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Stability and breakdown of Fermi polarons in a strongly interacting Fermi-Bose mixture
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We investigate the properties of a strongly interacting imbalanced mixture of bosonic 41K impurities immersed
in a Fermi sea of ultracold 6Li atoms. This enables us to explore the Fermi polaron scenario for large impurity
concentrations including the case where they form a Bose-Einstein condensate. The system is characterized by
means of radio-frequency injection spectroscopy and interspecies interactions are widely tunable by means of
a well-characterized Feshbach resonance. We find that the energy of the Fermi polarons formed in the thermal
fraction of the impurity cloud remains rather insensitive to the impurity concentration, even as we approach
equal densities for both species. The apparent insensitivity to high concentration is consistent with a theoretical
prediction, based on Landau’s quasiparticle theory, of weak effective interaction between the polarons. The
condensed fraction of the bosonic 41K gas is much denser than its thermal component, which leads to a break-
down of the Fermi polaron description. Instead, we observe a new branch in the radio-frequency spectrum with a
small energy shift, which is consistent with the presence of Bose polarons formed by 6Li fermions inside the 41K
condensate. A closer investigation of the behavior of the condensate by means of Rabi oscillation measurements
supports this observation, indicating that we have realized Fermi and Bose polarons, two fundamentally different
quasiparticles, in one cloud.
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I. INTRODUCTION

Quantum many-body systems may greatly vary in the na-
ture of their elementary participants and in energy scales,
descending from nuclear and quark-gluon plasmas, electrons
in condensed matter, down to liquid helium and ultracold
gases. Nonetheless, the theoretical approaches used to tackle
them are remarkably similar [1–5]. One of the most impor-
tant tools developed to deal with the many-body problem,
and to simplify it drastically, is Landau’s celebrated idea of
quasiparticles [1]. It turns out that the low energy excitations
of a large class of many-body systems can be described in
terms of particlelike entities denoted quasiparticles. This leads
to a relatively simple yet powerful description of interacting
many-body systems, and as a consequence the quasiparticle
framework is an indispensable tool in our understanding of
nature [6]. Indeed, while exotic new materials such as un-
conventional superconductors [7] or singular Fermi liquids [8]
may defy this quasiparticle description, Landau’s framework
has in general been spectacularly successful in describing a
wide range of systems in nature.

Multicomponent ultracold gases offer an excellent test bed
to investigate quantum many-body systems [9]. In particu-
lar, strongly imbalanced quantum mixtures represent an ideal

system to study the limits of Landau’s quasiparticle paradigm.
In these systems, the minority component represents impuri-
ties interacting with the surrounding majority component to
form quasiparticles. Since early experiments in 2009 [10,11],
the case of dilute impurities in a large Fermi sea realizing
quasiparticles coined Fermi polarons has been intensively
studied in many experiments [12–18]. Thanks to the flexibility
provided by ultracold atom experiments, also the comple-
mentary case of Bose polarons, i.e., quasiparticles formed by
embedding mobile impurities in a bosonic environment, has
been investigated [19–23].

In the single-impurity limit, the quantum statistics of the
minority species, i.e., whether it is a fermion or a boson,
is irrelevant for the behavior of the ensemble. Theoretical
predictions based on Landau’s approach have shown excel-
lent agreement with experimental observations in this regime
[5,24–26]. Even for moderate impurity concentration, a de-
scription in terms of quasiparticles has proved accurate.
However, as the concentration is further increased, the quan-
tum statistics of the impurities will determine the fate of the
polaron. In Fermi-Fermi systems the impurities first form a
Fermi sea of polarons [15], and finally the whole system un-
dergoes a transition to a paired superfluid as the concentration
is increased beyond a critical value for attractive interactions
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[27,28]. In contrast, bosonic impurities at large concentration
and low temperature will form a Bose-Einstein condensate
(BEC), as we have shown in previous work [29–31]. Em-
ploying resonantly tunable interactions, a strongly interacting
Fermi-Bose mixture, embedded in the Fermi sea, can then be
created. Furthermore, an intrinsic property of quasiparticles
such as polarons is that they interact via density modulations
in the surrounding medium [6]. Such induced interactions
between bosonic impurities will in general be attractive, in
contrast to fermionic impurities [32–35], and may lead to the
formation of bound dimer states [36].

In this paper, we present our experimental observations
regarding polaron physics in Fermi-Bose mixtures, where the
bosons (41K atoms) represent the minority species immersed
in a sea of ultracold fermions (6Li atoms). We explore dif-
ferent density regimes and show that both the Fermi and the
Bose polaron can be realized in our system. In Sec. II, we
discuss the basic properties of the impurities as a function
of their concentration, and the differences with respect to the
previously investigated Fermi-Fermi case of 40K impurities in
a 6Li gas [12–14]. After this we introduce our experimental
procedures and the relevant parameters in Sec. III. Then our
experimental results are presented and discussed in Sec. IV
before we conclude in Sec. V.

II. BOSONIC IMPURITIES IN A
FERMIONIC ENVIRONMENT

In this section, we discuss our basic approach of immersing
bosonic potassium atoms, 41K, as a minority component into
a Fermi sea of ultracold lithium atoms, 6Li, in the presence
of strong interspecies interactions. We introduce the three
different density regimes accessible in our system. Then we
compare the current experimental approach with our previous
work, in which we investigated a system where the impurity
was represented by the fermionic isotope 40K [12–14].

A. From a single impurity to a BEC

Our main motivation is to investigate density-dependent
effects of Fermi polarons emerging from bosonic impuri-
ties. The three different regimes of impurity densities in our
Fermi-Bose (FB) mixture are illustrated in Fig. 1. The blue
background and the red dots represent the Li Fermi sea and
the K impurities, respectively. As in our previous work on the
Fermi-Fermi (FF) system [12], we use radio-frequency (RF)
injection spectroscopy to transfer atoms from a noninteract-
ing spin state K |2〉 into a state K |1〉 that interacts with the
fermionic medium.

In the case of a single impurity (left column), the K atom
is dressed by particle-hole excitations of the Fermi sea, which
lead to local density modulations in the medium and to the for-
mation of the Fermi polaron. In this low-concentration regime,
the quantum statistics of the impurity does not matter. The sit-
uation is accurately described in terms of a variational ansatz
[37], which has been widely applied in the field [5,26,38,39].

As we add more K atoms, we expect to introduce polaron-
polaron interactions into our system, as depicted in the middle
column of Fig. 1. In this density regime, the spatial overlap of
the density modulations around the impurities will result in

FIG. 1. Illustration of the Fermi-Bose mixture in three different
impurity density regimes. The upper (lower) row shows the nonin-
teracting (interacting) impurities, immersed in a Fermi sea, which
is represented by the blue background. The interaction between the
impurities and the Fermi sea gives rise to density modulations as
illustrated by the light blue circular rings around the K atoms. A
radio-frequency (RF) pulse brings the system from a noninteracting
to a strongly interacting state. The three columns illustrate three
different regimes. From left to right we increase the bosonic density
from a single impurity, to high densities, and finally to a mixed phase
containing a large BEC component.

an effective interaction between the quasiparticles mediated
by the fermions, which is attractive due to the bosonic nature
of the 41K atoms [32–36,40–44], see also Appendix B. This
effective interaction plays a key role in Landau’s quasiparticle
theory, but experimental observations in quantum-degenerate
gases are still scarce [14].

In the high-density regime (right column), the impurities
form a BEC in the center of the trap. As we shall see, the
density of this BEC exceeds that of the fermionic density by a
large factor of ∼36. In this case, the two species interchange
their roles and, locally, the Li atoms can be considered as im-
purities in the K-BEC. Such a scenario is commonly described
in terms of Bose polarons [19,20]. Therefore, as we vary the
K density from a thermal cloud to a BEC, we can realize the
transition from a system of Fermi polarons to a system of Bose
polarons.

B. Comparison with previous experiments

Here we discuss the basic situation investigated in our
present work in comparison with our previous experiments.
The main difference is the change in the quantum statistics
of the impurity species, i.e., bosonic 41K atoms instead of
fermionic 40K atoms. The Fermi sea of 6Li stays essentially
the same, only with minor changes of the particular experi-
mental parameters. This similarity enables us to focus on the
effects of the quantum statistics of the impurity.

The tunability of the interspecies interaction strength in
our experiment is given by a Feshbach resonance (FR) [45]
between the lowest Zeeman sublevels of K and Li. The pa-
rameters characterizing the FR are very similar in the FB
and FF case, see Appendix A and Supplemental Material of
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Ref. [14]. A quantitative difference is the Fermi energy, which
in the present case is somewhat lower and therefore modifies
the influence of the finite effective range on the interspecies
interaction. This fact is taken into account in our theoretical
approach, which is presented in detail in Appendix B.

Another difference between the two systems, which is con-
nected with the FR, is the choice of spin states we work with.
In the FF system, we tune the interactions between the lowest
and the third-to-lowest spin state of Li and K, respectively.
Therefore dipolar relaxation [46] can lead to decay into lower
lying Zeeman sublevels, which is relevant, in particular, if
molecules are formed [47]. In the FB case, the interacting
atoms occupy the lowest spin channel, which suppresses the
two-body process of dipolar relaxation.

When considering few-body processes [48,49], we find
that the quantum statistics of the impurities plays a crucial
role. In contrast to the FF system, inelastic few-body scat-
tering processes are not suppressed by Pauli blocking in the
present case. Therefore three-body processes involving one
fermion (Li) and two bosons (K) can lead to strong resonant
losses [50,51]. Other few-body processes, like, e.g., atom-
dimer resonances [52], sensitively depend on the quantum
statistics.

As we increase the K density and generate a BEC, which
is only possible if the impurities are bosonic, the character
of the whole system changes qualitatively. As described in
our previous publications [30,31,53], already for moderate re-
pulsive interspecies interactions we enter the regime of phase
separation. Here the BEC separates from the Fermi gas and
behaves as an almost pure BEC. On the other hand, for mod-
erate attractive interactions the BEC is supposed to undergo
collapse [54,55].

Owing to the fact that the Li-K mixture offers very similar
interaction tunability for 40K and 41K, it provides an excellent
test bed for investigating the differences between strongly
interacting FF and FB systems.

III. EXPERIMENTAL PROCEDURES

In this section, we outline the experimental procedures for
preparing a mixture of ultracold 6Li and 41K atoms in the
vicinity of an interspecies FR. After describing the preparation
of our sample (III A), we introduce experimental parameters
relevant for the data analysis (Sec. III B) and our method
of tuning the interspecies interaction (Sec. III C). Finally we
explain the RF excitation scheme (Sec. III D).

A. Sample preparation and detection

We use an all-optical approach [56] to prepare our system
in a crossed-beam optical dipole trap (CODT), operated with
1064-nm light. Following the evaporation and spin prepara-
tion scheme described in detail in Supplemental Material of
Refs. [30,57], we obtain a mixture of lithium atoms in the
lowest hyperfine spin state Li |1〉 (F = 1/2, mF = 1/2) and
potassium atoms in the second to lowest hyperfine spin state
K |2〉 (F = 1, mF = 0) in thermal equilibrium.

At the end of each experimental cycle, we switch off the
optical dipole trap, let the atoms expand for an adjustable
time and detect them using state-selective absorption imaging.

This allows us to image the atoms in two spin states per
species for each experimental cycle. Details on the imaging
technique and on how to obtain the atom number are provided
in Supplemental Material of Ref. [13].

We conduct our measurements in two different regimes, in
which we either prepare a thermal cloud (THC) or a partially
condensed cloud (PBEC) of K atoms immersed in a degen-
erate Fermi sea of Li atoms. We keep the same trap setting
for both regimes in order to avoid complications arising from
different trap depths and different light shifts of the center
of the Feshbach resonance. We achieve this by altering the
preparation stage for the PBEC with respect to the THC in
two ways. First, we increase the initially loaded atom numbers
and second we apply an additional evaporation step where
we further ramp down the power of our CODT and slowly
(within 1 s) recompress it to the initial values in the end. With
this procedure, we ensure a twofold increase in the number
of K atoms and thus an increase of the critical temperature
for condensation by about 30%. The condensed fraction is
typically of the order of β ≈ 0.5.

The finally prepared system consists of roughly 105 Li |1〉
and 104 K |2〉 atoms1 with temperatures of T ≈ 100 nK at a
magnetic field of B ≈ 335 G, where the only relevant effect
of the weak interaction is the thermalization of the sample
with an interspecies scattering length of about ∼60 a0 [58], a0

being the Bohr radius. The atoms are trapped in a CODT with
radial trap frequencies ωrad,K = 2π × 227 s−1 and ωrad,Li =
2π × 382 s−1, as well as axial frequencies ωax,K = 2π ×
31 s−1 and ωax,Li = 2π × 49.5 s−1 for K and Li, respectively.
The resulting elongated trap has an aspect ratio of ∼7 with the
weak axis oriented horizontally. The differential gravitational
sag [29] amounts to about 3 μm and can be neglected since
the Fermi sea is much larger. These are the initial conditions
for all the measurements presented in this paper.

B. Relevant parameters

The procedure for thermometry in our mixture of 41K and
6Li atoms is different for the two experimental regimes. In
the case of THC, we determine the temperature in a standard
way by ballistic expansion of the K atoms after releasing them
from the trap. In the case of PBEC we follow the approach
described in Ref. [29], where we release the atoms from the
trap to determine the condensate fraction of the K atoms.
From this and the known atom numbers and trap frequencies,
we calculate the temperature. For a PBEC, this thermometry
method proved to be more accurate than the standard bal-
listic expansion method [29]. The density profiles of both
the degenerate Li Fermi gas and the bosonic K cloud are
calculated using standard textbook relations [27]. We neglect
small finite-size or interaction corrections for the condensate
[30].

In order to determine the relevant parameters of our sys-
tem, we take into account that the Fermi pressure acts on the
Li atoms, and that the optical potential is about two times
deeper for K. This leads to the potassium sample being much

1Note that the atom numbers in the PBEC and in the THC slightly
differ, due to the different preparation methods.
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TABLE I. Table of experimental parameter values for measure-
ments on the thermal cloud (THC) and partial BEC (PBEC).

parameter THC PBEC

εF kB × 930(60) nK kB × 620(50) nK
1/κF 4000(130) a0 4800(200) a0

κFR∗ 0.57(2) 0.47(2)
T 130(13) nK 118(21) nK
kBT/εF 0.14(1) 0.19(3)
NLi 2.8(2) × 105 1.2(1) × 105

NK 1.2(1) × 104 2.7(3) × 104

n̄Li 1.9(2) × 1012 cm−3 1.0(1) × 1012 cm−3

n̄K 0.92(7) × 1012 cm−3 1.4(1) × 1012 cm−3

n̄K,BEC – 3.8(1) × 1013 cm−3

CK2 0.61(7) 1.5(5)
CK2,BEC [60] – 36(6)
β – 0.46(7)

smaller than the spatial extent of the lithium cloud, which
allows us to treat the latter as an essentially homogeneous
environment [12]. Since we obtain our spectroscopic signal
from the K component, we introduce the K-averaged atom
number densities, n̄Li and n̄K, for both species,

n̄Li,K = 1

NK

∫
nLi,K(r)nK(r)d3r, (1)

with nLi,K(r) being the local number density at position r of
Li and K, respectively. Similarly we define the effective Fermi
energy as

εF = 1

NK

∫
EF(r)nK(r)d3r, (2)

where the local Fermi energy at position r is given by

EF(r) = h̄2(6π2nLi(r))2/3

2mLi
. (3)

Finally, we define the effective Fermi wave number as
κF = √

2mLiεF/h̄.
In Table I, we present an overview of typical values for

important experimental parameters, which we adjust to mea-
sure the polaron spectra, as discussed in Sec. IV A. Since
such a measurement consists of many individual spectra, the
given uncertainties reflect the standard deviation for all spec-
tra. We introduce the dimensionless range parameter κFR∗
[59], which quantifies the character of the Feshbach resonance
(open- or closed-channel dominated), and the reduced tem-
perature of the sample kBT/εF, where kB is the Boltzmann
constant. The total atom numbers of Li (NLi) and K (NK)
are listed, and we give the concentrations CK2 = n̄K2/n̄Li and
CK2,BEC = n̄K2,BEC/n̄Li for the thermal and the condensed parts
of the noninteracting sample, respectively. Note that in the
majority of our measurements, we state the concentration
of the noninteracting sample. The value for the interacting
case CK1 = n̄K1/n̄Li is experimentally not directly accessible
because of interaction effects on the spatial distribution and
can thus only be estimated in Sec. IV B.

C. Interaction tuning

An interspecies Feshbach resonance (FR) centered at B0 =
335.080(1) G between the atoms in states Li |1〉 and K |1〉
(F = 1, mF = 1) enables us to tune the s-wave interaction by
varying the magnetic field. In Appendix A, we report on the
accurate determination of B0, including our trap-specific light
shift [30]. This allows us to adjust the interspecies scattering
length a according to the relation [45]

a = abg

(
1 − �

B − B0

)
, (4)

where � = 0.9487 G is the width and abg = 60.865 a0 is the
background scattering length of the Feshbach resonance, as
explained in detail in Supplemental Material of Ref. [30].

In order to quantify the interspecies interaction strength
in our system, we introduce the dimensionless interaction
parameter X = −1/(κFa). Most of the measurements pre-
sented in this paper are conducted in the strongly interacting
regime (−1 � X � 1), which raises the question of accu-
racy and precision in our knowledge of the magnetic field
strength. Therefore we experimentally determined the residual
fluctuations around the target value, resulting in a statistical
uncertainty of σB = 0.5 mG, which translates to a corre-
sponding uncertainty σX < 0.035 of the interaction parameter.
Furthermore, we observe a slow drift of the magnetic field
strength, which we take into account by taking the average
value of the magnetic field determined before and after each
measurement. We disregard all measurements that exceed a
magnetic field drift of 3 mG.

The uncertainty in the B field and the fact that our FR is
extending over a rather small magnetic field region set the
resolution we can achieve for X . For this reason, we discretize
the variation of the interaction parameter and divide a region
between −1.5 < X < 1.5 into 12 bins, each having a width
of ∼0.25. Individual bins in the full spectrum, presented in
Fig. 2, contain averages of 1–4 measurements.

D. Radio-frequency excitation scheme

In order to probe the spectral function of our K atoms
across the Feshbach resonance we use radio-frequency (RF)
spectroscopy. There are two main schemes, referred to as
“injection” and “ejection” spectroscopy, which shed light on
different aspects of the system [5,61]. We choose the former,
in which we transfer the minority atoms from a state that is
to a good approximation noninteracting into an interacting
state. One advantage of this method is that the system can be
transferred to a strongly interacting state that is not necessarily
the ground state of the system. It therefore enables us to study
the repulsive polaron as a metastable state [12,62] along with
its nonequilibrium evolution.

The system is excited by an RF pulse that transfers atoms
from the noninteracting K |2〉 to the interacting K |1〉 state
in the presence of Li |1〉. In order to avoid side lobes in the
spectrum we use a Blackman-shaped pulse. We adjust it to be
a resonant π -pulse for a bare K cloud, i.e., in the absence of
the Li atoms. The power is chosen such that at the resonance
frequency ν0, where the maximum transfer occurs, we have
a pulse duration of τRF = 1 ms. This duration was chosen as
a compromise between spectral resolution and lifetime. The
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FIG. 2. Spectral response of a bosonic 41K sample immersed in a 6Li Fermi sea. Panels (a) and (b) show the measured excitation spectra
in the thermal cloud (THC) regime and the partially condensed (PBEC) regime, respectively. The spectra are shown as a function of the
interaction parameter X = −1/(κFa) and the dimensionless RF detuning h�ν/εF . The color map refers to the transferred fraction of atoms
from K |2〉 to K |1〉. Red dashed and orange dash-dotted lines illustrate our theoretical predictions for the polaron and molecule energies in the
single-impurity limit, respectively.

former is set by the spectral width of the RF pulse σRF =
0.7 kHz, which, depending on the specific sample preparation,
is around σRF ≈ 0.04 εF/h̄. The latter is given by the shortest
lifetime of the polaron, which we estimated to be around 1 ms.

The presence of Li changes the frequency of maximum
transfer because of interactions between the two species. In
most of our measurement we vary the frequency detuning
�ν = ν0 − ν, keeping the pulse power unchanged, and ob-
serve the transferred fraction of potassium atoms NK1/Ntot,
where NK1 is the atom number in the K |1〉 state and Ntot =
NK1 + NK2 is the total atom number in both states. The de-
pendence of the spectroscopic signal NK1/Ntot on �ν reflects
the energy spectrum of our strongly interacting system of
K |1〉 atoms immersed in a Li |1〉 Fermi sea. We determine
the uncertainty of the atom numbers from the standard devia-
tion of repeated measurements. A small nonzero background,
especially in the PBEC regime, may be attributed to imaging
artefacts [63] and is directly subtracted from the data.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental observations.
In Sec. IV A, we discuss our RF measurements of the spec-
tral response of the K atoms. Following this, we describe
in Sec. IV B our findings on the energy of the repulsive
Fermi polaron as we vary the density of the thermal K atoms
of a partial BEC. The emergence of Bose polarons in the
condensed component is discussed in Sec. IV C. Then we
present our observations on the lifetime of the repulsive Fermi
polaron and discuss possible decay channels in Sec. IV D,
before we finally examine the behavior of the K atoms in the
PBEC regime on the basis of Rabi oscillation measurements
in Sec. IV E.

A. Spectral response

In order to investigate the full spectral response of the
system across the strongly interacting regime, we combine RF
spectra taken at different values of X . The spectra, recorded in
the thermal (THC) and partially condensed (PBEC) regime,
are depicted in Figs. 2(a) and 2(b). The x axis represents
the discretized dimensionless interaction parameter X , as dis-
cussed in Sec. III C. Each bin shows the transferred fraction

NK1/Ntot as a function of the energy detuning of the RF pulse
h�ν normalized to εF. The theoretical predictions, red dashed
and orange dash-dotted lines, denote a variational calculation
describing a single impurity interacting with a Fermi sea
using a two-channel model [12,38]. The dimensionless range
parameter in the two regimes is κFR∗ = 0.57(2) and 0.47(2),
respectively.

In Fig. 2(a), we show the full spectral response in the THC
regime. We observe a typical polaron spectrum consisting
of the repulsive and the attractive branch exhibiting a pos-
itive and negative energy shift, respectively, and a decrease
of contrast as the interaction is tuned close to X = 0. The
obtained polaron energies are in good agreement with the
theoretical predictions for the single-impurity scenario, rep-
resented by the red dashed lines, although the concentration
CK2 = 0.61(7) in this measurement is fairly high.

Figure 2(b) shows the spectrum in the PBEC regime. A
striking difference between the THC and PBEC spectra is that
in the latter a new branch, which shows almost no energy
shift, emerges in the spectrum. The bimodal spectral response
is a consequence of different resonance frequencies of the
transfer to the K |1〉 state for the two components of the gas.
The thermal part of the K cloud appears to behave like in the
single-impurity limit, even though the K density is similar to
the Li density. In stark contrast to this, the condensed part is
transferred at a frequency close to the noninteracting value
�ν = 0, with a small but consistent upshift corresponding to
a few percent of the Fermi energy. As we discuss in Sec. IV C,
this shift can be attributed to the formation of Bose polarons,
where the Li atoms are now the impurities.

In order to further investigate the differences between
the THC and PBEC regimes we show two sample spectra
at an interaction strength of X ≈ −0.7 in Figs. 3(a) and
3(b), respectively. In the THC regime, we find a single nar-
row peak, which we attribute to the Fermi polaron, along
with a broader pedestal, which we interpret as a many-body
continuum of states. The observed spectrum can be well
approximated by a double Gaussian fit Gp(�ν) + Gbg(�ν),
as also used in our previous work [12]. The function takes
the form Gα (�ν) = Aαe−(�ν−�να )2/(2σα

2 ), with Aα, �να, σ α

representing the amplitude, center and width of the Gaussian
for α = p, bg. The polaron peak, α = p, is fixed to a spectral
pulse width of σp = 0.7 kHz ≈ 0.04 εF/h, which corresponds
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FIG. 3. Typical polaron spectra in the THC (a) and PBEC (b) regime. We show the fraction of transferred atoms as a function of the
frequency detuning �ν of the applied RF pulse at an interaction strength of X ≈ −0.7. The shaded areas under the curves illustrate the
contributions resulting from a fit by a double-Gaussian (THC, left) and triple-Gaussian (PBEC, right) function. Black dashed lines depict their
sum. The width of the narrow peaks is fixed to the Fourier width of the applied pulse. The measurement points marked by black squares in
(b) are further investigated in Fig. 4.

to the Fourier width resulting from the finite duration of the
1-ms RF pulse. The background, α = bg, is marked by the
gray, broad Gaussian. We transfer about 50% of the atoms into
the interacting state at a frequency detuning corresponding to
h�ν ≈ 0.2εF .

In the PBEC regime, depicted in Fig. 3(b), we identify
a maximum transfer at two well-defined frequencies. We
approximate the line shape of the whole spectrum by a
triple-Gaussian function. The first two parts stem from the
polaron and the many-body continuum G̃p(�ν) + G̃bg(�ν).
We assume that the ratio of the two amplitudes stays
the same as determined in Fig. 3(a), but their absolute
values are reduced corresponding to the fraction of non-
condensed atoms, as G̃p,bg(�ν) = Gp,bg(�ν) × (1 − β ). The
third part describes the transfer of the condensed fraction
G̃BEC(�ν) = GBEC(�ν) × β at a small energy shift.

In the two panels on the left of Fig. 4, we show absorption
images of atoms in K |1〉, after a short time of flight of 6 ms,
which were released from the trap within ∼10 μs after the RF
pulse. The two pictures correspond to the measurements for
the two frequency detunings �νBEC and �νp, for which we
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FIG. 4. Absorption images of K |1〉 corresponding to the two
measurements, marked by black squares in Fig. 3(b) and a K |2〉
reference image after a short time of flight of 6 ms and 4 ms,
respectively. The left panel and the middle panel show the atoms at
the transfer frequencies �νBEC and �νp, respectively. The color map
depicts the column density in arbitrary units. The field-of-view of
all images is about (150 × 230) μm. The white solid lines show the
corresponding projected line-density profiles. A reference picture of
the K |2〉 cloud, before transfer, with β ≈ 0.5 is shown in the panel
on the right.

have observed maximum transfer of the BEC and the thermal
cloud, respectively. These two detunings are marked by black
squares in Fig 3(b). The atomic clouds in the images have
the same atom number, but very different spatial distributions.
The left panel shows a dense cloud that only extends over
about 40 μm, whereas the middle panel shows dilute atoms
that are distributed over the whole picture. In the right image,
we present a reference picture of a K |2〉 cloud before transfer,
with a BEC fraction of β ≈ 0.5. Comparing these images
shows that a fraction of the noncondensed part is transferred
in the middle picture and a fraction of the condensed part
is transferred in the left picture. This strongly supports our
interpretation that the two different frequencies correspond to
the resonance frequencies of the two components of the partial
BEC.

To conclude this part, our observations show that the spec-
tra for the THC and the noncondensed part of the PBEC
sample are consistent with a theoretical description of the
Fermi polaron, and with our previous measurements on the
Fermi polaron with fermionic impurities [12]. In contrast, the
condensed part of the partial BEC, which has a very large con-
centration of K atoms with CK2 ≈ 36, shows a much smaller
energy shift that seems unrelated to the Fermi polaron.

B. Concentration variation

We now investigate closer the effects of a finite impurity
concentration. In particular, we expect on general grounds
that there are interactions between the polarons, which should
show up as a change in their energy as a function of their
concentration [6]. In order to explore this, we take a set of
spectra for densities in the range 0 < CK2 < 45 at an inter-
action strength X = −0.6(1). Here, the uncertainty denotes
the standard deviation that characterizes typical experimental
fluctuations. We vary the concentration by changing various
parameters such as the loading time and the evaporation end-
point in our preparation sequence.

Since only a fraction of the atoms in K |2〉 is transferred
and only atoms in K |1〉 can be responsible for interac-
tion effects, the concentration CK1 is the relevant parameter.
This, however, cannot be obtained directly because of our
incomplete knowledge of interaction effects on the spatial
distribution during the RF pulse. We therefore introduce
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FIG. 5. Concentration dependence of the energy of the repulsive
Fermi polaron. The color code refers to the interaction strength X .
The solid and dashed lines show the theoretical predictions including
polaron-polaron interactions, according to Eq. (B26), for the mean
value and its standard deviation of X = −0.6 ± 0.1. The grey circle
marks the measurement with the highest temperature kBT/εF = 0.27
(see discussion in text).

estimated concentrations, obtained by multiplying the con-
centration of K |2〉 by the estimated transferred fraction at
the resonance frequency. The measurements presented here
are conducted in the PBEC regime and we can therefore
obtain two concentrations C̃K1,p = CK2 × (Ãp + Ãbg)/(1 − β )
and C̃K1,BEC = CK2 × ÃBEC/β for the noncondensed and the
condensed component of the K atoms, respectively. The am-
plitudes Ãα correspond to the fitting amplitudes, as discussed
in Sec. IV A.

In Fig. 5, we show our results regarding the density varia-
tion of the energy of the repulsive polaron. The color scale
indicates the particular values of the interaction parameter
X for each data point. From Fermi liquid theory, we know
that there is an effective interaction f between the polarons
mediated by the Fermi gas [6]. As shown in Ref. [34] (see
also Appendix B), the effective interaction has a direct and
an exchange contribution. For low temperature and arbitrary
Bose-Fermi interaction strength, it can be calculated from the
density of states N at the Fermi surface of the Li atoms and
from the number �N of Li atoms in the dressing cloud of
the polaron as f = −�N2/N + g1. Here, g1 = 4π h̄2a11/mK

represents the direct interaction between two K|1〉 atoms,
where a11 is the corresponding scattering length. Note that
the induced interaction −�N2/N , mediated by the Fermi
gas, is attractive since the K atoms are bosonic. Taking into
account that the RF injection spectroscopy gradually increases
the impurity concentration, so that the signal is averaged from
zero to the final K density, the observed average energy shift
is E (n) = E (0) + f n/2, see Appendix B for details. The lines
in Fig. 5 are obtained from this formula where the solid and
dashed lines correspond to an interaction strength of X =
−0.6 and ± its standard experimental deviation of 0.1. We
note that due to the small value of the scattering length a11

between the atoms in K|1〉, the negative slope of these lines is
essentially only due to the mediated interaction −�N2/N .

From Fig. 5, we see that our experimental observations
are consistent with the predicted concentration dependence

FIG. 6. Concentration dependence of the observed BEC peak
position. The color code refers to the interaction strength X and the
grey circle marks the measurement with the highest temperature, as
in Fig. 5. A fit to the data of the theoretical prediction according to
Eq. (5) is shown as the red solid line. The error bars of the data points
represent the uncertainties of the fits.

of the polaron energy. The mean temperature of the measure-
ments presented is kBT/εF = 0.17(2) so that we expect the
result to be fairly close to the zero-temperature limit assumed
by the theory. The measurement marked by the grey circle
has an exceptionally high temperature of kBT/εF = 0.27. We
therefore suspect that this data point is subject to a significant
finite-temperature shift and may thus be considered an outlier.

Given the large fluctuations in the data and the predicted
small influence of the effective interaction, we cannot provide
conclusive evidence of its presence. Instead, the comparison
shows that future improved experiments may indeed open
up the possibility to observe the effect of polaron-polaron
interactions, for which a clear observation is still missing in
the field of ultracold quantum gases.

C. Bose polarons

We now turn to the low-energy peak, which, as we have
shown, comes from the condensed fraction of the K atoms.
In Fig. 6, the position of this peak is shown as a function of
the impurity concentration, extracted from the same dataset
as presented in Sec. IV B. We observe a small and consistent
energy shift of ∼0.04. An estimation of this energy shift may
be obtained as follows.

First, since the three scattering lengths between the K
atoms in the two spin states (a11, a22 and a12) differ by less
than 0.3% [64], the energy shift must be attributed mostly to
K-Li interactions. Second, since the density of the condensed
part of the K atoms is much higher than for the Li atoms in
the center of the trap, the situation is reversed in the sense that
one can now regard the Li atoms as impurities in a BEC of K
atoms. A suitable framework to analyze this is therefore the
one of Bose polarons, formed by Li atoms in the K|1〉 BEC,
rather than the one of Fermi polarons. The total energy shift
can therefore be estimated as �Etot = NLiELi, where NLi is
the number of Li atoms inside the K|1〉 BEC, and ELi is the
energy of a single Bose polaron. In the strongly interacting
region on the BEC side of the resonance (X ≈ −0.6), a re-
pulsive Bose polaron has a typical energy ELi = ξεn, where
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ξ is a constant of order unity [19–23]. The energy scale εn

of the Bose gas is defined, in analogy with the Fermi en-
ergy, as εn = h̄2κ2

n /(2mK ), with κn = (6π n̄K1,BEC)1/3 so that
εn/εF = (mLi/mK )(CK1,BEC)2/3. The relevant concentration is
that of the K|1〉 BEC that interacts with the Li atoms, which
we approximate as CK1,BEC ≈ C̃K1,BEC. Since RF spectroscopy
measures the energy shift per atom transferred from K|2〉 to
K|1〉, the relevant quantity is the energy shift per K atom in
the K|1〉 BEC, which is given by

�Etot/NK1,BEC = (6/41)(C̃K1,BEC)−1/3ξεF. (5)

With ξ as the only free parameter, Eq. (5) can then be fitted
to the experimental data displayed in Fig. 6, which yields
ξ ≈ 0.5. The resulting curve, shown by the solid line in Fig. 6,
reasonably agrees with the data. We should however mention
a few caveats. First, the K|1〉 BEC is only formed above a
certain critical concentration, but the RF probe transfers the
atoms gradually into the K|1〉 state. This effect is further
explored in Sec. IV E. It follows that the observed behavior is
presumably a result of an average BEC density experienced
by the Li atoms during the RF probe. Second, the bosons
and the fermions will eventually phase separate for the given
interaction strength [30,31], which also complicates the in-
terpretation of the experiment. Nevertheless, the agreement
between theory and experiment for a reasonable value of the
fit parameter, ξ ≈ 0.5, suggests that the observed shift of the
BEC energy is, indeed, due to the formation of Bose polarons
in the center of trap.

D. Lifetime of repulsive polaron

The repulsive Fermi polaron is a metastable quasiparticle,
which can decay via two- or three-body processes into lower
energy states [5,62]. In order to determine its lifetime, we
carry out measurements in the THC regime for X < 0. The
repulsive polaron is populated by applying a π -pulse with a
duration τ = 0.3 ms (instead of the 1 ms used in all measure-
ments shown before) and frequency detuning �νp. In this way,
we resonantly excite the quasiparticle with a short pulse in
order to maximize the number of transferred atoms. After this
excitation, about ∼50% of the atoms are found to remain in
K |2〉. We therefore apply a 10 μs resonant “cleaning” light
pulse to remove them from the trap, thus creating a pure
sample of strongly interacting K |1〉 and Li |1〉 atoms. At this
point, we wait for a variable time before applying another
RF pulse, identical to the first one, which only addresses the
polarons that have not yet decayed. In contrast to all mea-
surements presented so far, the measured signal is now the
fraction of atoms transferred back into the noninteracting state
K |2〉. We fit an exponential decay to the data sets obtained for
various values of X and extract the 1/e decay time τp, which
represents the lifetime of the polaron.

The blue circles in Fig. 7 show the repulsive polaron decay
rate 
 = 1/τp as a function of the interaction strength. Ap-
proaching the resonance, the decay rate rises from 10−3 εF/h̄
at X = −1.5 to about 10−2 εF/h̄ at X ≈ −0.2. This corre-
sponds to polaron lifetimes between ∼10 and ∼1 ms and is in
excellent agreement with our previous experiments on Fermi
polarons with fermionic impurities [12].

FIG. 7. Decay rate of the polaron for different interaction
strengths X . Blue circles depict the measured lifetimes of the
polaron. The orange solid and dashed lines show theoretical calcula-
tions of the two- and three-body decay, respectively. The three-body
recombination rate in vacuum is depicted by the green dash-dotted
line. See Appendix B for details.

The solid line in Fig. 7 is a theoretical prediction based
on the assumption that the repulsive polaron decays via a
two-body process into the attractive polaron, which due to its
high kinetic energy can be approximated by a free particle.
The dashed line gives, on the other hand, the three-body decay
rate into the molecule, taking into account medium effects in
the perturbative regime. Finally, the green dash-dotted line
shows the three-body decay rate in a vacuum for a broad
resonance [65], adapted here to describe a narrow resonance.
For details on the calculations of these rates, see Appendix
B. By comparing these theory lines with the data, we see
that two-body decay into the attractive polaron seems to be
the main loss channel for strong interactions. However, for
weaker interactions, the attractive polaron is ill-defined, due
to the smallness of its residue and decay into the molecular
states. In this regime, three-body decay processes become
dominant. This is consistent with the observations for the case
of fermionic impurities [12,15].

We observe a residual signal remaining in K |1〉 after
the second RF pulse, which transfers the repulsive polarons
into K |2〉. It consists of remaining polarons and its decay
products. In order to investigate the nature of the residual
component, we let the polaron decay for a time t and then
we apply ejection spectroscopy. In contrast to the measure-
ment described so far, we now vary the frequency of the
second RF pulse, which transfers K |1〉 atoms back to K |2〉.
In Fig. 8, we show such measurements for the three decay
times t1 = 1.2 ms, t2 = 2.2 ms, and t3 = 5.2 ms, all taken
at the same interaction strength X = −0.80(2). We show the
transferred fraction NK2/Ninit normalized to the total atom
number Ninit = NK1(t1) + NK2(t1) after a wait time of t1. The
blue circles, red diamonds, and green squares represent the
ejection spectra recorded after waiting times of t1, t2, and t3,
respectively.

We expect that the decay product consists of molecules,
since this is the predicted ground state for X = −0.80. In
order to check this, we compare the ejection spectra with
a molecule dissociation spectrum, shown by the gray open
circles in Fig. 8. To obtain this spectrum, we start with a
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FIG. 8. Ejection spectra of the repulsive polaron and its decay
products. We show the fraction of atoms transferred from K |1〉 to
K |2〉 as a function of the applied RF signal. The blue circles, red
diamonds, and green squares show the spectrum after a decay time
of 1.2, 2.2, and 5.2 ms, respectively. These three measurements are
normalized to the total atom number of the measurements with the
shortest wait time (blue circles). As a comparison, we also show a
molecule spectrum (gray empty circles).

THC sample in the noninteracting state. Then we associate
molecules by applying a 3π pulse to K |2〉 at a frequency
adjusted such that it corresponds to the binding energy of the
molecule at X = −0.80 (see Appendix A). Since we do not
transfer all K |2〉 atoms into the molecular state, we apply a
resonant “cleaning” light pulse, which removes the remaining
atoms from the trap. This leaves us with a mixed sample
of Li |1〉 -K |1〉 molecules and bare Li |1〉 atoms. Then we
perform ejection spectroscopy to probe the spectrum of the
molecule. This is achieved by applying another 3π pulse to
dissociate the molecules, where we vary the frequency. Note
that this particular spectrum is normalized to its own total
atom number Ninit = Ntot.

Let us now compare the four ejection spectra presented in
Fig. 8. In the measurement at the shortest decay time (blue cir-
cles), we recognize a narrow peak at positive energies, which
we identify as the repulsive polaron. The broad pedestal at
negative energies on the other hand reflects the response of the
molecules, since it is similar to the bare molecular spectrum.
As we increase the wait time from t1 to t2 and then to t3,
we observe a decrease of transferred atoms at the repulsive
polaron frequency, as a consequence of its decay.

Given that the polarons decay into molecules, we would
expect a corresponding increase in their spectral signal, i.e.,
the broad pedestal. This is however not observed. Instead,
as the wait time of the measurements in Fig. 8 is increased
from t1 to t3, we see a reduction of K atoms in the trap by a
factor of ∼ 2, while the broad pedestal is unchanged. From
this, and the measurements presented in Fig. 7, we specu-
late that the repulsive polarons decay into molecules, which
themselves undergo relatively fast collisional decay into lower
lying molecular states, where the excess energy of the latter is
sufficient to remove the atoms from the trap. We believe Bose-
Fermi dimers are less robust against collisions as compared to
Fermi-Fermi dimers, for which we have demonstrated a Pauli
suppression effect in Ref. [47].

FIG. 9. Rabi oscillation measurements. We show the dependence
of the transferred fraction on the pulse area, normalized to a 1-ms
RF π -pulse in the noninteracting case. The black squares show
the Rabi oscillations of a noninteracting sample. The two further
measurements are conducted in the THC and the PBEC regime at νp

(blue circles) and νBEC (red diamonds), respectively. The black and
red dashed lines show a sin2 oscillation at the noninteracting Rabi
frequency, where the latter has a reduced amplitude by the factor
β, corresponding to the BEC fraction. The blue and red dash-dotted
curve show the initial transient of a sin2 oscillation with Rabi fre-
quencies reduced by the interaction. (Right) The region of weaker
RF pulses, marked by the shaded area, is plotted against the square
of the pulse area A2.

E. Rabi oscillation measurements

We now further investigate the nature of the thermal and
condensed parts of the K cloud by performing Rabi oscilla-
tion measurements, as shown in Fig. 9. A 1-ms RF pulse is
applied to transfer atoms from K |2〉 into K |1〉. The trans-
ferred fraction of atoms is then measured as a function of
the pulse area A = √

P/Pπ , where the peak RF power P of
our Blackman pulse is the experimentally controlled variable
and Pπ is the corresponding power to achieve a π -pulse in a
noninteracting case. First, we take a reference measurement
with Li removed from the trap. As we vary the RF power
the black squares show the Rabi oscillations of the nonin-
teracting sample, which are well fitted with a sin2 function,
as illustrated by the black dashed line. After this, we prepare
our atoms in the THC at X ≈ −0.5 and tune the radio fre-
quency to the polaron peak at νp (blue circles). We observe
an initial increase in the signal that follows a sin2 behavior
(dash-dotted blue line). For A � 1, this changes into a steady
increase in the transferred fraction with no clear oscillations.
We can explain this effect by the decay of the polaron to other
states, such as molecules [38]. Such states have a reduced
overlap with the noninteracting state. Therefore the transfer
probability from K |2〉 to K |1〉 is higher than the backtransfer
from the dressed molecular state to K |2〉. This results in a
growing population in K |1〉 with increasing RF power.

When we prepare a PBEC sample and tune the frequency
of the RF pulse to νBEC (red diamonds) the system behaves
in a very different way. In the region A � 1 of Fig. 9, we ob-
serve a clear oscillating behavior, depicted by the red dashed
line. The frequency is the same as for the noninteracting
case, but the amplitude is reduced by a factor that is close
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to the BEC fraction β. This is consistent with a BEC of K
atoms oscillating between the |1〉 and |2〉 states, in a way,
largely unaffected by the small concentration of Li atoms. The
increasing background can be attributed to an off-resonant
contribution originated from the noncondensed component.

A remarkable feature shows up in the behavior of the
condensate for weak RF pulses. For 0 < A � 1, we find that
the atom transfer is inhibited. In order to highlight this striking
effect, we plot the transferred fraction in the region of small
pulse areas, marked by the shaded region, as a function of A2

in the right panel of Fig. 9. This representation turns an initial
quadratic dependence on A, typical for the coherent evolution
of a quantum system, into a linear dependence on A2. Such a
behavior is nicely visible in all three data sets. However the
red diamonds show a transfer of the BEC only after a critical
value of A2 ≈ 0.4 is reached.

This peculiar effect likely arises from a density-dependent
shift of the resonance frequency. In the regime of low concen-
tration CK1 the final state of the system is the Fermi polaron.
This results in almost no transfer, for small A in Fig. 9, since
the detuning of the RF pulse to the polaron energy is about
∼4
p, where 
p is the spectral width of the polaron peak
and the Fourier width of the RF pulse is 1/τRF ≈ 
p. On
the other hand, when the RF pulse transfers enough atoms to
create a K|1〉 BEC, the resonance frequency shifts to the one
determined by the Bose polarons and permits the transfer to
start.

On top of this effect, as the BEC density increases in K |1〉,
phase separation may occur and can remove the fermions from
the spatial region occupied by the bosons [30,31]. We estimate
this effect to take place while the RF pulse is applied, since
there is no clear separation of the corresponding time scales in
our experiment. In this scenario, the two species will separate
at an RF power that is high enough for a significant fraction of
the BEC to be transferred. After this, the K cloud will exhibit
Rabi oscillations similar to the noninteracting case.

The origin of the observed inhibition of Rabi oscillations
of an RF-coupled BEC in the environment of a Fermi sea
is an interesting many-body phenomenon and needs further
investigation in future work.

V. SUMMARY AND CONCLUSION

In this paper, we have presented our observations on Fermi
polarons created by bosonic impurities, analyzing similari-
ties and differences with respect to the case of fermionic
impurities. The quantum-statistical nature of the impurities,
which does not matter in the single-particle limit, enters the
problem at higher concentrations and can profoundly change
the properties of the system. We have explored the case of high
densities below and above the threshold for Bose-Einstein
condensation of the impurity cloud and found very different
behavior.

For a thermal impurity cloud, we have probed the energy of
the attractive and the repulsive quasiparticle branch across the
strongly interacting regime and found properties very similar
to those of the previously investigated Fermi-Fermi system.
Our observations are, within the experimental uncertainties,
fully consistent with the single-impurity theoretical predic-
tions despite the fact that the concentration is near unity.

In order to increase the impurity concentration, we have
cooled the sample further to create a partial BEC. The spectral
response of this dense system reveals a drastic change of
the spectrum. We find that, in addition to the signature of
the repulsive and attractive polaron, a new branch, the BEC
branch, emerges in the spectrum, which shows no sign of the
Fermi polaron anymore. Instead, we find a small positive shift
in energy over a wide range of interactions. We speculate that,
since the concentration far exceeds unity, this effect may be
explained by an interchange of the role of the two atomic
species, where the BEC and the Fermi sea represent the en-
vironment and the impurities, respectively. Such a scenario
is usually described by the Bose polaron [19,20]. This sug-
gests that the Fermi and the Bose polaron appear as different
branches of one spectrum.

We have dedicated particular attention to the region of pos-
itive scattering lengths, where the repulsive Fermi polaron is
realized. As we vary the concentration, the energy shift of the
condensed component of the partial BEC remains small and
positive. We find good qualitative agreement with a Bose po-
laron description, where the back action of the Bose polarons
on the surrounding results in a small, but clearly observable
energy shift.

As we investigate the concentration dependence of the ther-
mal component of the partial BEC closer, at strong repulsive
interactions, our results indicate slightly smaller energies of
the Fermi polaron than expected from a single-impurity pre-
diction. The experimental uncertainty in the determination of
the interaction strength, which is very sensitive to magnetic
field fluctuations, renders a qualitative analysis impossible.
However, theoretical calculations, including polaron-polaron
interactions, predict a decreasing energy shift with increasing
concentration, which is consistent with our experimental data.
This suggests that interaction effects amongst polarons could
be observed in future more precise measurements.

In order to further characterize the metastable repulsive
Fermi polaron, we have measured its decay rate and compared
it to theoretical predictions of different decay channels. Our
observations close to the center of the FR are in very good
agreement with two-body scattering processes, where the re-
pulsive polaron decays into a bare particle. Furthermore, we
find qualitative agreement between the measured decay rates
for moderate interactions and our theoretical calculations of
three-body decay.

In order to gain further insight into the transitional behavior
from low to high concentration, we vary the strength of the
spectroscopy pulse that transfers the partial BEC into the state
strongly interacting with the fermionic medium. For low pulse
strengths, we observe a peculiar interaction-induced inhibition
of the transfer, whereas for high pulse strengths we essentially
recover the behavior of a noninteracting cloud. This strik-
ing result suggests a shift of the resonance frequency with
changing concentration, which supports our interpretation of
a transition of our mixture between regimes governed by two
fundamental quasiparticles, the Fermi and the Bose polaron.

Our capability of creating a partial BEC, which interacts
strongly with a surrounding Fermi sea, allows us to investigate
the behavior of vastly different concentration regimes, in the
same setup. Future measurements focused on the transition
between the two fundamentally different polarons could shed
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light on the largely unknown physics beyond the single quasi-
particle picture, where polaron-polaron interactions play a
significant role. Conducting measurements on that order of
precision will require even better magnetic field control and
more stable conditions, which seems feasible with further
technical improvements. In addition, time-domain methods
[13,14] may provide deeper insight into density-dependent
behavior. The unambiguous observation of such effects would
represent a major step, since effective interactions are an inte-
gral part of Landau’s theory of quasiparticles leading to many
of its nontrivial predictions.
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APPENDIX A: ACCURATE DETERMINATION OF THE
FESHBACH RESONANCE CENTER

In all measurements described in this manuscript, we tune
the inter-particle interaction by means of a particular Fesh-
bach resonance (FR). The exact determination of the Feshbach
resonance center B0 of the FR on the mG scale is crucial in
our experiment since the strongly interacting regime is only
about ±12 mG wide. Our previous determinations of the FR
parameters are explained in detail in Supplemental Material
of Ref. [30]. Following a slightly different technique, we
determine the molecule’s binding energy Eb, in vacuum, at
different interaction strengths and fit it with

Eb = h̄2

8(R∗)2mr

(√
1 − 4R∗(B − B0)

abg�
− 1

)2

, (A1)

derived in [59,66]. The reduced mass
mr = mF mB/(mF + mB), the resonance width � = 0.9487 G,
the range parameter [59] R∗ = 2241(7) a0, and the
background scattering length abg = 60.865 a0 are known,
which leaves B0 as the only fitting parameter in this model.
It is important to note, that Eq. (A1) describes the binding
energy of molecules in vacuum. Interactions with the
remaining Fermi sea are not included and can lead to a
systematic shift on the order of 5 mG.

In contrast to our previous method (see Appendix of
Ref. [30]), B0 is determined by molecule dissociation in vac-
uum via ejection spectroscopy. The measurement consists of
the creation of molecules in the THC regime at X ≈ −0.8
by applying an RF pulse to the K |2〉 atoms at a frequency
that corresponds to the binding energy νRF ≈ Eb/h, which we

FIG. 10. Molecule dissociation measurement. The transferred
fraction to K |2〉 (color scale) is shown in dependence of magnetic
field and radio-frequency detuning for various magnetic fields around
the center of the Feshbach resonance. The inset shows an example
spectrum, taken at B − B0 ≈ −37 mG. After determining the binding
energy of the molecules as a function of the interaction strength we
fit the resulting data by Eq. (A1), shown by the red dashed line, with
B0 as the only fitting parameter.

optimize roughly on maximum molecule association effi-
ciency. Then, we ramp the magnetic field to lower X values
and therefore increase the binding energy. This procedure
prevents the molecules from dissociating as we apply an RF
pulse to transfer the remaining unbound Li |1〉 atoms into
Li |2〉. To be sure that no particles, except the molecules, are
present we apply a 10 μs resonant cleaning pulse to Li |2〉
and another one to K |2〉. Then we ramp back the magnetic
field to reach the final interaction strength X for which we
want to determine the binding energy. At this field we apply
another RF pulse to transfer the K1 atoms into K2 and con-
sequently dissociate the molecules. As we vary the frequency
of this last pulse, we obtain the dissociation spectrum with
a line shape determined by the frequency-dependence of the
Franck-Condon factor, as described in Ref. [67]. The inset
of Fig. 10 shows a sample spectrum at a magnetic detuning
B − B0 ≈ −37 mG and the corresponding fit to extract the
binding energy. We record dissociation spectra in a range
of about 80 mG where we expect molecules to exist. These
measurements are presented in Fig. 10. A fit to the binding
energies following Eq. (A1) is illustrated by the red dashed
line. The resulting value for the center of the Feshbach reso-
nance is B0 = 335.080(1) mG. Note that this value refers to
our particular trap setting and includes a light shift of about
25 mG. All experiments reported here were carried out for
the same trap setting, so that we have the same B0 for all our
measurements.

APPENDIX B: QUASIPARTICLE PROPERTIES OF
FERMI POLARONS

In this Appendix, we present the calculations from which
we infer the quasiparticle properties of isolated Fermi po-
larons and the strength of their mutual interactions.
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1. Properties of isolated polarons

A single impurity with momentum p immersed in a homo-
geneous Fermi sea may be described as a quasiparticle, whose
dressing is composed of a superposition of particle-hole ex-
citations in the Fermi sea. Such a state can be accurately
modeled by the variational ansatz [37]

|ψ〉 = φc†
p↓|FS〉 +

k>kF∑
q<kF

φkqc†
p+q−k↓c†

k↑ cq↑ |FS〉. (B1)

Here c†
pσ creates an impurity (σ =↓) or a majority atom

(σ =↑) with momentum p, and |FS〉 denotes the unperturbed
Fermi sea. We warn the reader that, to avoid clutter, the no-
tation adopted here slightly differs from the one used in the
manuscript.

The minimization of the energy based on this varia-
tional Ansatz yields an identical result to the diagrammatic
calculation within the “ladder” (or “forward-scattering”) ap-
proximation [68], but the latter (once properly analytically
continued [62]) allows also to investigate the properties of the
repulsive branch, and eventually the effects of nonzero tem-
perature, in a straightforward way. The retarded self-energy of
a single impurity of mass m↓, with momentum p and energy
ω in a Fermi sea of particles with mass m↑ reads (h̄ = kB = 1)

�(p, ω) =
∑

q

f (ξq↑)T (p + q, ω + ξq↑) (B2)

=
∑

q

f (ξq↑)
mr

2π ã − ∑
k

[
1− f (ξk↑ )

ω−(εp+q−k↓+εk↑−εq↑ )+i0+
+ 2mr

k2

] ,

(B3)

where f (x) = 1/[exp(βx) + 1] is the Fermi function at in-
verse temperature β, and T (P,�) is the T -matrix describing
the scattering of an ↑↓ pair of atoms with total momen-
tum P and total energy �. Here we introduced the kinetic
energy of a σ atom measured with respect to the chemical
potential ξkσ = εkσ − μσ = k2/2mσ − μσ , the reduced mass
mr = m↑m↓/(m↑ + m↓), and the energy-dependent quantity

1

ã(ω, K )
= 1

a
+ R∗k2

r , (B4)

where kr =
√

2mr[ω − K2/(2M ) + EF ] (with K = |p + q|
and M = m↑ + m↓) is the relative momentum of the colliding
pair, and EF is the Fermi energy of the homogeneous Fermi
sea. Since we consider the properties of a single ↓ particle, we
have set its chemical potential to zero.

The Green’s function of the impurity reads

G↓(p, ω) = 1

ω − εp↓ − �(p, ω) + i0+
. (B5)

Its spectral function A = −2Im[G↓] features two branches of
excitations, one at negative and one at positive energies. In
the vicinity of these sharp excitations, the Green’s function at
small momenta may be approximated as

G↓(p, ω) ≈ Z±
ω − E± − p2

2m∗±
− iZ±Im[�(p, E±)]

. (B6)

The energy of an attractive (−) polaron at zero momentum is
the purely real solution at negative energies of

E− = �(0, E−), (B7)

while the energy of the repulsive p = 0 polaron is the positive
energy solution of

E+ = Re[�(0, E+)]. (B8)

The quasiparticle residues Z are defined as

Z± = 1

1 − Re[∂ω�(0, ω = E±)]
, (B9)

and the effective masses are given by

m∗
± = m↓/Z±

1 + Re[∂ε↓p�(0, E±)]
. (B10)

The energy, residue, and effective mass obtained in this way
compare very favorably with both MC simulations and exper-
iments [10–12,15,69,70]. The energies of dressed molecules
are instead computed from a related ansatz, describing a bare
molecule dressed by particle-hole excitations in the medium
[38,71–75].

Polaron decay

The repulsive polaron is unstable towards decay into lower-
lying excitations, but it remains a well-defined quasiparticle as
long as its decay rate 
 is small [12,15,62,76]. The population
decay rate for the two-body process leading a polaron to decay
onto free particles (pf) is given by


pf = −2Z+Im[�̃(0, E↓+)], (B11)

where �̃ is defined in Eq. (S.16) of Ref. [15]. The competing
process leading a polaron to decay onto a dressed molecule is
instead given by [12]


pm =64kF a

45π3
(Z3

+ZM )

(
m↑
m∗+

)2(
1 + m↑

m↑ + m↓

)3/2

×
(

EF

E+ − EM

)5/2 a

a∗√1 + 4R∗/a∗ EF , (B12)

where EM is the energy of a dressed molecule (found by
a variational Ansatz à la Chevy), and a∗ = √

2mrEb is the
typical size of a vacuum dimer at a narrow resonance.

In the extreme BEC limit, where medium effects become
negligible, and in presence of a broad resonance, the three-
body recombination proceeds at a rate [65]


3 =
( ε̄↑

ε

)
αn2

↑. (B13)

Here, ε̄↑ is the average kinetic energy of majority atoms, ε is
the binding energy of the ↑↓ dimer, and α is a constant which
for our mass ratio takes the value

α↑ = 2.57
h̄5

m3
↑ε2

. (B14)

We plot for comparison this formula in Fig. 7, using for the
majority kinetic energy the T = 0 value ε̄↑ = 3EF /5, and for
the dimer binding energy its value at a narrow resonance,
given by Eq. (A1).
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2. Polaron-polaron interactions

An intrinsic property of quasiparticles is that they
interact. Within Fermi liquid theory [32–34], the total
energy density of a gas containing N↓ 	 N↑ impurities in a
large sea of N↑ ideal fermions may be written as

E (n↑, n↓) = 3
5 EF n↑ + E↓n↓ + 1

2 f n2
↓. (B15)

The first term in this expression represents the energy of
the unperturbed Fermi sea, the second is the contribution of
isolated polarons, and the third term is the polaron-polaron
interaction. We have neglected the mean kinetic energy of the
impurities, which is expected to be very small when impurities
are bosonic.

The effective interaction f between Landau quasiparti-
cles contains two contributions: f = g1 + fx. The first one
is the direct (or mean-field) interaction, g1 = 4π h̄2a11/m↓,
where a11 is the scattering length between bare impurities.
The second term instead describes an exchange contribution,
mediated by particle-hole excitations in the Fermi sea. At
T = 0, this induced interaction between bosonic impurities is
given by [34]

fx = − (�N )2

N . (B16)

Here N = 3n↑
2EF

is the density of states at the Fermi energy,
and �N is the number of particles in the dressing cloud of a
polaron, given by [62]

�N ≡ ∂n↑
∂n↓

∣∣∣∣
μ↑

= −
(

∂μ↓
∂n↑

)
n↓

/(
∂μ↑
∂n↑

)
n↓

≈ −∂μ↓
∂EF

.

(B17)

In the last step, we used that μ↑ ≈ EF .
We present here a compact derivation of Eq. (B16), fol-

lowing the lines of the elegant presentation given in Ref. [34].
Within Landau theory, a ↑ atom and a ↓ polaron interact with
a coupling constant gx given by

gx = ∂2E
∂n↑∂n↓

= ∂μ↑
∂n↓

. (B18)

To second order in gx, the polaron-polaron interaction is then
given by

E (2) = − g2
x

V 3

∑
p↑,p↓,q

(1 − fp↑+q)(1 + f (b)
p↓−q) f (b)

p↓ fp↑

(p↑+q)2

2m↑
+ (p↓−q)2

2m∗
↓

− p2
↓

2m∗
↓

− p2
↑

2m↑

, (B19)

where f (b) indicates Bose functions since we are assuming
a bosonic impurity. The exchange contribution to Lan-
dau’s polaron-polaron interaction can be calculated from

this as

fx = δ2E (2)

δ f (b)
p↓ δ f (b)

p↓−q

, (B20)

where both p↓ and q are vanishingly small. This gives

fx = −g2

V

⎛
⎝∑

p↑

fp↑ − fp↑+q

(p↑+q)2

2m↑
− p2

↑
2m↑−

⎞
⎠

q→0

= g2
xχ, (B21)

where χ is the so-called Lindhard function. At zero tem-
perature, χ equals simply the density of states at the Fermi
surface N = ∂n↑

∂μ↑
= 3n↑

2EF
. Collecting the above results, at zero

temperature, we have

fx = −g2
xN = −

(
∂μ↑
∂n↓

)2
∂n↑
∂μ↑

= −
[
−

( ∂μ↑
∂n↓

)
( ∂μ↑

∂n↑

)
]2

∂μ↑
∂n↑

= − (�N )2

N . (B22)

In the last step, we used ( ∂x
∂y )

z
( ∂y

∂z )
x
( ∂z
∂x )

y
= −1.

When the impurities are fermionic, an almost identical cal-
culation leads to f (f)

x = − fx. Physically, this comes from the
Pauli repulsion between identical fermions or alternatively,
because the effective interaction involves the exchange of
the impurities, which leads to a sign change for fermions as
compared to bosons [32–35].

The Landau interaction f between bosonic impurities is
finally given by

f = − (�N )2

N + g1. (B23)

Note that the Landau polaron-polaron induced interaction
(which is the first term in the latter expression) is always
attractive for bosonic impurities (and repulsive for fermionic
ones), irrespective of whether the impurity-bath interaction is
attractive or repulsive.

Introducing the impurity concentration C = n↓/n↑, the in-
crease of the energy of the gas when adding one impurity is
found to be

μ↓ = ∂E
∂n↓

= E↓ − 2

3
(�N )2 C EF + g1n↓. (B24)

In RF injection, we are gradually increasing the number
of impurities, and therefore the polaron-polaron interactions.
Taking a simple average, one gets

μ̄↓ = 1

N↓

∫ N↓

0
μ↓(N ′

↓) dN ′
↓ = �E , (B25)

where �E is the energy shift per impurity

�E = E − 3
5 EF n↑
n↓

= E↓ − 1

3
(�N )2 C EF + g1n↓

2
. (B26)
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