) = 0

Im(ν) = −w

FIG. 3. Analytic structure of the integrand in Eq. (16) with the
Matsubara frequency summation replaced by the complex contour
integration over iv → ν. Besides the singularities due to the Fermi-
Dirac distribution function (crosses), it may have singularities only
along Im(ν ) = 0, −w (wavy lines), so that the integration contour is
deformed into four arrowed straight lines with vanishing contribu-
tions from infinity (dotted circle).

In order to achieve the analytic continuation to obtain
the retarded correlation function, it is sufficient to know that
G(ν, p) and 
(ν + iw, ν; p) may have singularities only along
Im(ν) = 0 and Im(ν) = 0,−w, respectively, in the complex
plane of ν [31] (see also Appendix A). With the Matsub-
ara frequency summation replaced by the complex contour
integration over iv → ν, its contour is deformed into four
horizontal lines as in Fig. 3, leading to

χO(iw)

= 2
∫ ∞

−∞

dν

2π i
fF (ν)

∫
p
γp

× [G(ν + iw, p)G(ν + i0+, p)
(ν + iw, ν + i0+; p)

− G(ν + iw, p)G(ν − i0+, p)
(ν + iw, ν − i0+; p)

+ G(ν + i0+, p)G(ν − iw, p)
(ν + i0+, ν − iw; p)

− G(ν − i0+, p)G(ν − iw, p)
(ν − i0+, ν − iw; p)],

(17)

where fF (ν) = 1/(eβν + 1) is the Fermi-Dirac distribution
function. Now that the resulting expression is regular away
from the real axis of iw → ω, it can be analytically continued
into

χO(ω + i0+)

= 2
∫ ∞

−∞

dν

2π i
fF (ν)

∫
p
γp

× [G+(ν + ω, p)G+(ν, p)
(ν + ω + i0+, ν + i0+; p)

− G+(ν + ω, p)G−(ν, p)
(ν + ω + i0+, ν − i0+; p)

+ G+(ν, p)G−(ν − ω, p)
(ν + i0+, ν − ω − i0+; p)

− G−(ν, p)G−(ν − ω, p)
(ν − i0+, ν − ω − i0+; p)],

(18)

where G±(ν, p) ≡ G(ν ± i0+, p) are the retarded (upper sign)
and advanced (lower sign) fermion propagators.

The retarded correlation function obtained in Eq. (18)
is naively O(z) because G±(ν, p) = G(ν ± i0+, p) + O(z),
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(ν, ν ′; p) = γp + O(z), and the chemical potentials are
eliminated from the fermion propagators by shifting the in-
tegration variable as ν → ν − μ, producing fF (ν − μ) =
ze−βν + O(z2). However, such a naive counting breaks down
in the zero-frequency limit, ω → 0, where the product of
retarded and advanced fermion propagators is decomposed
into partial fractions as

G+(ν, p)G−(ν, p) = Im[G(ν + i0+, p)]

Im[�(ν + i0+, p)]
. (19)

Because of �(ν + i0+, p) ∼ O(z) and Im[G(ν + i0+, p)] =
−π δ(ν − εp + μ) + O(z) in the high-temperature limit, we
find that

G+(ν, p)G−(ν, p) = − π δ(ν − εp + μ)

Im[�(εp − μ + i0+, p)]
+ O(z0)

(20)

is inversely proportional to the fugacity so as to promote its
order by one. Therefore, the resulting transport coefficient in
Eq. (15) actually involves an O(z0) contribution provided by

σO = 2β

∫
p

e−βεpγp
z 
+−(p)

−2 Im[�+(p)]
+ O(z). (21)

Here, shorthand notations for on-shell �+(p) ≡ �(εp − μ +
i0+, p) and 
+−(p) ≡ 
(εp − μ + i0+, εp − μ − i0+; p) are
introduced. We note that the latter is real and the former has
both real and imaginary parts at O(z) according to Eq. (4).

An important lesson to be learned is as follows: The
correlation function in Fig. 2 is naively O(z) as also seen
diagrammatically because there exists one fermion propagator
running backward in imaginary time [27,44]. However, the
product of two fermion propagators with the same frequency
and wave vector, such as the two thick lines in Fig. 2, pro-
duces an inverse power of the fugacity so as to promote its
order by one compared to the naive counting. This is the
so-called pinch singularity [31–34], which needs to be taken
into account in order to compute the static transport coefficient
correctly to the lowest order in fugacity.

III. TOWARD THE KINETIC THEORY

A. Vertex function

Our remaining task is to determine the full vertex function
to the lowest order in fugacity. If the naive expansion with
respect to the fugacity is applied at nonzero frequency, its
leading term is simply the bare vertex function and the next-
to-leading-order corrections at O(z) are provided by two types
of diagrams called Maki-Thompson and Aslamazov-Larkin
[25–27].2 The resulting vertex function is expressed as


(iv + iw, iv; p)

= γp + 1

β

∑
v′

∫
p′

K (iv + iw, iv; p|iv′ + iw, iv′; p′)

× G(iv′ + iw, p′)G(iv′, p′)γp′ + O(z2), (22)

2The self-energy diagrams are already taken into account by adopt-
ing the full fermion propagator in Eq. (16).

= +K

FIG. 4. Maki-Thompson (left) and Aslamazov-Larkin (right)
diagrams for the four-point function represented by the rectangle.

where K (∗) = KMT(∗) + KAL(∗) is the four-point function
depicted in Fig. 4 consisting of

KMT(iv + iw, iv; p|iv′ + iw, iv′; p′)

= D(iv + iv′ + iw, p + p′) (23)

and

KAL(iv + iw, iv; p|iv′ + iw, iv′; p′)

= − 2

β

∑
w′′

∫
p′′

D(iw′′ + iw, p′′)D(iw′′, p′′)

× G(iw′′ − iv, p′′ − p)G(iw′′ − iv′, p′′ − p′). (24)

The diagrammatic representation of such a naive expansion
is depicted in Fig. 5 (top), where the second term is seen to
be O(z) because each diagram therein can be organized so
that there exists one fermion propagator running backward in
imaginary time [27].

As learned in Sec. II C, the above naive expansion breaks
down in the zero-frequency limit. This is because the second
term of Eq. (22) involves the product of two fermion prop-
agators with the same frequency and wave vector. With the
bare fermion propagators therein replaced by the full ones,
the pinch singularity produces z/ Im � ∼ O(z0) comparable
to the first term. Furthermore, an iteration of the same dia-
grammatic structure for n times also contributes (z/ Im �)n ∼
O(z0), so that an infinite sequence of such comparable

Γ = +

= + Γ

+ · · ·K

K

FIG. 5. Vertex function in the naive expansion with respect to
the fugacity up to O(z) (top). An infinite sequence of comparable
diagrams needs to be resumed in the zero-frequency limit due to the
pinch singularity, which leads to a self-consistent equation for the
vertex function (bottom).

053320-4



MICROSCOPIC DERIVATION OF THE BOLTZMANN … PHYSICAL REVIEW A 103, 053320 (2021)

diagrams needs to be resummed.3 Such a resummation can
formally be achieved by replacing the bare vertex function in
the second term of Eq. (22) by the full one, leading to


(iv + iw, iv; p)

= γp + 1

β

∑
v′

∫
p′

K (iv + iw, iv; p|iv′ + iw, iv′; p′)

× G(iv′ + iw, p′)G(iv′, p′)
(iv′ + iw, iv′; p′). (25)

This is the closed integral equation that self-consistently de-
termines the vertex function to the lowest order in fugacity and
its diagrammatic representation is depicted in Fig. 5 (bottom).

B. Analytic continuation

1. Maki-Thompson

We now evaluate the above self-consistent equation for the
vertex function so that it can be analytically continued into
that for 
+−(p) needed to compute the transport coefficient
according to Eq. (21). Let us start with the Maki-Thompson
part denoted by


MT(iv + iw, iv; p)

≡ 1

β

∑
v′

∫
p′

KMT(iv + iw, iv; p|iv′ + iw, iv′; p′)

× G(iv′ + iw, p′)G(iv′, p′)
(iv′ + iw, iv′; p′), (26)

where the four-point function is provided by Eq. (23).
With the Matsubara frequency summation replaced by the

complex contour integration over iv′ → ν ′, the integrand may
have singularities only along Im(ν ′) = 0,−w,−v − w in the
complex plane of ν ′. Therefore, its contour is deformed into
six horizontal lines in a similar way to Fig. 3. Because only
two of them along Im(ν ′) = −0+,−w + 0+ turn out to con-
tribute O(z0) in the zero-frequency limit, we obtain


MT(iv + iw, iv; p)

=
∫ ∞

−∞

dν ′

2π i
fF (ν ′)

×
∫

p′

[
D(ν ′ + iv + iw, p + p′)G(ν ′ + iw, p′)

× G(ν ′ − i0+, p′)
(ν ′ + iw, ν ′ − i0+; p′)

− D(ν ′ + iv, p + p′)G(ν ′ + i0+, p′)

× G(ν ′ − iw, p′)
(ν ′ + i0+, ν ′ − iw; p′)
] + O(z). (27)

Then, the analytic continuation of iv → εp − μ − i0+ fol-
lowed by iw → i0+ leads to


MT(εp − μ + i0+, εp − μ − i0+; p)

= −
∫

q,p′,q′
e−βεq W (p, q|p′, q′)

z 
+−(q)

−2 Im[�+(q)]
+ O(z),

(28)

3Previously, the resummation was performed only approximately
assuming a simple geometric series based on the lowest two terms
in fugacity [25–27], which turns out to correspond to the relaxation-
time approximation (see Appendix B 3).

where the pinch singularity in Eq. (20) is applied as well as
Eq. (8) with some change of the integration variable.

2. Aslamazov-Larkin

We next turn to the Aslamazov-Larkin part denoted by


AL(iv + iw, iv; p)

≡ 1

β

∑
v′

∫
p′

KAL(iv + iw, iv; p|iv′ + iw, iv′; p′)

× G(iv′ + iw, p′)G(iv′, p′)
(iv′ + iw, iv′; p′). (29)

Here, the four-point function in Eq. (24) is evaluated to the
lowest order in fugacity as

KAL(iv + iw, iv; p|iv′ + iw, iv′; p′)

= −2z
∫

p′′
e−βεp′′−pD(iv + iw + εp′′−p − μ, p′′)

× D(iv + εp′′−p − μ, p′′)
iv − iv′ + εp′′−p − εp′′−p′

− 2z
∫

p′′
e−βεp′′−p′ D(iv′ + iw + εp′′−p′ − μ, p′′)

× D(iv′ + εp′′−p′ − μ, p′′)
iv′ − iv + εp′′−p′ − εp′′−p

+ O(z2), (30)

which is dominated by the contributions from the poles of
the fermion propagators because the branch cuts of the pair
propagators contribute O(z2).

With the Matsubara frequency summation replaced by the
complex contour integration over iv′ → ν ′, the integrand may
have singularities only along Im(ν ′) = 0,−w in addition to
a pole at ν ′ = iv + εp′′−p − εp′′−p′ in the complex plane of
ν ′. Therefore, its contour is deformed into four horizontal
lines as in Fig. 3 and one clockwise circle around the pole.
Because only the latter turns out to contribute O(z0) in the
zero-frequency limit, we obtain


AL(iv + iw, iv; p)

= 2z
∫

p′,p′′
e−βεp′′−pD(iv + iw + εp′′−p − μ, p′′)

× D(iv + εp′′−p − μ, p′′)G(ν ′ + iw, p′)G(ν ′, p′)

× 
(ν ′ + iw, ν ′; p′)|ν ′→iv+εp′′−p−εp′′−p′ + O(z). (31)

Then, the analytic continuation of iv → εp − μ − i0+ fol-
lowed by iw → i0+ leads to


AL(εp − μ + i0+, εp − μ − i0+; p)

= 2
∫

q,p′,q′
e−βεq W (p, q|p′, q′)

z 
+−(p′)
−2 Im[�+(p′)]

+ O(z),

(32)

where the pinch singularity in Eq. (20) is applied as well as
Eq. (7) with some change of the integration variable.
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C. On-shell self-consistent equation

With Eqs. (28) and (32) substituted, Eq. (25) is analytically
continued into


+−(p) = γp −
∫

q,p′,q′
e−βεq W (p, q|p′, q′)

×
{

z 
+−(q)

−2 Im[�+(q)]
− 2

z 
+−(p′)
−2 Im[�+(p′)]

}
+ O(z),

(33)

which is now the closed integral equation for the on-shell
vertex function to the lowest order in fugacity.

In order to show that the resulting on-shell self-consistent
equation is identical to the linearized Boltzmann equation
[32–34], we introduce

ϕ(p) ≡ z 
+−(p)

−2 Im[�+(p)]
, (34)

so that Eq. (33) turns into

γp = −2 Im[�+(p)]

z
ϕ(p) +

∫
q,p′,q′

e−βεq W (p, q|p′, q′)

× [ϕ(q) − 2ϕ(p′)] + O(z). (35)

Because of W (p, q|p′, q′) = W (p, q|q′, p′) and

−2 Im[�+(p)] = z
∫

q,p′,q′
e−βεq W (p, q|p′, q′) + O(z2) (36)

according to Eqs. (7), (8), and (4), we indeed find that

γp =
∫

q,p′,q′
e−βεq W (p, q|p′, q′)

× [ϕ(p) + ϕ(q) − ϕ(p′) − ϕ(q′)] + O(z) (37)

is none other than the linearized Boltzmann equation [45] (see
also Appendix B).

Once the solution of ϕ(p) for a given γp is determined, the
corresponding transport coefficient in Eq. (21) is provided by

σO = 2β

∫
p

e−βεpγp ϕ(p) + O(z). (38)

Therefore, it is hereby established that computing the shear
viscosity and the thermal conductivity in the high-temperature
limit to the lowest order in fugacity is reduced to the kinetic
theory, which contrasts with the bulk viscosity and constitutes
the main outcome of this paper.

IV. TRANSPORT COEFFICIENTS

Finally, we solve the linearized Boltzmann equation in
Eq. (37) to compute the transport coefficients according to
Eq. (38) both in two and three dimensions.4 To this end, we

4There exists no solution to Eq. (37) for d = 1 because its right-
hand side vanishes identically due to the energy and momentum
conservations.

expand ϕ(p) in terms of the generalized Laguerre polynomi-
als,

ϕ(p) = β
px py

m

N−1∑
n=0

cnLd/2+1
n (βεp) (39)

for the shear viscosity with γp = px py/m and

ϕ(p) = px

m

N∑
n=1

cnLd/2
n (βεp) (40)

for the thermal conductivity with γp = [εp − (E +
P )/N ] px/m [45].5 We note that N = 2z/λd

T + O(z2),
E = (d/2)N /β + O(z2), and P = N /β + O(z2) in the
high-temperature limit, where λT = √

2πβ/m is the thermal
de Broglie wavelength [26]. If the above expansion is
truncated up to the lowest N terms, the simplest case of
N = 1 corresponds to the relaxation-time approximation to
be described in Appendix B 3.

Here, N is increased up to N = 10, which is confirmed
to be more than sufficient for convergence of the presented
results, and the resulting shear viscosity and thermal con-
ductivity for d = 2 and d = 3 are plotted in Fig. 6 as
functions of the inverse scattering length. They are exact
in the high-temperature limit to the lowest order in fugac-
ity and found to be slightly larger than those obtained with
the relaxation-time approximation up to 2.5% deviations. In
particular, we find that the shear viscosity and the thermal
conductivity for d = 2 reach their minima of λd

T η = 3.257 at
λT /a = 4.019 and λd

T mκ = 13.03 at λT /a = 4.017, respec-
tively, and our thermal conductivity in two dimensions is new
to the best of our knowledge. We also find λd

T η = 4.231 and
λd

T mκ = 16.01 for d = 3 at infinite scattering length, λT /a =
0, where the relaxation-time approximation produces λd

T η =
15π/(8

√
2) ≈ 4.165 [18,19] and λd

T mκ = 225π/(32
√

2) ≈
15.62 [20], respectively.

Our exact results for the shear viscosity and the thermal
conductivity allow us to study the Prandtl number defined by
their ratio via

Pr ≡ η

mκ
cP . (41)

Here, the heat capacity at constant pressure per particle is
provided by cP = (d + 2)/2 + O(z) in the high-temperature
limit [20]. The resulting Prandtl number for d = 2 and d = 3
is plotted in Fig. 7 as a function of the inverse scattering
length. Remarkably, it is found to exhibit the nonmono-
tonic behavior slightly below the constant value of Pr = (d −
1)/d in the relaxation-time approximation. In particular, it
reaches its two minima of Pr = 0.4986 and 0.4985 at λT /a =
0.6948 and 20.45, respectively, for d = 2 and its maximum of
Pr = 0.5000 at λT /a = 3.871 for d = 2 and Pr = 0.6666 at
λT /a = ±4.262 for d = 3. We also find that the minimum of
Pr = 0.6606 is reached at infinite scattering length, λT /a = 0,
for d = 3.

5The n = 0 term in Eq. (40) is not needed because it vanishes when
substituted into Eq. (37) due to the momentum conservation. This is
also consistent with the Chapman-Enskog condition in Eq. (B4) from
the kinetic theory perspective.
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FIG. 6. Shear viscosity and thermal conductivity in the high-
temperature limit for d = 2 (top) and d = 3 (bottom) as functions of
λT /a in the forms of λd

T η (blue lower curves) and λd
T mκ (red upper

curves). Both of them are even functions for d = 3.

V. SUMMARY

In this paper, we evaluated the Kubo formula [Eq. (15)]
for the shear viscosity and the thermal conductivity exactly in
the high-temperature limit to the lowest order in fugacity and
showed that it is reduced to the linearized Boltzmann equation
[Eqs. (37) and (38)]. This task was achieved by resuming
all contributions that are naively higher orders in fugacity
but become comparable in the zero-frequency limit due to
the pinch singularity [Eq. (20)]. Consequently, the complete
correspondence between the microscopic and kinetic theories
for the transport coefficients is now established beyond the
previous relaxation-time approximation. The bulk viscosity is
however the exception because its corresponding operator in
the Kubo formula is essentially a two-body operator without
the one-body part in the form of Eq. (14). We also found by
solving the linearized Boltzmann equation numerically for an
arbitrary scattering length that the Prandtl number in the high-
temperature limit exhibits the nonmonotonic behavior slightly
below the constant value in the relaxation-time approximation
both in two and three dimensions (Fig. 7).

Here, we worked with the Matsubara formalism to take
advantage of the established quantum virial expansion, which
however requires the cumbersome analytic continuation [31].

FIG. 7. Prandtl number in the high-temperature limit for d = 2
(red upper curve) and d = 3 (blue lower curve) as a function of λT /a
in the form of [d/(d − 1)] Pr. The horizontal dashed line indicates
the constant value in the relaxation-time approximation in Eq. (B23).

Instead, it will also be worthwhile to adopt the Keldysh for-
malism, where it is possible to directly identify diagrams with
the pinch singularity and formulate the systematic expansion
incorporating higher-order corrections [34]. Developing the
quantum virial expansion in the Keldysh formalism may pro-
vide us with a useful theoretical framework to study broad
nonequilibrium phenomena in ultracold-atom physics.

ACKNOWLEDGMENTS

The authors thank Yoshimasa Hidaka for giving an
informal lecture on his work [34]. This work was sup-
ported by JSPS KAKENHI Grants No. JP19J13698 and No.
JP18H05405.

APPENDIX A: SPECTRAL REPRESENTATION
OF THREE-POINT FUNCTIONS

Let us review the spectral representation of three-point
functions in the form of

J (τ1, τ2, τ3) = 〈T ψ†(τ1)ψ (τ2)O(τ3)〉, (A1)

which is relevant to the full vertex function introduced in
Eq. (16). Here, its spin indices and spatial coordinates are
suppressed for the sake of brevity and this section is partly
based on Ref. [31] (see Appendix therein).

The above imaginary-time-ordered product consists of six
terms corresponding to different orderings of three imaginary
times and it will turn out to be convenient to group them into
two cycles as

J (τ1, τ2, τ3) = J123(τ1, τ2, τ3) + J213(τ1, τ2, τ3), (A2)

where

J123(τ1, τ2, τ3) ≡ J (τ1, τ2, τ3)[�(τ1, τ2, τ3)

+ �(τ2, τ3, τ1) + �(τ3, τ1, τ2)] (A3)

and

J213(τ1, τ2, τ3) ≡ J (τ1, τ2, τ3)[�(τ2, τ1, τ3)

+ �(τ1, τ3, τ2) + �(τ3, τ2, τ1)] (A4)
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with �(τ1, τ2, τ3) ≡ θ (τ1 − τ2)θ (τ2 − τ3) being a step func-
tion of three variables. By inserting identity operators
composed of the Hamiltonian eigenstates, J123(τ1, τ2, τ3) can
be expressed as

J123(τ1, τ2, τ3) = 1

Z

∑
l,m,n

Jlmne−El (τ3−τ1 )−Em (τ1−τ2 )−En (τ2−τ3 )

× [e−βEl �(τ1, τ2, τ3) − e−βEm�(τ2, τ3, τ1)

+ e−βEn�(τ3, τ1, τ2)], (A5)

where Jlmn ≡ 〈l|ψ†|m〉〈m|ψ |n〉〈n|O|l〉 is a product of three
matrix elements. A similar expression is obtained for
J213(τ1, τ2, τ3) by exchanging ψ† ↔ ψ in −J123(τ2, τ1, τ3).

Then, we would like to evaluate its Fourier component
provided by

J123(iv, iv′, iw) =
∫ β

0
dτ3

∫ β

0
dτ2

∫ β

0
dτ1 e−ivτ1+iv′τ2−iwτ3

× J123(τ1, τ2, τ3). (A6)

This computation is facilitated by changing the in-
tegration variables to τ12 ≡ τ1 − τ2, τ23 ≡ τ2 − τ3,
and τ3, so that the intervals of integration turn into∫ β

0 dτ3
∫ β−τ3

−τ3
dτ23

∫ β−τ23−τ3

−τ23−τ3
dτ12. Because of the periodicities

of the integrand with respect to τ12 and τ23 by β, the
integration can be performed instead on the intervals of∫ β

0 dτ3
∫ β

0 dτ23
∫ β

0 dτ12 assuming the vanishing integrand for
τ12 + τ23 > β. Therefore, we find

J123(iv, iv′, iw) = 1

Z

∑
l,m,n

Jlmn

∫ β

0
dτ3

∫ β

0
dτ23

∫ β−τ23

0
dτ12

× e−iv(τ12+τ23+τ3 )+iv′(τ23+τ3 )−iwτ3

× e(El −Em )τ12+(El −En )τ23−βEl , (A7)

which readily leads to

J123(iv, iv′, iw) = 1

Z

∑
l,m,n

Jlmn β δv′,v+w

×
[
− e−βEl

(iw − En + El )(iv − El + Em)

+ e−βEm

(iv − El + Em)(−iv′ − Em + En)

− e−βEn

(−iv′ − Em + En)(iw − En + El )

]
.

(A8)

A similar expression is obtained for the Fourier com-
ponent of J213(τ1, τ2, τ3) by exchanging ψ† ↔ ψ in
−J123(−iv′,−iv, iw), so that the Fourier component of
J (τ1, τ2, τ3) reads

J (iv, iv′, iw) = J123(iv, iv′, iw)

− J123(−iv′,−iv, iw)|ψ†↔ψ. (A9)

Because J (iv, iv′, iw) is found to be proportional to
δv′,v+w, a function of two independent variables can be intro-
duced via J (iv, iv′, iw) = β δv′,v+w J̃ (iv, iv + iw). It is now

obvious from the above spectral representation that J̃ (ν, ν +
iw) may have singularities only along Im(ν) = 0,−w in the
complex plane of ν. In particular, the same is true for the
full vertex function, 
(ν + iw, ν; p), because J̃ (iv, iv + iw) is
reduced to G(iv + iw, p)G(iv, p)
(iv + iw, iv; p) in Eq. (16)
as a special case.

APPENDIX B: BOLTZMANN EQUATION
FOR TRANSPORT COEFFICIENTS

Let us review computations of the transport coefficients
with the classical Boltzmann equation [45]:

∂ fp

∂t
+ ∂εp

∂ p
· ∂ fp

∂r
=

(
∂ fp

∂t

)
coll

. (B1)

Here, fp = fp(t, r) is a local distribution function per spin and
the collision term is provided by(

∂ fp

∂t

)
coll

=
∫

q,p′,q′
W (p, q|p′, q′)( fp′ fq′ − fp fq) (B2)

with the transition rate satisfying W (p, q|p′, q′) =
W (q, p|q′, p′)=W (p′, q′|p, q)=W (p + mv, q + mv|p′ + mv,

q′ + mv) and being proportional to (2π )d+1δ(εp + εq − εp′ −
εq′ )δ(p + q − p′ − q′).

1. Linearization

When the system is slightly out of thermodynamic equilib-
rium, the distribution function is expanded as fp = f̄p + δ fp,
where

f̄p = exp

{
−β

[
(p − mv)2

2m
− μ

]}
(B3)

is a local equilibrium distribution function. Because the local
chemical potential μ = μ(t, r), velocity v = v(t, r), and in-
verse temperature β = β(t, r) are determined so that f̄p solely
produces local number, momentum, and energy densities, δ fp

satisfies the Chapman-Enskog condition of∫
p
δ fp =

∫
p

piδ fp =
∫

p
εpδ fp = 0. (B4)

In what follows, implicit summations over repeated spatial
indices i = 1, 2, . . . , d are assumed.

The substitution of fp = f̄p + δ fp into the left-hand side
(LHS) of Eq. (B1) with the help of thermodynamic relations
and continuity equations leads to

(LHS) = β f̄p

[
πi j (p − mv)

Vi j

2
+ π (p − mv)V

− Q(p − mv) · ∇ ln β

]
+ O(δ f ). (B5)

Here, the shear and bulk strain rates are denoted by

Vi j = ∂iv j + ∂ jvi − 2

d
δi j∇ · v (B6)

and V = ∇ · v, respectively, whereas

πi j (p) = pi p j

m
− p2

dm
δi j (B7)
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is the traceless part of the stress tensor,

π (p) = p2

dm
−

(
∂P
∂N

)
E

− εp

(
∂P
∂E

)
N

(B8)

its modified diagonal part, and

Q(p) =
(

εp − E + P
N

)
p
m

(B9)

the heat flux of a single particle. We note that π (p) = 0 be-
cause of P = (2/d ) E = N /β, indicating the vanishing bulk
viscosity within the Boltzmann equation [23,24].

On the other hand, the substitution of fp = f̄p + δ fp into
the right-hand side (RHS) of Eq. (B1) with δ fp ≡ β f̄pφp

introduced leads to

(RHS) = β f̄p

∫
q,p′,q′

f̄q W (p, q|p′, q′)

× (φp′ + φq′ − φp − φq) + O(δ f 2) (B10)

because the equilibrium distribution function cancels the col-
lision term. In order for the resulting expression to match the
left-hand side in Eq. (B5) for arbitrary μ, v, and β, φp must
be in the form of

φp = −e−βμ

[
ϕi j (p − mv)

Vi j

2
− ϕ(p − mv) · ∇ ln β

]
. (B11)

Here, ϕi j (p) and ϕ(p) determine the deviations from the equi-
librium distribution function induced by the shear strain rate
and the temperature gradient, respectively, which solve

πxy(p) =
∫

q,p′,q′
e−βεq W (p, q|p′, q′)

× [ϕxy(p) + ϕxy(q) − ϕxy(p′) − ϕxy(q′)] (B12a)

and

Qx(p) =
∫

q,p′,q′
e−βεq W (p, q|p′, q′)

× [ϕx(p) + ϕx(q) − ϕx(p′) − ϕx(q′)]. (B12b)

This is the linearized Boltzmann equation identical to Eq. (37)
derived microscopically from the Kubo formula.

2. Transport coefficients

The stress tensor and the energy flux in the kinetic theory
are provided by

�i j = 2
∫

p

pi p j

m
fp, (B13)

K = 2
∫

p
εp

p
m

fp, (B14)

respectively, where the spin degeneracy accounts for the
prefactor of 2. The substitution of fp = f̄p + δ fp with
Eq. (B4) imposed decomposes the former into �i j = Pδi j +
mN viv j − σi j with the dissipative correction of

σi j = −2β

∫
p

f̄p πi j (p − mv) φp, (B15)

whereas the latter is decomposed into Ki = (E + εmvN +
P )vi − σi jv j + ki with

k = 2β

∫
p

f̄p Q(p − mv) φp. (B16)

By substituting Eq. (B11) and comparing the resulting expres-
sions to the corresponding ones in hydrodynamics,

σi j = ηVi j + ζ δi jV, (B17)

k = −κ ∇T, (B18)

we find ζ = 0 for the bulk viscosity and

η = 2β

∫
p

e−βεpπxy(p)ϕxy(p), (B19a)

T κ = 2β

∫
p

e−βεpQx(p)ϕx(p), (B19b)

which are identical to Eq. (38) for the shear viscosity and the
thermal conductivity.

3. Relaxation-time approximation

Whereas the linearized Boltzmann equation was solved
numerically in Sec. IV, it is also common to solve it with
the so-called relaxation-time approximation [18–22], which
assumes simple proportional relations in6

ϕxy(p) = zτηπxy(p), (B20a)

ϕx(p) = zτκQx(p). (B20b)

Here, τη and τκ are the shear and thermal relaxation
times, respectively, which are determined by substituting the
above relations into the linearized Boltzmann equation in
Eqs. (B12). For our system with the transition rate provided
by Eq. (7), they are found to be

β

zτη

= π

(2
√

2 π )d
(d/2)
(d/2 + 2)

∫ ∞

0
dε εd e−ε

×
∣∣∣∣ (d − 2)	d−1

(
√

2π a/λT )2−d − (−ε − i0+)d/2−1

∣∣∣∣
2

(B21)

and τκ = [d/(d − 1)] τη.
Then, the substitution of Eqs. (B20) into Eqs. (B19) relates

the shear viscosity and the thermal conductivity to their relax-
ation times as

η = 2zτη

βλd
T

, κ = (d + 2)zτκ

mβλd
T

. (B22)

Because the former with Eq. (B21) agrees with the shear
viscosity obtained in Refs. [25–27], the approximate resum-
mation scheme adopted therein assuming a simple geometric
series based on the lowest two terms in fugacity turns
out to correspond to the relaxation-time approximation. We
also confirm that the Prandtl number defined in Eq. (41)

6This is the approximation identifying the collision term with
(∂ fp/∂t )coll = −δ fp/τη,κ for each transport coefficient.
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reads

Pr = d − 1

d
, (B23)

taking the constant value independent of the scattering length
[20,29], which is however true only in the relaxation-time
approximation.
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