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Emergent criticality and universality class of the finite-temperature charge-density-wave transition
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We investigate the finite-temperature charge-density-wave (CDW) transition of lattice Bose gases within
optical cavities in the deep Mott-insulator limit. We find a new critical regime emerges at a temperature
around one-half of the on-site interaction energy, where the first-order CDW transition at low temperatures
terminates at a critical point and changes to a second-order one. By directly calculating the critical exponents
and constructing the effective theory in the corresponding critical regime, we find the emergent criticality belongs
to the five-dimensional Ising universality class. Direct experimental observation of the emergent criticality can
be readily performed by current experimental setups operated in the temperature regime around half the on-site
interaction energy.
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I. INTRODUCTION

Long-range interactions can give rise to rich exotic struc-
tures and phases of matter, such as charge- and spin-density
waves, supersolids, spin glasses, etc. Moreover, on the fun-
damental level, the long-range characteristic of interactions
can play the same crucial role as symmetries and spatial
dimensions of physical systems in determining their universal
physical behavior in the critical regime of their continuous
phase transitions [1,2]. In the context of ultracold atoms, var-
ious long-range interacting systems, ranging from ultracold
gases with large magnetic or electric dipole moments [3,4], to
atoms in Rydberg states [5], to ultracold gases in cavities with
cavity-photon-mediated interactions [6–8], have been realized
in experiments [3–8], making them powerful platforms to
explore the fundamental behavior characteristic of long-range
interactions.

A case in point is Bose gases in two-dimensional (2D)
square optical lattices within optical cavities, which feature
distinct infinite-long-range (ILR) interactions that are me-
diated by the cavity photons [8]. Recent experimental and
theoretical investigations [8–17] have shown that at low tem-
peratures this system can support rich phases and phase
transitions attributed to its long-range interaction, such as
supersolids, charge-density waves (CDWs), etc. In particular,
by tuning the relative strength between the short-range on-
site interaction and the ILR one in the deep Mott-insulator
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regime, a new phase transition characteristic of a first-order
one between the Z2-symmetric homogeneous Mott-insulator
and the spontaneous Z2-symmetry-breaking CDW phase was
observed in experiments [8]. Noticing that current experi-
ments are mostly operated at a temperature scale that is much
lower than all other energy scales in the system, it is intriguing
to expect that at the evenly matched temperature scale, due
to the interplay among short-range on-site interactions, ILR
interactions, and thermal fluctuations, a completely different
scenario for the CDW transition could arise. This thus raises
the fundamental question of whether criticalities for the CDW
transition, the existence of which is excluded at low temper-
atures in the first-order transition scenario, could emerge and
bear the characteristic of the ILR interaction.

In this paper, we address the above question by establishing
the complete finite-temperature phase diagram of the system
in the deep Mott-insulator limit at unit filling [see Fig. 1(a)]
and investigating the emergent critical scaling behavior of the
system [see Figs. 2 and Figs. 3]. More specifically, we find the
following.

(i) An emergent critical regime consists of a new critical
point and second-order CDW transitions. At low tempera-
tures, our calculations clearly show that the CDW transition
is a first-order phase transition, i.e., the CDW order parameter
φ̄ assumes a finite jump �φ̄ when the transition boundary is
crossed [see Figs. 1(a) and 1(b)], which corroborates observa-
tions in experiments [8]. When the temperature is increased,
the jump of the CDW order parameter �φ̄ decreases and
finally vanishes at a critical point with its temperature TCP =
0.39Us/kB [Us and kB are the on-site energy strength and the
Boltzmann constant, respectively; see Figs. 1(a) and 2]. Above
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FIG. 1. (a) Finite-temperature phase diagram of lattice Bose
gases within optical cavities in the deep Mott-insulator limit at unit
filling. In the weak ILR interaction strength Ul regime the system
is in the homogeneous phase, while in the strong ILR interaction
regime, the system is in the CDW phase, where the system’s density
distribution assumes the checkerboard pattern. At low temperatures,
the CDW transition between the homogeneous phase and the CDW
phase upon tuning ILR interaction strength Ul is a first-order phase
transition (marked by open squares and a double solid curve). At
high temperatures, the first-order transition boundary terminates at
a critical point (marked by the filled red disk) with temperature
TCP = 0.396 (in the unit of Us/kB, with an error less than 10−3).
Above the critical point, i.e., T > TCP, the CDW transition becomes
a second-order one (marked by solid squares and a solid curve).
The insets in the phase diagram show the dependence of � on
the CDW order-parameter field φ in four typical scenarios, namely,
the homogeneous phase above (below) TCP [the upper-left (lower-
left) inset] and the CDW phase above (below) TCP [the upper-right
(lower-right) inset]. (b) The ILR interaction strength Ul dependence
of the CDW order parameter |φ̄| [lower dashed arrow in (a)] at a
temperature below TCP with kBT = 0.3Us, showing the first-order
transition upon increasing Ul . (c) The ILR interaction strength Ul

dependence of the CDW order parameter |φ̄| [upper dashed arrow
in (a)] at a temperature above TCP with kBT = 0.6Us, showing the
second-order transition upon increasing Ul . See text for more details.

the critical point, the CDW transition becomes a second-order
transition, where the CDW order parameter changes contin-
uously when crossing the transition boundary [see Figs. 1(a)
and 1(c)].

(ii) The universality class of the emergent criticality be-
longs to the five-dimensional (5D) Ising universality class.
The CDW order-parameter jump �φ̄ along the first-order
CDW transition boundary assumes a power-law scaling with

FIG. 2. (a) Temperature dependence of �φ̄ along the first-
order CDW transition boundary. Upon increasing T from the
low-temperature regime with T < TCP, �φ̄ continuously decreases
to zero at the temperature of the critical point TCP = 0.396Us/kB.
The inset shows φ dependence of � at four different temperatures.
The curves with their double well located from outer position to
inner position correspond to kBT/Us = 0.380, 0.385, 0.388, 0.391,
respectively. �min denotes the minimum value of � for each curve.
(b) Linear fit to the data points in (a) near the critical point with
T < TCP on the double logarithmic scale, showing clearly a power-
law dependence of �φ̄ on TCP − T , i.e., �φ̄ ∝ (TCP − T )α with
α = 0.500. The solid line correspond to the best power-law fit �φ̄ ∝
(TCP − T )0.500 to the data points in the plot. See text for more details.

respect to the temperature change near the critical point,
i.e., �φ̄ ∝ (TCP − T )0.5 (see Fig. 2). Moreover, the CDW
order parameter also shows the same power-law scaling near
the second-order CDW transition boundary, i.e., |φ̄| ∝ (Tc −
T )0.5 with Tc being the critical temperature at the second-order
transition boundary (see Fig. 3). Analyses of the effective
theory in the critical regime [see Eqs. (4) and (5)] show this
critical scaling behavior of this low dimensional 2D system
belong to the universality class of short-range interacting sys-
tems with a much higher spatial dimension, i.e., the 5D Ising
universality class. This clearly shows that the criticality of the
system is strongly influenced by and thus bears the long-range
characteristic of its interactions. Moreover, as far as we know,
this also establishes lattice Bose gases in optical cavities as
the first type of realistic physical system that accommodates

FIG. 3. (a) Temperature dependence of the CDW order parame-
ter |φ̄| at a fixed ILR interaction strength with Ul/Us = 0.66. Upon
increasing the temperature, |φ̄| continuously decreases to zero at the
critical temperature Tc (kBTc/Us = 1.065) of the second-order CDW
transition point. (b) Linear fit to the data points in (a) with T < Tc

on the double logarithmic scale, showing clearly a power-law depen-
dence of |φ̄| on Tc − T , i.e., |φ̄| ∝ (Tc − T )α with α = 0.504. The
solid line corresponds to the best power-law fit |φ̄| ∝ (Tc − T )0.504 to
the data points in the plot. See text for more details.
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exact physical manifestations of the largely academic 5D Ising
universality class [18].

II. MODEL IN THE DEEP MOTT-INSULATOR LIMIT

For Bose gases in optical lattices located inside optical cav-
ities, besides the conventional on-site interaction, the strong
coupling between cavity photons and bosonic atoms can result
in an effective ILR interaction for Bose gases [7,8]. Their
physics in a wide range of the parameter space can be cap-
tured by the ILR interacting Bose-Hubbard model (see [8] or
Appendix A for derivation details of this model), the Hamil-
tonian of which consists of a conventional hopping part and
an interaction part. In this paper, we focus on the physics in
the deep Mott-insulator limit, where the hopping amplitude
is negligibly small, hence the system is described by the
interaction part alone. In this limit, its Hamiltonian reads

Ĥ = Us

2

∑
i,σ

n̂i,σ (n̂i,σ − 1) − Ul

L

(
L/2∑
i=1

n̂i,e −
L/2∑
i=1

n̂i,o

)2

. (1)

Here, the first term describes the conventional onsite interac-
tion with its strength characterized by Us. The second term
describes the ILR interaction mediated by photons in the
cavity [7,8] with its strength characterized by Ul . Moreover,
in order to restore the conventional thermodynamical limit,
Ul is further rescaled by the total number of lattice sites L
in this term according to the Kac prescription [20]. Here,
we consider the 2D square-lattice case which is the same
as the experimental setup in Ref. [8], and refer to its two
interpenetrating square sublattices as “even” (e) and “odd”
(o) lattice, respectively. n̂i,σ is the particle number operator
that counts the number of atoms at site i on the sublattice σ ,
with σ = e, o. We remark here that although to be concrete
we base our discussion on the 2D square lattice which is most
relevant for the current experimental setups [8] the results to
be presented in the following generally hold true for generic
bipartite lattices.

From the Hamiltonian (1), we see that at fixed integer
filling the short-range on-site interaction term favors a con-
ventional Mott-insulator phase where the particle density is
homogeneously distributed over the lattice, while the ILR
interaction term favors a CDW phase with a checkerboard
pattern where particle densities on the even and odd checker-
board sublattice are different, thus breaking the Z2 symmetry
between the two sublattices [7]. The competition between
these two types of interactions, hence two energy scales, gives
rise to a phase transition associated with the Z2-symmetry
breaking in the deep Mott-insulator limit as observed in
experiments focusing at fixed low temperatures [8]. Taking
into account the energy scale set by the temperature, one
would expect the competition among these three energy scales
could give rise to new physics beyond the one in the low-
temperature regime. Indeed, as we shall see in the following,
when the energy scale associated with the temperature can
match the two other energy scales in the system, new criti-
calities that are dominated by the ILR interaction emerge.

III. EMERGENT CRITICALITY FOR THE CDW
TRANSITION AT INTERMEDIATE-TEMPERATURE

SCALES

Before discussing the main results, let us briefly outline
the major method we used in our calculations. To investigate
the finite-temperature phase transition between the CDW and
the homogeneous phase (at low temperatures this corresponds
to the homogeneous Mott insulator), we introduce the CDW
order-parameter field φ into the quantum grand partition func-
tion Z of the system via the standard Hubbard-Stratonovich
transformation and reformulate the grand partition function Z
in terms of the φ field (see Appendix B), the explicit form of
which reads

Z =
√

βUlL

π

∫ +∞

−∞
dφ e−βL�{β,μ,Us ,Ul }(φ) (2)

with

�{β,μ,Us,Ul }(φ)

≡ Ulφ
2 − 1

2β

∑
η=±1

ln

[+∞∑
n=0

e−β[ Us
2 n(n−1)−μn+2ηUl nφ]

]
. (3)

Here, μ is the chemical potential and β = (kBT )−1 with kB

being the Boltzmann constant and T being the temperature.
From Eq. (2), we notice that in the Mott-insulator limit where
the hopping can be neglected the partition function of the
system assumes a classical form, therefore the CDW tran-
sition in this limit is a classical transition. The transition
from the homogenous phase to the CDW is characterized by
the appearance of the nonzero expectation value of φ, i.e.,
CDW order parameter φ̄ ≡ 〈φ〉 = 〈∑L/2

i=1 n̂i,e − ∑L/2
i=1 n̂i,o〉/L

(see Appendix B). In the thermodynamic limit L → ∞, the
integral with respect to φ in Eq. (2) is given exactly by
its saddle-point integration. Therefore, in the thermodynamic
limit, Z = (

√
βUl L/π ) exp (−βL min [�{β,μ,Us,Ul }(φ)]) and

the CDW order parameter φ̄ is given by the value of φ that
minimizes �{β,μ,Us,Ul }(φ). The summation in Eq. (3) cannot
be performed analytically; however, it can be numerically
calculated at a sufficiently high accuracy with a large enough
cutoff on n. This enables us to map out the complete finite-
temperature phase diagram as we shall now discuss.

At unit filling, the finite-temperature phase diagram is
shown in Fig. 1(a). In the low-temperature regime (compared
to half of the on-site energy), the transition from the homoge-
nous phase to the CDW phase is a first-order transition, where
the CDW order parameter shows a finite jump �φ̄ when
the system parameter is tuned across the transition boundary
[see Fig. 1(b)]. This corroborates the findings in experiments
where hysteretic behavior of the first-order CDW transition
was observed in the low-temperature regime [8]. The first-
order transition behavior can be traced back to the structure
of the function �{β,μ,Us,Ul }(φ): For the homogeneous phase,
�{β,μ,Us,Ul }(φ) has two types of minima, with one type of
minimum located at φ = 0 which is global and the other type
located at ±φ∗, with |φ∗| 
= 0 which is local [see lower-left
inset in Fig. 1(a)]. When system parameters are tuned to
approach the first-order transition boundary the difference in
the � value between these two types of minima decreases. At
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the first-order transition boundary, � assumes the same value
at these two types of minima. After the system parameter
enters the CDW regime, minima at ±φ∗ become the global
minima [see lower-right inset in Fig. 1(a)], giving rise to the
finite jump in the CDW order as shown in Fig. 1(b).

When the temperature is increased in the low-temperature
regime, the order-parameter jump �φ̄ at the first-order tran-
sition boundary decreases and finally vanishes at a critical
point as shown by the red dot in Fig. 1(a) with its temperature
TCP = 0.396Us/kB. The emergence of the critical point can be
traced back to the change of locations of the minima of �

along the first-order transition boundary as shown in the inset
of Fig. 2(a), where |φ∗| approaches zero when the temperature
is increased.

Above the critical point, the CDW transition becomes a
second-order phase transition, where the CDW order parame-
ter changes continuously when system parameters are tuned
across the transition boundary as shown in Fig. 1(c). The
second-order transition behavior can also be traced back to
the structure of the function �{β,μ,Us,Ul }(φ): On the homo-
geneous phase side of the transition, �{β,μ,Us,Ul }(φ) has only
one global minimum located at φ = 0 [see upper-left inset in
Fig. 1(a)]. When the system parameters are tuned across the
second-order transition boundary, this minimum continuously
changes to a maximum, and two new minima emerging at 0±
at the same time. These two nonzero minima are continuously
moving far away from φ = 0 as system parameters are further
tuned into a deeper CDW parameter regime [see upper-right
inset in Fig. 1(a) and Fig. 1(c)].

The emergence of the critical point and the second-order
CDW transition in fact gives rise to a new critical regime that
is absent at low temperatures where the CDW transition is a
first-order transition. Indeed, as we shall see in the following,
in the vicinity of the critical point and the second-order tran-
sition, both the order-parameter jump �φ̄ of the first-order
transition and the order parameter φ̄ manifest critical power-
law scaling that is dominated by the long-range interaction of
the system.

IV. CRITICAL SCALING AND UNIVERSALITY CLASS OF
CDW TRANSITION AT INTERMEDIATE TEMPERATURES

At low temperatures, the CDW order changes its value
abruptly by �φ̄ when system parameters, for instance, Ul ,
are tuned across the first-order transition boundary. Therefore,
the CDW order parameter φ̄ itself does not show any critical
power-law scaling. However, as we can see from Fig. 2(a),
where numerical results of the temperature dependence of the
order parameter jump �φ̄ are shown, �φ̄ decreases continu-
ously upon increasing the temperature and finally vanishes at
the critical point. This thus gives rise to the possible existence
of the critical power scaling concerning the order-parameter
jump �φ̄ near the critical point. Indeed, as shown in Fig. 2(b),
a power-law fit to the temperature dependence of �φ̄ in the
vicinity of the critical point TCP clearly shows a critical scaling
�φ̄ ∝ (TCP − T )0.500.

Above the critical point, i.e., T > TCP, the CDW transi-
tion becomes a second-order one, where CDW order changes
continuously when system parameters are tuned across the
transition boundary. Thus, one naturally expects the CDW

order φ̄ shows critical scaling near the second-order tran-
sition boundary. Indeed, as we can see from Fig. 3, where
numerical results of the temperature dependence of CDW
order parameter |φ̄| at a fixed Ul are shown, a critical scaling
|φ̄| ∝ (Tc − T )0.504 can be clearly observed [see Fig. 3(b)].

Interestingly, the numerical values for these two critical
exponents, i.e., the one that governs the scaling of �φ̄, which
assumes the value of 0.500, and the other one that governs
the scaling of |φ̄|, which assumes the value of 0.504, respec-
tively, are remarkably close to each other. This thus strongly
suggests these two critical scaling behaviors are related to
each other on the fundamental level by the same effective
theory in their respective critical regime. Indeed, both scalings
can be determined via the same effective theory within the
Ginzburg-Landau (GL) framework, as we shall now discuss.

In the critical regime, the CDW order parameter is small
enough to allow a systematic expansion of the system’s free
energy F with respect to its CDW order parameter φ̄. The Z2

symmetry of the system determines the allowed terms in the
expansion, the explicit form of which up to the sixth order in
φ̄ reads

F = 1
2 rφ̄2 + 1

4 u4φ̄
4 + 1

6 u6φ̄
6, (4)

with r, u4, and u6 being the GL coefficients. To describe the
first-order transition, one further assumes that r depends on
temperature linearly, i.e., r = a(TCP − T ) where a is a positive
coefficient, and u4,6 are temperature independent coefficients
with u4 assumed to be negative for T < TCP and u6 being
always positive in order to stabilize the whole system. To
describe the second-order transition above the critical point,
one assumes that r depends on temperature linearly, i.e., r =
a(T − Tc) with Tc being the critical temperature of the second-
order CDW transition, and u4 is positive, hence the sixth-order
term in Eq. (4) is thus irrelevant in this case. By analyzing
the saddle points of F in these two cases, we can obtain that,
for the first-order transition, the CDW order-parameter jump
�φ̄ = (1/2)

√
r/|u4|; for the second-order transition, |φ̄| =√|r|/u4 in the ordered phase (see Appendix C). Noticing

in both cases that r is linear dependent on the temperature
and u4 is independent of the temperature, we directly get the
following scaling laws:

�φ̄ ∝ (TCP − T )1/2 and |φ̄| ∝ (Tc − T )1/2, (5)

showing remarkable agreements with the numerical results on
these two scalings.

At first sight, this good agreement seems quite unexpected,
since due to the fact that long-range fluctuations are neglected
in the effective theory within the GL framework it is only
expected to provide very rough estimations on the critical
exponents for the 2D system under consideration. However,
noticing the ILR interaction can strongly suppress the long-
range fluctuations [21], this in fact promotes the GL effective
theory to a precise effective theory that captures the critical
scaling behavior. Such a promotion of the same GL effective
theory to a precise effective critical theory is reminiscent
of what happens in the 5D Ising model with the same Z2

symmetry the corresponding scaling exponent of which is
exactly 1/2 [22] as in Eq. (5). In the case of the 5D Ising
model, the promotion is accomplished via suppressing the
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long-range fluctuations by the higher dimensionality, while
in contrast it is the long-range interaction that suppresses the
long-range fluctuations in lattice Bose gases in cavities. This
also indicates its emergent criticality belongs to the 5D Ising
universality class, which clearly shows that the criticality of
the CDW transition is strongly influenced by the long-range
characteristic of the interaction in the system.

V. CONCLUSIONS

The CDW transition of lattice Bose gases in optical cavities
is crucially influenced by the thermal fluctuations above the
temperature around half the on-site interaction energy: the
first-order CDW transition at low temperatures terminates at a
critical point where it changes to a second-order phase transi-
tion. This gives rise to the new emergent criticality belonging
to the 5D Ising universality class, manifesting clearly the
long-range characteristic of the system’s interaction. Noticing
the CDW order parameter can be well measured in current
experiments [8], we expect the physics in the emergent crit-
ical regime predicted in this paper can be readily observed
by operating current experimental setups at a temperature
scale around one-half of the on-site energy, or alternatively,
by lowering both Us and Ul in experiments to effectively
increase the temperature. Moreover, noticing that even the
measurements on the hysteretic behavior hinged to the first-
order CDW transition have been already accessible in current
experiments [8], identifying the existence of the critical point
experimentally can thus be greatly facilitated via monitoring
the disappearance of the hysteretic behavior upon increasing
temperature from the low-temperature regime. We believe our
paper will stimulate further experimental and also theoreti-
cal investigations on possible emergent criticalities under the
influence of both thermal fluctuations and ILR interactions,
especially beyond the deep Mott-insulator limit.
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APPENDIX A: EFFECTIVE HAMILTONIAN WITH
INFINITE-LONG-RANGE INTERACTIONS

To make the discussion in the main text more self-
contained, we present the derivation of the effective Hamilto-
nian with the ILR interactions shown in Eq. (1), starting from
the atom-photon interacting model. Similar derivations with
more detailed information concerning the related experiments
can be found in Ref. [8]. The physics of lattice bosonic atoms
in a 2D square optical lattice within an optical cavity can
be captured by the atom-photon interacting model with its
Hamiltonian ĤAP assuming the explicit form (units are chosen

such that h̄ = 1) [8]

ĤAP = 1

2

∑
i,σ

Usn̂i,σ (n̂i,σ − 1) − t
∑

〈(i,σ ),( j,σ ′ )〉
(b̂†

i,σ b̂ j,σ ′ + H.c.)

+λ(â† + â)(N̂e − N̂o) − (�c − δ)â†â, (A1)

where λ is the atom-photon interaction strength, Us is the
strength of the short-range contact interaction between atoms,
t is the hopping amplitude, �c is the difference between the
frequency of cavity photons and the one of the lattice beam,
and δ is a dispersive shift [8]. Here, N̂e(o) = ∑L/2

i=1 n̂i,e(o) with
n̂i,σ ≡ b̂†

i,σ b̂i,σ , where b̂†
i,σ (b̂i,σ ) is the bosonic creation (an-

nihilation) operator that corresponds to the Wannier function
in the lowest band at site i on the sublattice σ . â†(â) is the
creation (annihilation) operator for the photons in the cavity.

To derive the effective Hamiltonian for the atoms only, we
first write down the Heisenberg equation of motion for cavity
photons with a finite decay rate κ , i.e., idâ/dt = [â, ĤAP] −
iκ â, the explicit form of which reads

i
dâ

dt
= −(�c − δ)â − iκ â + λ(N̂e − N̂o), (A2)

where the typical time scale of the dynamics of the cavity
photons is determined by the decay rate κ . For the cavity em-
ployed in current experiments [6–8], κ is around a few MHz
(more precisely, κ = 2π × 1.3 MHz in experiments reported
in [6–8]), which is much larger than the atomic recoil energy
ER, which is usually a few kHz. This indicates the dynamics
of the cavity photons are much faster than the ones of atoms.
Therefore, one can approximate â as

â = λ(N̂e − N̂o)

�c − δ + iκ
, (A3)

and eliminate the cavity photons adiabatically by plugging
the above expression into Eq. (A1). After the adiabatic elim-
ination, one obtains the effective Hubbard-type Hamiltonian
ĤHub for the atoms only, i.e.,

ĤHub = − t
∑

〈(i,σ ),( j,σ ′ )〉
(b̂†

i,σ b̂ j,σ ′ + H.c.) (A4)

+ 1

2

∑
i,σ

Usn̂i,σ (n̂i,σ − 1) − Ul

L
(N̂e − N̂o)2,

with

Ul ≡ −2Lλ2 �c − δ

(�c − δ)2 + κ2
. (A5)

In the deep Mott-insulator limit, where the hopping amplitude
is negligibly small, the system is described by the interaction
part of ĤHub alone, which corresponds to Eq. (1) in the main
text.

APPENDIX B: HUBBARD-STRATONOVICH
TRANSFORMATION ON THE PARTITION FUNCTION

To investigate finite-temperature properties of the system,
the central quantity we need to calculate is the quantum par-
tition function Z = tr exp[−β(Ĥ − μN̂ )] with N̂ = ∑

i,σ n̂i,σ

and μ being the chemical potential. Its explicit form in the
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occupation number representation reads

Z =
∑
{ni,σ }

e−β{∑i,σ [ Us
2 ni,σ (ni,σ −1)−μni,σ ]− Ul

L [
∑

i (ni,e−ni,o)]2}, (B1)

where ni,σ is the occupation number, i.e., the eigenvalue of the
bosonic particle number operator n̂i,σ .

The Hubbard-Stratonovich transformation that we use to
introduce the CDW order-parameter field φ into the partition
function reads

(√
βUl L

π

)−1

exp

⎛
⎝β

Ul

L

[
L/2∑
i=1

(ni,e − ni,o)

]2⎞⎠ =
∫ +∞

−∞
dφ exp

(
−βUl

{
Lφ2 + 2

[
L/2∑
i=1

(ni,e − ni,o)

]
φ

})
. (B2)

By using Eq. (B2) we can replace the long-range interaction term appearing in Eq. (B1) by the integral over the φ field and
rewrite the partition function Z in terms of φ as shown in Eq. (2) in the main text.

φ assumes the physical meaning of the fluctuating CDW order-parameter filed. It appears in the partition function and its
expectation value φ̄ ≡ 〈φ〉 equals to CDW order parameter 〈∑L/2

i=1 n̂i,e − ∑L/2
i=1 n̂i,o〉/L exactly. This can be shown by introducing

a source J that couples to L−1 ∑L/2
i=1(ni,e − ni,o) in the partition function. Now the partition function depends on the source J and

its explicit form reads

Z[J] =
√

βUlL

π

∫ +∞

−∞
dφ

∑
{ni,σ }

e−β
∑

i,σ [ Us
2 ni,σ (ni,σ −1)−μni,σ ]e−βUl Lφ2+2βUl φ

∑L/2
i=1 (ni,e−ni,o)eJL−1 ∑L/2

i=1(ni,e−ni,o). (B3)

One can directly show 〈∑L/2
i=1 n̂i,e − ∑L/2

i=1 n̂i,o

〉
L

= ∂ ln Z[J]

∂J

∣∣∣∣
J=0

. (B4)

Moreover, since φ is an integral variable with its domain lying in (−∞,+∞), one can shift φ without changing the partition
function. After the shift φ → φ − J

2βUl L
, we get

Z[J] =
√

βUl L

π

∫ +∞

−∞
dφ

∑
{ni}

e−β
∑

i,σ [ Us
2 ni,σ (ni,σ −1)−μni,σ ]e−βUl Lφ2+2βUl φ

∑L/2
i=1(ni,e−ni,o)+φJ− J2

4βUl L . (B5)

Now one can calculate the same derivative ∂ ln Z[J]/∂J|J=0
and get

∂ ln Z[J]

∂J

∣∣∣∣
J=0

= 〈φ〉. (B6)

Comparing Eq. (B4) to Eq. (B6), we conclude φ assumes
the physical meaning of the fluctuating CDW order-parameter
field, with

〈φ〉 = L−1

〈
L/2∑
i=1

n̂i,e −
L/2∑
i=1

n̂i,o

〉
. (B7)

APPENDIX C: GINZBURG-LANDAU EFFECTIVE THEORY

In the critical regime, the CDW order parameter is small
enough to allow a systematic expansion of the system’s free
energy with respect to its CDW order parameter φ̄. The
Ginzburg-Landau free energy F that is allowed by the Z2

symmetry (i.e., F should be invariant under the transformation
φ̄ → −φ̄) assumes the form

F = 1
2 rφ̄2 + 1

4 u4φ̄
4 + 1

6 u6φ̄
6, (C1)

where we expand F up to the sixth order in φ̄, with r, u4, and
u6 being the GL coefficients.

1. Critical scaling of the CDW order-parameter jump �φ̄ in the
vicinity of the critical point

To describe the first-order transition, one further assumes
that r depends on temperature linearly, i.e., r = a(TCP − T )
where a is a positive coefficient, and u4,6 are temperature in-
dependent coefficients with u4 < 0 for T < TCP and u6 being
always positive in order to stabilize the whole system. With
u4 < 0, the GL free energy assumes three minima located at

φ̄ = 0,±

√√√√−u4 +
√

u2
4 − 4u6r

2u6
, (C2)

respectively. For the system parameters located at the first-
order transition boundary, the conditions

F = 0 and
∂F

∂φ̄
= 0 (C3)

should both hold true, from which we can obtain that the
nonzero CDW order assumes the values

φ̄ = ±1

2

√
r

|u4| . (C4)

This thus indicates �φ̄ = (1/2)
√

r/|u4|. Noticing r =
a(TCP − T ) with T being the transition temperature at the
first-order transition boundary, this gives rise to the power-law
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scaling

�φ̄ ∝ (TCP − T )1/2. (C5)

2. Critical scaling of the CDW order parameter φ̄ of the
second-order CDW transition

Above the critical point, the CDW transition is a second-
order phase transition, thus u4 is assumed to be positive. In
this case, the sixth-order term in GL free energy is irrelevant
in the vicinity of the transition, therefore we only need to keep
up to the fourth-order term in the GL free energy, i.e.,

F = 1
2 rφ̄2 + 1

4 u4φ̄
4. (C6)

As the first-order transition case, we assume r = a(T −
Tc) with Tc being the critical temperature of the second-

order CDW transition. The CDW order is determined by the
condition

∂F

∂φ̄
= 0, (C7)

from which we obtain

φ̄ =
√

|r|
u4

, (C8)

for r < 0. Indeed, noticing r = a(T − Tc), this gives rise to
the power scaling

φ̄ ∝ (Tc − T )1/2. (C9)
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