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Superfluid properties of an ultracold Fermi gas with an orbital Feshbach resonance
in the BCS-BEC crossover region
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We theoretically investigate the superfluid properties of a two-band gas of 173Yb Fermi atoms with an orbital
Feshbach resonance (OFR). To describe the BCS-BEC crossover region, we include superfluid fluctuations
caused by interband and intraband pairing interactions associated with OFR by extending the strong-coupling
theory developed by Nozières and Schmitt-Rink to the two-band case below the superfluid phase transition
temperature; however, the effects of an experimentally inaccessible deep bound state are removed to model
a real 173Yb Fermi gas near OFR. We show that the condensate fraction in the upper closed channel gradually
becomes smaller than that in the lower open channel as one moves from the strong- to the weak-coupling regime,
because the OFR-pairing mechanism tunes the interaction strengths by adjusting the energy difference between
the two bands. However, even when the closed-channel band is much higher in energy than the open-channel
band in the weak-coupling regime, the magnitude of the superfluid order parameter in the closed channel is found
to be still comparable to that in the open channel. As the reason for this, we point out a pair-tunneling effect by
the OFR-induced interband interaction. In addition to these superfluid quantities, we also examine collective
modes, such as the Goldstone mode, the Schmid (Higgs) mode, and Leggett mode, to clarify how they appear
in the spectral weights of pair-correlation functions in each band. Since the realization of a multiband superfluid
Fermi gas is a crucial issue in cold Fermi gas physics, our results would contribute to the basic understanding of
this type of Fermi superfluid in the BCS-BEC crossover region.
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I. INTRODUCTION

Since the proposal of a Feshbach resonance using orbital
degrees of freedom [1], this so-called orbital Feshbach res-
onance (OFR) has attracted much attention as a candidate
for the pairing mechanism of a 173Yb Fermi gas [2–16].
Although the superfluid phase transition of this alkaline-earth-
like Fermi gas has not been realized yet, experimental groups
have succeeded in tuning the strength of a pairing interaction
between 173Yb atoms by adjusting the threshold energy of
OFR [17,18]. At present, this system can already be cooled
down below the Fermi temperature TF [19]. Furthermore,
the lifetime of this system is relatively long [∼O(1 s)] [1].
Thus, the realization of a superfluid 173Yb Fermi gas with
OFR is very promising. Once the superfluid phase transition
is achieved, using the tunable pairing interaction, we would
be able to systematically examine superfluid properties of
this system, from the weak-coupling BCS (Bardeen-Cooper-
Schrieffer) regime to the strong-coupling BEC (Bose-Einstein
condensation) regime.

In cold Fermi gas physics, we have already had superfluid
40K and 6Li Fermi gases [20–23], where a different kind of
Feshbach resonance works as the pairing mechanism [24]
[which we call the magnetic Feshbach resonance (MFR) in
this paper]. However, the quest for a superfluid 173Yb Fermi
gas is still important, because it enables us to examine multi-
band effects in the superfluid phase. (Note that the superfluid
6Li and 40K Fermi gases belong to the single-band system.)

Because the ultracold Fermi gas system is expected as a
quantum simulator for the study of complicated quantum
many-body phenomena discussed in other fields, having both
single-band and two-band superfluid Fermi gases would be
useful for such an application.

Here, we explain how OFR is different from MFR: MFR
uses an active electron spin in the outermost s-orbital of
alkaline-metal atoms, and the Zeeman effect associated with
this electron spin plays an important role in tuning the inter-
action strength by adjusting an external magnetic field [24].
In addition, the so-called broad Feshbach resonance is used in
40K and 6Li Fermi gases. In this type of resonance, although
two bands called the open and closed channels take part in
the Feshbach resonance, the latter band is much higher in
energy than the former, as far as we consider the interesting
BCS-BEC crossover region [25–27]. As a result, the closed
channel actually only appears in the intermediate state of MFR
[28]. Thus, one may examine the broad MFR case by using the
ordinary single-band (open-channel) BCS model.

In the ground state of a rare-earth 173Yb atom, since the
outermost s-orbital is fully occupied, the MFR pairing mech-
anism does not work. Instead, OFR uses two orbital states,
1S0 and 3P0, in forming the open and closed channels. These
channels are degenerate in the absence of an external magnetic
field (B = 0). This degeneracy is lifted by the nuclear Zeeman
effect when B �= 0, which is also used to tune the strength of
a pairing interaction [1]. In addition, the resonance width of
OFR is not so broad [1]. The energy difference between the
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two channels is at most the order of the Fermi energy εF in the
BCS-BEC crossover region. Because of this small energy dif-
ference, the thermal occupation of the closed channel cannot
be ignored. Thus, we need to treat this system as a two-band
Fermi gas.

In considering a 173Yb Fermi gas, previous work on two-
band metallic superconductivity would be helpful: In 1959,
Shul and co-workers extended the original BCS theory to
the two-band case [29], and clarified that the behavior of
the superfluid order parameters is sensitive to the interband
pairing interaction. In 1966, Leggett predicted a collective
mode (Leggett mode) being accompanied by a relative phase
oscillation of two superconducting order parameters [30].

Recently, these topics have also been discussed in the
context of 173Yb Fermi gases: Within the mean-field BCS
approximation, the temperature dependence of the two su-
perfluid order parameters has been calculated, including the
effects of an interband interaction [2]. The possibility of the
Leggett mode has been examined in Refs. [7,14]; however,
Ref. [3] predicted that it is severely damped in a 173Yb Fermi
gas.

In this paper, we investigate the superfluid properties of a
173Yb Fermi gas in the BCS-BEC crossover region. To include
pairing fluctuations associated with the OFR-induced tunable
attractive interactions, we extend the strong-coupling theory
developed by Nozières and Schmitt-Rink (NSR) [31–33] in
the single-band case to the two-band system below the su-
perfluid phase transition temperature Tc. Following Ref. [3],
we choose realistic values of scattering parameters of a 173Yb
Fermi gas. In addition, as pointed out in Refs. [1–3,9,10],
in order to describe the current experimental situation for
173Yb Fermi gases, one needs to remove the experimentally

inaccessible deep bound state from the theory [17,18]. In this
paper, this is achieved by extending a method proposed in the
normal state [9] to the superfluid phase below Tc. We briefly
note that the NSR scheme has been applied to examine the
BCS-BEC crossover behavior of Tc [2,9,10], as well as the
Leggett mode at T = 0 [3], in a 173Yb Fermi gas. It has also
been applied to the case with nonzero temperatures below Tc,
although a different parameter region from the 173Yb case is
considered [14] (where the above-mentioned deep bound state
is absent).

Within the NSR scheme, we consider (i) superfluid order
parameters, (ii) condensate fractions, and (iii) superfluid col-
lective modes [Goldstone mode [34], Schmid (Higgs) mode
[35,36], and Leggett mode [30]]. We clarify the band depen-
dence of these quantities in the whole BCS-BEC crossover
region. For the Leggett mode, we confirm that it does not
appear in a superfluid 173Yb Fermi gas [3].

This paper is organized as follows: In Sec. II, we present
our formulation based on NSR. We also explain how to re-
move the effects of the deep bound state from the theory there.
In Sec. III, we show our numerical results on the superfluid
order parameters, condensate fractions, and collective modes
in the BCS-BEC crossover region below Tc. Throughout this
paper, we set h̄ = kB = 1, and the system volume is taken to
be unity for simplicity.

II. FORMULATION

A. Model two-band superfluid Fermi gas

To examine a 173Yb Fermi gas near OFR, we consider a
four-component Fermi gas [(two bands)×(two pseudospins)],
described by the Hamiltonian [1–3,7,9–11],

H =
∑

p

ξ o
p [c†

g,↓,pcg,↓,p + c†
e,↑,pce,↑,p] +

∑
p

ξ c
p[c†

g,↑,pcg,↑,p + c†
e,↓,pce,↓,p]

+U0

∑
p,p′,q

[c†
e,↓,p+q/2c†

g,↑,−p+q/2cg,↑,−p′+q/2ce,↓,p′+q/2 + c†
e,↑,p+q/2c†

g,↓,−p+q/2cg,↓,−p′+q/2ce,↑,p′+q/2]

+U1

∑
p,p′,q

[c†
e,↓,p+q/2c†

g,↑,−p+q/2cg,↓,−p′+q/2ce,↑,p′+q/2 + c†
e,↑,p+q/2c†

g,↓,−p+q/2cg,↑,−p′+q/2ce,↓,p′+q/2]. (1)

Here, c†
λ,σ,p is the creation operator of a 173Yb Fermi atom,

where λ = g, e represent two orbital states 1S0 and 3P0, re-
spectively. σ =↑,↓ denote two nuclear spin states of an
I = 5/2 173Yb atom, contributing to OFR. Among the four
components, |g,↓〉 and |e,↑〉 form the open channel, with
the kinetic energy ξ o

p = εp − μ = p2/(2m) − μ, where μ

is the Fermi chemical potential and m is the mass of a
173Yb atom. The closed channel consists of |g,↑〉 and |e,↓〉,
with the kinetic energy ξ c

p = εp + ωth/2 − μ. Here, ωth/2
is the energy difference between the two channels and ωth

is referred to as the threshold energy of OFR. Experimen-
tally, ωth/2 is tunable by adjusting an external magnetic
field [1].

In Eq. (1), U0 (< 0) and U1 represent an intraband and
interband pairing interaction, respectively. These are related

to the observable scattering lengths as± as [1,2,7,9,10]

4πas±
m

= U±
1 + U±

∑pc
p

1
2εp

, (2)

where U± = U0 ∓ U1, and pc is a high-momentum cutoff. For
a 173Yb Fermi gas near OFR, we should take [17,18]

as+ = 1900a0,
(3)

as− = 200a0,

where a0 = 0.529 Å is the Bohr radius. For these realistic
values (as+/as− 	 1), Ref. [3] points out that the Leggett
mode does not appear. References [7,14] take different val-
ues, kFas+ = 1 and as+/as− = 0.8 
 1 (where kF is the Fermi
momentum), and they show the existence of this mode. In this
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paper, although we mainly consider the 173Yb case in Eq. (3),
the latter case is also discussed.

In the superfluid phase, it is convenient to rewrite Eq. (1)
in the Nambu representation [37,38]:

H =
∑

p,α=o,c

	̂†
α,p

[
ξα

p τ3 + �ατ1
]
	̂α,p

+ 1

4

∑
q,α,α′=o,c, j=1,2

Uα,α′ ρ̂α
j (q)ρ̂α′

j (−q) + E0, (4)

where

E0 = −2|�+|2
U+

− 2|�−|2
U−

+
∑

p,α=o,c

ξα
p (5)

and

	̂o,p =
(

ce,↑,p

c†
g,↓,−p

)
, (6)

	̂c,p =
(

ce,↓,p

c†
g,↑,−p

)
, (7)

are the two-component Nambu fields in the open and closed
channels, respectively. τi (i = 1, 2, 3) are the Pauli matrices
acting on particle-hole space in each channel. In Eq. (4),

�o = U0

∑
p

〈cg,↓,−pce,↑,p〉 + U1

∑
p

〈cg,↑,−pce,↓,p〉, (8)

�c = U0

∑
p

〈cg,↑,−pce,↓,p〉 + U1

∑
p

〈cg,↓,−pce,↑,p〉, (9)

are the superfluid order parameters in the open and closed
channels, respectively. In this paper, these are taken to be real
and proportional to the τ1 component, without loss of general-
ity. �± in Eq. (5) are related to �α=o,c as �± = [�c ∓ �o]/2.

The interaction term involved in Eq. (4) consists of the in-
traband interaction (Uo,o = Uc,c = U0) and the interband one
(Uo,c = Uc,o = U1). In this term,

ρ̂α
j (q) =

∑
p

	̂
†
αp+q/2τ j	̂αp−q/2 (10)

is the generalized density operator in the α channel [38,39].
Since we are taking �α=o,c to be parallel to the τ1 component,
ρ̂α

1 and ρ̂α
2 physically describe the amplitude and phase fluc-

tuations of the superfluid order parameter in the α channel,
respectively [38].

B. Amended NSR theory in the superfluid phase

We include the effects of superfluid fluctuations in the
BCS-BEC crossover region by extending the NSR theory
[31] to the present model two-band system below Tc. In this
approach, the thermodynamic potential  = MF + δNSR

consists of the mean-field BCS term MF and the fluctuation
correction δNSR. The former has the form

MF = −2|�+|2
U+

− 2|�−|2
U−

+
∑

p,α=o,c

[
ξα

p − Eα
p − 2T ln

[
1 + e−Eα

p /T
]]

, (11)

where Eα
p =

√
ξα

p
2 + �2

α is the Bogoliubov single-particle

dispersion in the α channel. The NSR correction term δNSR

involves the effects of superfluid fluctuations around the
mean-field order parameters �α=o,c, which is diagrammati-
cally given in Fig. 1: In this figure, the first and second line
describe the contribution of superfluid fluctuations in the open
and closed channels by the intraband interaction U0, respec-
tively. The last line describes the effects of channel-coupling
by the interband interaction U1. Summing up these diagrams,
we have

δNSR = T

2

∑
q,νn

Tr ln

[
1 − Û

2
�̂(q, iνn)

]
, (12)

where νn is the boson Matsubara frequency,

Û =

⎛
⎜⎝

U0 0 U1 0
0 U0 0 U1

U1 0 U0 0
0 U1 0 U0

⎞
⎟⎠, (13)

and

�̂(q, iνn) =

⎛
⎜⎝

�o
11(q, iνn) �o

12(q, iνn) 0 0
�o

21(q, iνn) �o
22(q, iνn) 0 0

0 0 �c
11(q, iνn) �c

12(q, iνn)
0 0 �c

21(q, iνn) �c
22(q, iνn)

⎞
⎟⎠. (14)

In Eq. (14),

�α
i j (q, iνn) = −

∫ 1/T

0
dτ eiνnτ

〈
Tτ

[
ρα

i (q, τ )ρα
j (−q, 0)

]〉
= T

∑
p,ωm

Tr[τiG
α (p + q/2, iωm + iνn)τ jG

α (p − q/2, iωm)] (15)

is the pair-correlation function, where ωm is the fermion Matsubara frequency, and

Ĝα (p, iωm) = 1

iωm − ξα
p τ3 − �ατ1

(16)

053319-3



KAMIHORI, KAGAMIHARA, AND OHASHI PHYSICAL REVIEW A 103, 053319 (2021)

U0

NSR = + + + . . .

+ + + . . .+

+ + . . .

U1

U0

i

i

i i

j j

i

i

j

j

k

ko
ii

c
ii

o
ij

c
ij

i

i

i i i

i

j j

jj

i i

k

kj

j

+

i

i

k

kj

j

o
ij

c
ij

superfluid fluctuations 

in the open channel

superfluid fluctuations 

in the closed channel

coupled superfluid fluctuations 

between the two channels

FIG. 1. NSR fluctuation corrections δNSR to the thermodynamic potential  in the superfluid phase below Tc. The diagrams in the first
(second) line describe the effects of superfluid fluctuations in the open (closed) channel, which are enhanced by the strong intraband pairing
interaction U0. The diagrams in the third line involve not only U0, but also the interband interaction U1, indicating that these diagrams physically
describe the effects of coupled superfluid fluctuations between the two channels. In each diagram, the bubbles are the pair correlation functions
�α=o,c

i j (i, j = 1, 2) in Eq. (14): �α
11 (�α

22) physically describes amplitude (phase) fluctuations of the superfluid order parameter �α in the
α-channel. �α

12 and �α
21 represent the coupling of amplitude and phase fluctuations of the superfluid order parameter. τi=1,2 are the Pauli

matrices acting on particle-hole space in each channel.

is the 2 × 2 matrix single-particle BCS Green’s function [37]. The ωm-summation in Eq. (15) gives

�α
11 =

∑
p

[
1 − ξα

p+q/2ξ
α
p−q/2 − �2

α

Eα
p+q/2Eα

p−q/2

]
Eα

p+q/2 − Eα
p−q/2(

Eα
p+q/2 − Eα

p−q/2

)2 + ν2
n

[
f
(
Eα

p+q/2

) − f
(
Eα

p−q/2

)]

−
∑

p

[
1 + ξα

p+q/2ξ
α
p−q/2 − �2

α

Eα
p+q/2Eα

p−q/2

]
Eα

p+q/2 + Eα
p−q/2(

Eα
p+q/2 + Eα

p−q/2

)2 + ν2
n

[
1 − f

(
Eα

p+q/2

) − f
(
Eα

p−q/2

)]
, (17)

�α
22 =

∑
p

[
1 − ξα

p+q/2ξ
α
p−q/2 + �2

α

Eα
p+q/2Eα

p−q/2

]
Eα

p+q/2 − Eα
p−q/2(

Eα
p+q/2 − Eα

p−q/2

)2 + ν2
n

[
f
(
Eα

p+q/2

) − f
(
Eα

p−q/2

)]

−
∑

p

[
1 + ξα

p+q/2ξ
α
p−q/2 + �2

α

Eα
p+q/2Eα

p−q/2

]
Eα

p+q/2 + Eα
p−q/2(

Eα
p+q/2 + Eα

p−q/2

)2 + ν2
n

[
1 − f

(
Eα

p+q/2

) − f
(
Eα

p−q/2

)]
, (18)

�α
12 =

∑
p

[
ξα

p+q/2

Eα
p+q/2

− ξα
p−q/2

Eα
p−q/2

]
νn(

Eα
p+q/2 − Eα

p−q/2

)2 + ν2
n

[
f
(
Eα

p+q/2

) − f
(
Eα

p−q/2

)]

−
∑

p

[
ξα

p+q/2

Eα
p+q/2

+ ξα
p−q/2

Eα
p−q/2

]
νn(

Eα
p+q/2 + Eα

p−q/2

)2 + ν2
n

[
1 − f

(
Eα

p+q/2

) − f
(
Eα

p−q/2

)]
, (19)

and �α
21 = −�α

12. Here, f (x) is the Fermi distribution function. Among these, �α
11, �α

22, and �α
12 physically describe

the amplitude and phase fluctuations of the superfluid order parameter, and the coupling between these fluctuations,
respectively.

In the NSR scheme, the superfluid order parameter �α in the α channel is determined from the extremum condition
∂MF/∂�α = 0 for the mean-field thermodynamic potential MF in Eq. (11). The resulting coupled gap equations are given
by [1]

1

2

[
�c
�o

− 1
4πas+

m

−
�c
�o

+ 1
4πas−

m

]
=

∑
p

[
1

2Eo
p

tanh
Eo

p

2T
− 1

2εp

]
, (20)

1

2

[
�o
�c

− 1
4πas+

m

−
�o
�c

+ 1
4πas−

m

]
=

∑
p

[
1

2E c
p

tanh
E c

p

2T
− 1

2εp

]
, (21)
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where the ultraviolet divergence has been absorbed into the
scattering lengths as± in Eq. (2). We briefly note that the gap
equations (20) and (21) can also be obtained from Eqs. (8)
and (9) when the expectation values in these equations are
evaluated by using the BCS single-particle Green’s functions
Ĝα=o,c(p, iωm) in Eq. (16).

The gap equations (20) and (21) have two types of solu-
tions [3,5,7]: The in-phase solution [sgn(�o) = sgn(�c)] and
the out-of-phase solution [sgn(�o) = −sgn(�c)]. Between
the two, the latter is known to be related to a shallow bound
state [3,5] (see also Appendix A), and it is responsible for the
recently observed OFR in a 173Yb Fermi gas [17,18]. On the
other hand, the in-phase solution is related to a deep bound
state [3], and it has nothing to do with the observed OFR. This
deep bound state is inaccessible in the current experiments
on a 173Yb Fermi gas near OFR [17,18]. Because we are
interested in the observed situation, we focus only on the
out-of-phase solution of Eqs. (20) and (21).

Following the standard NSR approach [38], we solve the
gap equations (20) and (21), together with the equation for the

total number N of Fermi atoms, to consistently determine �o,
�c, and μ. The number equation is obtained from the thermo-
dynamic identity N = −∂/∂μ (where  = MF + δNSR),
giving

N =
∑
α=o,c

Nα
0 + T

2

∑
q,νn

Tr

[
�̂(q, iνn)

∂

∂μ
�̃(q, iνn)

]
. (22)

Here,

Nα
0 =

∑
p

[
1 − ξα

p

Eα
p

tanh
Eα

p

2T

]
(23)

is the number equation in the mean-field level, and

�̂(q, iνn) = [1 − Ũ�̃(q, iνn)]−1Ũ (24)

is the 4 × 4 particle-particle scattering matrix in the general-
ized random phase approximation (GRPA) [38,39] in terms of
the intraband (U0) and interband (U1) interactions. In Eqs. (22)
and (24), the ultraviolet divergence involved in the pair-
correction function �̂(q, iνn) in Eq. (14) has been removed as

�̃(q, iνn) =

⎛
⎜⎜⎝

�̃o
11(q, iνn) �̃o

12(q, iνn) 0 0
�̃o

21(q, iνn) �̃o
22(q, iνn) 0 0

0 0 �̃c
11(q, iνn) �̃c

12(q, iνn)
0 0 �̃c

21(q, iνn) �̃c
22(q, iνn)

⎞
⎟⎟⎠ = 1

2
�̂(q, iνn) +

∑
p

1

2εp
1̂. (25)

Here, 1̂ is the 4 × 4 unit matrix. The interaction matrix Ũ in Eq. (24) has the form

Ũ = 4π

m

⎛
⎜⎝

as0 0 as1 0
0 as0 0 as1

as1 0 as0 0
0 as1 0 as0

⎞
⎟⎠, (26)

where

as0 = [as− + as+]/2,

as1 = [as− − as+]/2. (27)

We briefly note that the GRPA scattering matrix �̂(q, iνn) in Eq. (24) satisfies the required gapless condition for the Goldstone
mode. That is, �̂(q, iνn) has a pole at q = νn = 0 when the superfluid order parameters �α=o,c satisfy the coupled gap equations
(20) and (21). For the proof, see Appendix B.

Now, we remove the effects of the (experimentally inaccessible) deep bound state from the theory [2,3,9,10] in order to
describe a real 173Yb Fermi gas near OFR [17,18]. For this purpose, we extend the prescription developed in the normal state
[9,10] to the superfluid phase below Tc: Noting that the particle-particle scattering matrix �̂(q, iνn) in Eq. (24) involves superfluid
fluctuations associated with (i) the shallow bound state being responsible for OFR and (ii) the unwanted deep bound state, we
first diagonalize �̂(q, iνn) as

�̂d (q, iνn) ≡ Ŵ −1�̂Ŵ =

⎛
⎜⎜⎝

�+
11(q, iνn) 0 0 0

0 �+
22(q, iνn) 0 0

0 0 �−
11(q, iνn) 0

0 0 0 �−
22(q, iνn)

⎞
⎟⎟⎠, (28)

where the 4 × 4 matrix Ŵ diagonalizes �̂. When ωth = 0 and
ν0 = 0, the eigenvalues in Eq. (28) are reduced to

�±
j j (q, 0) = 4πas±

m

1

1 − 4πas±
m �̃ j j (q, 0)

. (29)

In Eq. (29), the scattering length as+ appears in �+
j j . In

addition, the pole equation 1 − (4πas+/m)�̃22(0, 0) = 0 of
�+

22(q = 0, 0) is just the same form as the gap equation in the
out-of-phase case, given in Eq. (A2) in Appendix A. Thus, one
finds that �+

11 and �+
22, respectively, describe the amplitude

and phase fluctuations of the superfluid order parameters

053319-5



KAMIHORI, KAGAMIHARA, AND OHASHI PHYSICAL REVIEW A 103, 053319 (2021)

associated with the shallow bound state [38,39]. On the other
hand, the pole condition 1 − (4πas−/m)�̃22(0, 0) = 0 of
�−

22(q = 0, 0) gives the gap equation (A1) in the in-phase
case, so that �−

j j is found to be associated with the deep bound
state. Thus, we remove the latter contribution by replacing the
particle-particle scattering matrix �̂(q, iνn) in Eq. (22) with

�̃(q, iνn) =

⎛
⎜⎜⎜⎝

�̃11
oo �̃12

oo �̃11
oc �̃12

oc

�̃21
oo �̃22

oo �̃21
oc �̃22

oc

�̃11
co �̃12

co �̃11
cc �̃12

cc

�̃21
co �̃22

co �̃21
cc �̃22

cc

⎞
⎟⎟⎟⎠

= Ŵ

⎛
⎜⎝

�+
11(q, iνm) 0 0 0

0 �+
22(q, iνm) 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎠Ŵ −1.

(30)

In Sec. III A, we will show self-consistent solutions for the
coupled gap equations (20) and (21) with the number equation
(22) where �̂ is replaced by �̃.

C. Condensate fraction Nc

The condensate fraction Nc = No
c + Nc

c physically de-
scribes the number of Bose-condensed Cooper pairs [40].
Here,

Nα=o,c
c =

∑
p

|〈	̂†
α,pτ−	̂α,p〉|2 (31)

is the condensate fraction in the α channel [40–42], where
τ− = (τ1 − iτ2)/2. Using Eq. (16), one obtains

Nα
c =

∑
p

∣∣∣∣∣T
∑
ωn

Tr[τ−Ĝα (p, iωm)]

∣∣∣∣∣
2

=
∑

p

�2
α

4Eα
p

2 tanh2
Eα

p

2T
. (32)

Equation (32) is consistent with the gap equations (20) and
(21) in the sense that the latter equations can also be obtained
from the same single-particle BCS Green’s function Ĝα in
Eq. (16) as

�α=o,c = U0T
∑
p,ωn

Tr[τ−Ĝα (p, iωn)]

+U1T
∑
p,ωn

Tr[τ−Ĝ−α (p, iωn)], (33)

where “−α” means the opposite component to α. On the other
hand, Ĝα in Eq. (16) cannot reproduce the whole expression
for the number equation (22), but it only gives the mean-field
part Nα

0 . The same inconsistency also exists in the single-
channel case [31–33], where fluctuation corrections to the
mean-field BCS single-particle Green’s function are necessary
to obtain the NSR number equation. In the single-channel
case, however, the effects of these corrections on the con-
densate fraction are known to actually be very weak in the
BCS-BEC crossover region [42]. In this paper, therefore, we
also examine the condensate fraction within Eq. (32).

D. Collective excitations

The energy of a collective mode associated with the
superfluid order can be determined from a pole of the analytic-
continued particle-particle scattering matrix �̃(q, iνn → ω +
iδ) in Eq. (30) (where δ is an infinitesimally small positive
number). In this paper, we approximately evaluate the mode
energy by only solving the real part of this pole condition
[38,43,44],

Re[det(�̃−1(q, iνn → ω + iδ))] = 0. (34)

In particular, we set ω = csq (q ∼ 0) in looking for the gapless
Goldstone mode with the sound velocity cs. The approximate
mode equation (34) is valid for the case when the collective
mode is weakly damped. To check this, we also examine how
the spectral peak of this mode sharply appears in the spectral
weights, given by

Aj j
α (q, ω) = − 1

π
Im

[
�̃ j j

αα (q, iνn → ω + iδ)
]
, (35)

where �̃
j j
αα (q, iνn) (α = o, c, j = 1, 2) is given in Eq. (30).

In (35), A11
α and A22

α are, respectively, the spectral weight
of the amplitude correlation function of the superfluid order
parameter and that of the phase correlation function in the α

channel.

III. SUPERFLUID PROPERTIES OF A 173Yb FERMI GAS

A. Superfluid order parameters �α

Figure 2 shows self-consistent (out-of-phase) solutions for
the coupled gap equations (20) and (21) with the number
equation (22) with �̂ being replaced by �̃ in Eq. (30). The
values of the scattering lengths as± are given in Eq. (3). In
this figure, we measure the interaction strength in terms of
(kFas)−1 [1,2,4,9,10], where

as = as0 − [
a2

s0 − a2
s1

]√
mωth

1 − as0
√

mωth
(36)

is the s-wave scattering length in the open channel. kF =
[3π2n]1/3 is the Fermi momentum in an assumed single-band
two-component Fermi gas with the particle density n = 5 ×
1013 cm−3 [1–3].

Figures 2(a) and 2(b) indicate that the sign of �c is
opposite to that of �o, which is characteristic of the out-
of-phase solution. In addition, one also finds from these
figures that |�o| 
 |�c|, and they exhibit a very similar tem-
perature dependence to each other. As known in metallic
superconductivity [29,45], these indicate the importance of
the interband interaction U1 in realizing a superfluid 173Yb
Fermi gas. If U1 is much weaker than the intraband interaction
U0, their temperature dependence would be very different
from each other near Tc, especially in the weak-coupling BCS
regime where the closed-channel band ξ c

p is much higher than
the open-channel band ξ o

p [29,45]. Thus, when the super-
fluid phase transition is achieved in a 173Yb Fermi gas, the
observation of |�α=o,c| would provide useful information
about the importance of the interband interaction.

We see in Fig. 2 that �α=o,c and μ exhibit weak first-order
behavior near Tc, when the interaction becomes strong to some
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FIG. 2. Self-consistent out-of-phase solutions for the coupled
gap equations (20) and (21) with the number equation (22) where �̂

is amended as �̃ in Eq. (30). (a) Superfluid order parameter �o (> 0)
in the open channel. (b) Superfluid order parameter �c (< 0) in
the closed channel. (c) Fermi chemical potential μ. TF, εF, and kF

are, respectively, the Fermi temperature, Fermi energy, and Fermi
momentum in an assumed single-band two-component free Fermi
gas with the particle density n = 5 × 1013 cm−3 [1–3]. The values
of the scattering lengths as± are given in Eq. (3) [17,18], For these
parameters, the threshold energy ωth vanishes when (kFas )−1 = 1.57
[2,9,10] (which experimentally corresponds to the vanishing exter-
nal magnetic field). Thus, we only show the results in the weaker
coupling region, (kFas )−1 � 1.57.

extent. The same phenomenon also occurs in the single-band
case, which is, however, known as an artifact of the NSR
theory [42]. This problem still exists in a more sophisticated
strong-coupling theory, such as the self-consistent T -matrix
approximation [46], and it is still unknown how to recover
the expected second-order phase transition in the whole BCS-
BEC crossover region. In this paper, therefore, leaving this
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FIG. 3. (a) Calculated condensate fraction Nc in a superfluid
173Yb Fermi gas near OFR. Panels (b) and (c) show the open- and
closed-channel components, respectively. In obtaining these results,
we have used �α=o,c and μ in Fig. 2.

problem as a future problem, we use the NSR data in Fig. 2 in
calculating the condensate fraction Nc as well as the spectral
weights in the following discussions.

B. Condensate fraction

Figure 3 shows the condensate fraction in the BCS-BEC
crossover regime of a two-band superfluid Fermi gas. For
clarity, we also show in Fig. 4(a) the interaction dependence of
this quantity far below Tc. In the weak-coupling BCS regime
[(kFas)−1 <∼ − 1], one sees in Fig. 3(a) that the total conden-
sate fraction Nc is much smaller than N/2, which is realized
when all the Fermi atoms form Cooper pairs. This is simply
because only atoms near the Fermi surface contribute to the
pair formation in this regime [41,42].

One also finds from Figs. 3(b), 3(c) and 4(a) that the
condensate fraction Nc is dominated by the open-channel
component No

c in the BCS regime. To understand this, we
recall that the OFR-induced pairing interaction is tuned by ad-
justing the energy difference ωth/2 between the upper closed
channel and the lower open channel: The weak-coupling
regime is realized when ωth/2 is large. As a result, most Fermi
atoms occupy the open-channel band in the weak-coupling
regime, so that the number of atoms in the closed channel is
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very small. This naturally leads to Nc
c � No

c 
 Nc. Indeed, it
has been shown that the closed channel is almost vacant when
(kFas)−1 <∼ − 1 [9].

In the weak-coupling BCS regime [(kFas)−1 <∼ − 1], in
spite of Nc

c � No
c , the magnitude of the superfluid order pa-

rameter |�c| in the closed channel is still comparable to that
in the open channel |�o| [see Figs. 2(a), 2(b) and 4(b)]. More
precisely, Fig. 4(b) shows that |�c| >∼|�o| (which is consistent
with the previous work in the mean-field approximation [2]).
To consistently understand these different results (Nc

c � No
c

and |�c| >∼|�o|), the key point is that, while the conden-
sate fraction literally means the number of Bose-condensed
Cooper pairs, the superfluid order parameter is related to the
binding energy of a Cooper pair. Thus, although the number of
Cooper pairs in the closed channel is very small in the weak-
coupling BCS regime, each Bose-condensed Cooper pair in
this channel has the nonzero binding energy E c

bind, given by

E c
bind

=
{

2|�c| (μ � ωth/2),
2[

√
(ωth/2 − μ)2 + �2

c − (ωth/2 − μ)] (μ < ωth/2).

(37)

In particular, deep inside the BCS regime (where ωth/2 	 μ),
Eq. (37) gives E c

bind 
 2|�c| × (|�c|/ωth ) � 2|�c|, which is
much smaller than the binding energy Eo

bind = 2�o in the
open channel in this regime. This result may be interpreted
as showing that the closed channel is in the weaker coupling
regime than the open channel, which is consistent with the
fact of a smaller condensate fraction Nc

c � No
c in the former

channel than that in the latter.
The reason why |�c| 
 |�o| is obtained even in the weak-

coupling BCS regime (where Nc
c � No

c ) is that �c in Eq. (9)
is made up of the pair amplitude, not only in the closed chan-
nel 〈cg,↑,−pce,↓,p〉 but also in the open channel 〈cg,↓,−pce,↑,p〉.
Thus, even when the closed channel cannot produce the pair
amplitude, �c can still become nonzero by using the pair
amplitude supplied from the open channel through the inter-
band interaction U1. Regarding this, we note that the interband
interaction in Eq. (1) may be viewed as a pair-tunneling term,
where a pair of Fermi atoms moves from one band to the other.

The total condensate fraction Nc increases monotonically
upon increasing the interaction strength [see Fig. 3(a)]. As
shown in Figs. 3(c) and 4(a), the closed-channel component
Nc

c also increases in this procedure, because the interaction
strength is increased by decreasing the energy difference
ωth/2 between the two bands. The open- and closed-channel
bands are degenerate at (kFas)−1 = 1.57, at which Nc

c = No
c

is achieved. Although we cannot go beyond this coupling
strength, Fig. 4(a) shows that more than 80% of Fermi atoms
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FIG. 4. (a) Condensate fractions Nc and Nα=o,c
c as functions of

the interaction strength (kFas )−1. (b) Superfluid order parameters
�α=o,c and Fermi chemical potential μ as functions of the interaction
strength. We set T/TF = 0.01.

already form Cooper pairs and are Bose-condensed far below
Tc when (kFas)−1 = 1.57.

C. Spectral weights and Goldstone mode

Figure 5 shows that the spectral weights Aα
j j (q, ω) of the

amplitude ( j = 1) and phase ( j = 2) correlation functions of
the superfluid order parameters in a superfluid 173Yb Fermi
gas at the unitarity. In this figure, we see that overall spec-
tral structures are similar between the amplitude ( j = 1) and
phase ( j = 2) components, as well as between the open (α =
o) and closed (α = c) channels: They commonly have (a) the
two-particle continuum, and (b) the peak line starting from
q = ω = 0 [see panel (a1)].

Regarding the characteristic spectral structures (a) and (b),
the two-particle continuum (a) is associated with the breakup
of a Cooper pair. When the interband interaction U1 is absent
and the open-channel band is completely disconnected from
the closed-channel band, they should have different threshold
energies with respect to two-particle excitations, Eα=o,c

th =
Min[Eα

p+q/2 + Eα
−p+q/2] [43,47]. That is,

Eo
th =

{
2|�o| (μ � 0 and q � 2

√
2mμ),

2
√[ q2

8m − μ
]2 + |�o|2 (otherwise),

(38)

E c
th =

{
2|�c| (μc � 0 and q � 2

√
2mμ),

2
√[ q2

8m − μc
]2 + |�c|2 (otherwise).

(39)
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FIG. 5. Calculated spectral weights Aα=o,c
j j (q, ω) of the amplitude ( j = 1) and phase ( j = 2) correlation functions in Eq. (35) in a unitary

173Yb superfluid Fermi gas [(kFas )−1 = 0]. In panel (a1), the continuum spectrum (a) describes two-particle excitations being accompanied by
dissociation of a Cooper pair. The peak line (b) is the Goldstone mode. We also see a weak peak line (c), which is the Schmid (Higgs) mode
[35,36]. The dotted line in each panel shows E o

th in Eq. (38), which gives the threshold energy of the two-particle continuum. The spectral
intensity is normalized by 2π 2/(mkF ). The same normalization is also used in Figs. 6 and 8.

Here, μc = μ − ωth/2. However, as seen in Fig. 5, the thresh-
old energy Eth of two-particle excitations is commonly given
by

Eth = Min
[
Eo

th, E c
th

] = Eo
th. (40)

This is because the interband interaction mixes the two chan-
nels, so that the depairing of Cooper pairs in the open channel
also affects the two-particle continuum in the closed channel.

In Fig. 5, the peak line (b) is just the (gapless) Goldstone
mode in the superfluid phase, so that it becomes broad at
Tc (see the lowest panels). Although this mode is physically
interpreted as the collective phase oscillation of the superfluid
order parameter, this spectral peak line actually appears in
both Aα

11(q, ω) (amplitude component) and Aα
22(q, ω) (phase

component). This is a result of the amplitude-phase coupling
described by the correlation functions �α

12(q, iνn → ω + iδ)
in Eq. (19), as well as �α

21 = −�α
12 [42]. Because this cou-

pling effect vanishes at ω = 0 [see Eq. (19) with iνn → ω +
iδ], the peak intensity in Aα

11(q, ω) becomes weak around q =
ω = 0, as seen in the left two columns in Fig. 5. In addition,
it is known that the amplitude-phase coupling also vanishes
when the system has particle-hole symmetry with respect to
the Fermi surface [39,43,48]. This situation is realized deep
inside the BCS regime where the region near the Fermi surface
dominantly contributes to the superfluid instability [39,43,48].
Indeed, as shown in Figs. 6(a1) and 6(a2), the peak inten-
sity associated with the Goldstone mode is much weaker in
Ao

11(q, ω) than in Ao
22(q, ω) in the BCS regime.

In Fig. 6, the dashed line shows ω = csq, where the sound
velocity cs is evaluated from Eq. (34). The agreement of
this linear dispersion with the spectral peak line confirms the
validity of this approximate mode equation, at least in the
present case. The same agreement is also obtained when we
draw ω = csq in all the panels in Fig. 5 below Tc, although we
do not explicitly show the result here.

We plot the calculated sound velocity cs from Eq. (34)
in Fig. 7. In the weak-coupling BCS regime, cs at low
temperatures approaches the sound velocity of the Anderson-
Bogoliubov mode [34,47] in a single-band Fermi superfluid,
given by

cAB
s = vF√

3
, (41)

with the Fermi velocity vF = (3π2N )1/3/m [see Fig. 7(b)].
This is simply because most Fermi atoms occupy the open-
channel band due to the fact that the upper closed-channel
band is much higher than the lower open-channel band in
this regime. Thus, the system properties in the BCS regime
become close to the case of a single-band Fermi superfluid.

The two bands become degenerate (ωth/2 = 0) when
(kFas)−1 = 1.57. Thus, the system again may be treated as
the single-band case there. Then, using the knowledge about
the strong-coupling BEC regime of the ordinary single-band
Fermi gas, the system in this regime is expected to be well de-
scribed by a superfluid gas of nB = N/2 Bose molecules with
a molecular mass M = 2m and a repulsive interaction UB =
4πaB/M, where the molecular scattering length aB equals
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FIG. 6. Spectral weights Ao
j j (q, ω) ( j = 1, 2) in the open chan-

nel. We set T = 0.01TF < Tc. (a1) and (b1) Weak-coupling BCS
regime [(kFas )−1 = −2]. (a2) and (b2) Unitary limit [(kFas )−1 = 0].
(a3) and (b3) Strong-coupling BEC regime [(kFas )−1 = 1.57]. The
dotted line shows the threshold of the two-particle continuum, given
in Eq. (38). The dashed line shows the linear dispersion ω = csq
of the Goldstone mode, where the sound velocity cs is determined
from Eq. (34). Similar results are also obtained in the closed channel,
although we do not explicitly show them here.

2as (> 0) within the NSR theory [48]. Indeed, Fig. 7(b) shows
that, with increasing the interaction strength in the BEC side
[(kFas)−1 >∼0], the sound velocity cs approaches the velocity
of the Bogoliubov phonon in such a Bose superfluid, given by

cB
s =

√
UBnB

M
. (42)

The above discussions indicate that, even for the present
two-band 173Yb superfluid Fermi gas, the character of
the Goldstone mode still changes continuously from the
Anderson-Bogoliubov mode in a single-band Fermi super-
fluid to the Bogoliubov phonon in the ordinary molecular
Bose superfluid, with increasing the interaction strength.
Thus, although the closed channel may affect cs in the unitary
regime [(kFas)−1 ∼ 0] to some extent, the overall BCS-BEC
crossover behavior of this quantity is similar to the single-
band case [49], such as 40K and 6Li superfluid Fermi gases
[20–23].

D. Absence of the Leggett mode in a 173Yb Fermi superfluid

Because the Leggett mode is the out-of-phase oscilla-
tion of the superfluid order parameters �o and �c [30], it
would appear in the phase component of the spectral weight
Aα

22(q, ω), if it exists. However, one only sees the Goldstone
mode (which is the in-phase oscillation of the superfluid order
parameters) in Figs. 5 and 6. This concludes the absence of
the Leggett mode, at least in the low-energy region below
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FIG. 7. (a) Calculated sound velocity cs of the Goldstone mode
in a 173Yb superfluid Fermi gas. vF is the Fermi velocity of an
assumed single-channel Fermi gas with N Fermi atoms. (b) cs as
a function of the interaction strength, when T/TF = 0.01. cAB

s =
vF/

√
3 is the velocity of the Anderson-Bogoliubov mode in a

single-band BCS superfluid. cB
s = √

UBnB/M is the velocity of the
Bogoliubov phonon in an interacting Bose superfluid with nB = N/2
bosons with particle mass M = 2m. UB = 4πaB/M is a repulsive in-
teraction between bosons, where aB = 2as is the molecular scattering
length. As mentioned in Sec. III A, the first-order behavior seen in
the strong-coupling regime is an artifact of the NSR theory.

the two-particle continuum. This conclusion agrees with the
previous work by He and co-workers [3].

Recently, Refs. [7,14] pointed out that the Leggett mode
appears below the two-particle continuum, when we choose
as−/as+ = 0.8. [Note that Eq. (3) gives as−/as+ 
 0.11 �
0.8.] Indeed, considering this case by setting

as+ = 1900a0,
(43)

as− = 1520a0,

we see in Fig. 8 a gapped peak line (B) corresponding to the
Leggett mode, in addition to the gapless peak line (A). In
the case of Eq. (43), the binding energy Ebind− = 1/(ma2

s−)
of the lower bound state is not so different from the binding
energy Ebind+ = 1/(ma2

s+) of the “shallow” bound state as
Ebind−/Ebind+ 
 1.5. Thus, we have retained both bound states
in obtaining Fig. 8.

We find from Fig. 9 that the energy of the Leggett mode
increases with decreasing the ratio as−/as+ [7]. Thus, it seems
that the present 173Yb Fermi gas near OFR [which has the
scattering lengths in Eq. (3)] is not useful for the observation
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FIG. 8. Calculated phase component of the spectral weight
Ao

22(q, ω), when (kFas )−1 = 0. In this calculation, we take as+ =
1900a0 and as− = 1520a0, and we do not remove the deeper bound
state. In the upper two panels (T < Tc), the spectral peaks (A) and (B)
correspond to the gapless Goldstone mode and the gapped Leggett
mode, respectively. In panel (c), the low-energy peak line describes
the dispersion of the noncondensed Bose molecules at Tc. The dashed
line shows the threshold of the two-particle continuum.

of the Leggett mode, even when the deep bound state becomes
experimentally accessible. To observe this collective mode in
the low-energy region ( <∼εF), we need to look for a different
situation of a 173Yb Fermi gas, or another two-band Fermi gas
with as− 
 as+.

E. Schmid (Higgs) mode

The peak structure (c) in Fig. 5(a1) is the Schmid mode
[35,36], which is also referred to as the Higgs mode in the
recent literature. The same peak is also seen in Figs. 5(a2),
5(b1), and 5(b2). This collective mode is accompanied by
the amplitude oscillation of the superfluid order parameter,
so that it appears in the amplitude component Aα=o,c

11 (q, ω)
of the spectral weight. Because of the amplitude-phase cou-
plings �α

12 and �α
21, in principle, it may also appear in

Aα
22(q, ω). However, because this collective mode appears at

the threshold of two-particle continuum, it is not clearly seen
in Aα

22(q, ω), as shown in the right two columns in Fig. 5.
To confirm this more explicitly, we show in Fig. 10 the en-
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FIG. 9. Calculated energy ωL(q = 0) of the Leggett mode as a
function of the ratio as−/as+. We take ωth = 0, T/TF = 0.01, and
as+ = 1900a0. (a) as− = 200a0 (173Yb Fermi gas). (b) as− = 860a0.
(c) as− = 1520a0 (Fig. 8). (d) as− = 1900a0.

ergy dependence of Ao
j j (q, ω) at q = 0: This amplitude mode

clearly appears as a peak structure at the threshold energy
of the two-particle continuum in Ao

11(q = 0, ω), as shown in
Figs. 10(a1) and 10(a2). However, such a peak structure is
absent in the phase component Ao

22(q = 0, ω) shown in the
right column in Fig. 10.

The Schmid (Higgs) mode is known to disappear in
the BEC regime when μ < 0 [14,50–52]. Indeed, when
(kFas)−1 = 1.57 [where μ < 0, see Fig. 4(b)], the spectral
peak no longer exists at the threshold of the two-particle
continuum in Ao

11(q = 0, ω), as shown in Fig. 10(a3).
When the interband interaction U1 is absent and the open-

channel band is disconnected from the closed-channel band,
we would have two independent amplitude modes associated
with �o and �c. In the present case, however, since the
Schmid mode appears at the threshold of the two-particle con-
tinuum, it is difficult to examine how the interband interaction
causes the coupling of these two amplitude modes, which
remains as our future problem. Regarding this, we point out
that, in the field of metallic superconductivity, the Schmid
mode is known to sometimes appear below the two-particle
continuum [53]. Thus, the realization of such a situation in
an ultracold Fermi gas would be useful for the study of this
problem.

IV. SUMMARY

To summarize, we have discussed the superfluid properties
of a 173Yb Fermi gas with an orbital Feshbach resonance
(OFR). Including superfluid fluctuations within the frame-
work of the strong-coupling theory developed by Nozières
and Schmitt-Rink, and removing the effects of an experi-
mentally inaccessible deep bound state, we self-consistently
determined the superfluid order parameters in open and closed
channels, as well as the Fermi chemical potential, as functions
of temperature, in the BCS-BEC crossover region below Tc.
Using these data, we also calculated the condensate fractions,
as well as the spectral weights of the amplitude and phase
correlation functions of the superfluid order parameters in the
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FIG. 10. Spectral weights Ao
j j (q = 0, ω) ( j = 1, 2) as functions of ω.

two channels. From the spectral weights, we determined the
sound velocity of the Goldstone mode in the crossover region.
We also discussed the Leggett mode and Schmid (Higgs)
mode.

In the weak-coupling BCS regime, we showed that the
condensate fraction in the closed channel (Nc

c ) is much smaller
than that in the open channel (No

c ). This is because the OFR
pairing mechanism tunes the interaction strength by adjusting
the energy difference between the two channels: The weak-
coupling BCS regime is realized when the closed-channel
band is much higher than the open-channel band, so that the
number of atoms, as well as the condensate fraction, in the
closed channel becomes small there.

We also showed that the magnitude of the superfluid order
parameter in the closed channel |�c| is comparable to that
in the open channel |�o|, even in the weak-coupling BCS
regime. As the reason for this, we pointed out that the inter-
band interaction U1 plays a crucial role. Because the closed
channel is almost vacant in the BCS regime, �c is dominantly
made of the pair amplitude 〈cg,↓,−pce,↑,p〉 produced in the
open channel, which is transferred to the closed channel by
the interband interaction.

The closed-channel contribution to the condensate fraction
increases with increasing the interaction strength, because the
energy difference between the two bands becomes small. At
the strongest interaction strength (kFas)−1 = 1.57, they are
degenerate, where Nc

c = No
c is realized. Our result shows that

more than 80% of atoms take part in the total condensate
fraction at this interaction strength.

We have also examined the spectral weights Aα=o,c
j j (q, ω) of

the amplitude ( j = 1) and phase ( j = 2) correlation functions
of the superfluid order parameters. We found that, in both the
open and closed channels, the threshold energy of the two-
particle continuum is commonly determined by the superfluid
order parameter �o in the open channel, as a result of the
mixing of the two channels by the interband interaction.

Below the two-particle continuum, the gapless Gold-
stone mode appears as a spectral peak line starting from
q = ω = 0. The peak position was shown to be the same
between the open-channel component Ao

j j (q, ω) and the
closed-channel one Ac

j j (q, ω). This means that a channel-
selective measurement is not necessary in observing the
Goldstone mode in a 173Yb superfluid Fermi gas. Regarding
this, if the open and closed channels are disconnected from
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each other, these two channels would have different Gold-
stone modes with different sound velocities. In this sense,
the fact that both channels have the same Goldstone mode
also originates from the channel-mixing by the interband
interaction.

Besides the Goldstone mode, the Schmid (Higgs) mode
was shown to appear at the threshold of the two-particle
continuum in the amplitude component Aα=o,c

11 (q, ω) of the
spectral weight. However, the Leggett mode was not obtained
below the two-particle continuum when the scattering lengths
for a 173Yb Fermi gas with OFR are employed. This indicates
that the present 173Yb Fermi gas with OFR may not be useful
for the study of the Leggett mode. A proposal about how to ob-
serve this mode is a crucial theoretical issue in cold Fermi gas
physics. Apart from this future problem, since the presence of
an interband interaction is characteristic of multiband Fermi
gases, our results would be useful for the study of how this
interaction affects the superfluid properties of a 173Yb Fermi
gas in the BCS-BEC crossover region.
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APPENDIX A: IN-PHASE (OUT-OF-PHASE) SOLUTION
AND DEEP (SHALLOW) BOUND STATE

To see that the in-phase (out-of-phase) solution of the gap
equations (20) and (21) is related to the deep (shallow) bound
state, we consider the situation in which the open and closed
channels are degenerate (ωth/2 = 0) and |�o| = |�c| is real-
ized. In a 173Yb Fermi gas with OFR, it corresponds to the
case when (kFas)−1 = 1.57 [1,2]. For the in-phase solution
(�o = �c ≡ �), Eqs. (20) and (21) are reduced to the same
BCS-type gap equation,

1 = −4πas−
m

∑
p

[
1

2Ep
tanh

Ep

2T
− 1

2εp

]
, (A1)

where Ep = √
(εp − μ)2 + �2.

For the out-of-phase solution (�o = −�c ≡ �), one has

1 = −4πas+
m

∑
p

[
1

2Ep
tanh

Ep

2T
− 1

2εp

]
. (A2)

Noting that as+ = 1900a0 and as− = 200a0 in the case of
a 173Yb Fermi gas near OFR [17,18], we solve the “in-
phase” gap equation (A1) in the strong-coupling regime
(where μ < 0, |�/μ| � 1, and |T/μ| � 1), which gives μ =
−1/(2ma2

s−). In this regime, on the other hand, the “out-of-
phase” gap equation (A2) gives μ = −1/(2ma2

s+). Since the
Fermi chemical potential μ (< 0) approaches half the energy

Ebound (< 0) of a two-body bound state in the BEC regime,
one reaches

Ebound 

{− 1

ma2
s−

(in-phase),

− 1
ma2

s+
(out-of-phase).

(A3)

Together with the above-mentioned values of as±, we find
from Eq. (A3) that the bound state in the in-phase case is much
deeper than that in the out-of-phase case. Using the typical
value of the number density n = k3

F/(3π2) = 5 × 1013 cm−3

[1,3,9,10], one has

|Ebound|
εF



{

138 (in-phase),
1.5 (out-of-phase). (A4)

While |Ebound| is comparable to the Fermi energy εF in the
out-of-phase case, it is much larger than εF in the in-phase
case.

APPENDIX B: POLE CONDITION FOR �̃(0, 0)

We prove that the particle-particle scattering matrix
�̃(q, iνn) in Eq. (24) has a pole at q = νn = 0 when the gap
equations (20) and (21) are satisfied. Noting that �̃α

12(0, 0) =
�α

21(0, 0) = 0 [see Eq. (19)], one obtains the pole condition
for �̃(0, 0) as

0 = det[1 − Ũ�̃(0, 0)]

= det

(
1 − 4πas0

m �̃o
11(0, 0) − 4πas1

m �̃c
11(0, 0)

− 4πas1
m �̃o

11(0, 0) 1 − 4πas0
m �̃c

11(0, 0)

)

×det

(
1 − 4πas0

m �̃o
22(0, 0) − 4πas1

m �̃c
22(0, 0)

− 4πas1
m �̃o

22(0, 0) 1 − 4πas0
m �̃c

22(0, 0)

)
, (B1)

where the scattering lengths as0 and as1 are given in Eq. (27).
Because the superfluid order parameters �α=o,c are chosen
to be parallel to the τ1 component in Eq. (4), the gapless
Goldstone mode associated with phase fluctuations of the
superfluid order parameters appears as the zero of the latter
determinant in Eq. (B1). This pole condition can also be
written as

0 = det[D̂], (B2)

where

D̂ =
(

η+ − �̃o
22(0, 0) −η−

−η− η+ − �̃c
22(0, 0)

)
. (B3)

Here, η± are related to the scattering lengths as± in Eq. (3) as

η± = 1

2

[
m

4πas+
± m

4πas−

]
. (B4)

Summarizing the gap equations (20) and (21) as

0 = D̂

(
�o

�c

)
, (B5)

we find that the pole equation (B2) is always satisfied when
the superfluid order parameters �α=o,c satisfy the gap equa-
tion (B5).
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