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Two-body problem in a multiband lattice and the role of quantum geometry
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We consider the two-body problem in a periodic potential, and study the bound-state dispersion of a spin-↑
fermion that is interacting with a spin-↓ fermion through a short-range attractive interaction. Based on a
variational approach, we obtain the exact solution of the dispersion in the form of a set of self-consistency
equations, and apply it to tight-binding Hamiltonians with on-site interactions. We pay special attention to the
bipartite lattices with a two-point basis that exhibit time-reversal symmetry, and show that the lowest-energy
bound states disperse quadratically with momentum, whose effective-mass tensor is partially controlled by
the quantum metric tensor of the underlying Bloch states. In particular, we apply our theory to the Mielke
checkerboard lattice, and study the special role played by the interband processes in producing a finite effective
mass for the bound states in a nonisolated flat band.
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I. INTRODUCTION

A flat band refers to a featureless Bloch band in which the
energy of a single particle does not change when the crystal
momentum is varied across the first Brillouin zone. Because
of their peculiar properties [1–5], there is a growing demand
in designing and studying physical systems that exhibit flat
bands in their spectrum [6–11]. For instance, such a disper-
sionless band indicates that not only the effective mass of the
particle is literally infinite but also its group velocity is zero.
This further suggests that the particle remains localized in real
space. Then, up until very recently [12], one of the puzzling
questions was whether the diverging effective mass is good
or bad news for the fate of superconductivity in a material
that is to a large extent characterized by a flat band, given
that superconductivity, by definition, requires a finite effective
mass for its superfluid carriers.

Despite such a complicacy that prevents the motion of
particles through the intraband processes in a flat band, it turns
out that the superfluidity of many-body bound states is still
possible through the interaction-induced interband transitions
in the presence of other flat and/or dispersive bands [12]. Fur-
thermore, in the case of an isolated flat band, i.e., a flat band
that is separated by some energy gaps from the other bands,
it has been shown that the effective mass of the two-body
bound states becomes finite as soon as the attractive interac-
tion between the particles is turned on, independently of its
strength [13]. Moreover, assuming that the interaction is weak,
the effective-mass tensor is characterized by the summation of
the so-called quantum-metric tensor [14–16] of the flat band in
the first Brillouin zone. There is no doubt that such few-body
problems offer a bottom-up approach for the analysis of the
many-body problem, e.g., it may be possible to use the two-
body problem as a universal precursor of superconductivity in
a flat band [13].

Motivated also by related proposals in other contexts
[17,18], here we construct a variational approach to study
the two-body bound-state problem in a generic multiband

lattice, and give a detailed account of bipartite lattices with
a two-point basis and an on-site interaction that manifest
time-reversal symmetry. For this case, we show that the
lowest-energy bound states disperse quadratically with mo-
mentum, whose effective-mass tensor has two physically
distinct contributions coming from (i) the intraband processes
that depend only on the one-body dispersion and (ii) the
interband processes that also depend on the quantum-metric
tensor of the underlying Bloch states. In particular we apply
our theory to the Mielke checkerboard lattice for its simplic-
ity [19], and reveal how the interband processes help produce
a finite effective mass for the bound states in a nonisolated flat
band, i.e., a flat band that is in touch with others. Recent real-
izations of nonisolated flat bands include the kagome and Lieb
lattices [6–11], but they both involve a relatively complicated
three-point basis.

The remaining parts of this paper are organized as follows.
In Sec. II we introduce the two-body Hamiltonian for a gen-
eral multiband lattice, and present its bound-state solutions
through a variational approach. In Sec. III we focus on the
tight-binding lattices with a two-point basis, and derive their
self-consistency equations in the presence of a time-reversal
symmetry. In Sec. IV we analyze the bound-state problem
in a nonisolated flat band, and discuss the role of quantum
metric. In Sec. V we end the paper with a brief summary of
our conclusions.

II. VARIATIONAL APPROACH

In this paper we are interested in the dispersion of the
two-body bound-state in a periodic potential when a spin-↑
fermion interacts with a spin-↓ fermion through a short-range
attractive interaction [13,20]. Our starting Hamiltonian can be
written as H = H0 + H↑↓, where the one-body contributions
H0 = ∑

σ Hσ are governed by

Hσ =
∫

dxψ†
σ (x)

[
− ∇2

2mσ

+ Vσ (x)

]
ψσ (x). (1)
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Here, the operator ψσ (x) annihilates a spin-σ fermion at po-
sition x, the Planck constant h̄ is set to unity, and Vσ (x) is the
periodic one-body potential. Without loss of generality, the
one-body problem can be expressed as

Hσ |nkσ 〉 = εnkσ |nkσ 〉, (2)

where |nkσ 〉 represents a particle in the Bloch state that is
labeled by the band index n and crystal momentum k in the
first Brillouin zone, and εnkσ is the corresponding one-body
dispersion. The Bloch wave function can be conveniently cho-
sen as φnkσ (x) = 〈x|nkσ 〉 = eik·xnkσ (x)/

√
Nc, where nkσ (x)

is a periodic function in space and Nc is the number of unit
cells in the system. We note that if Nb is the number of
basis sites in a unit cell, i.e., the number of sublattices in the
system, then the total number of lattice sites is N = NbNc, and∫

dx = Nc
∫

unit cell dx.
The two-body contribution to the Hamiltonian can be writ-

ten in general as

H↑↓ =
∫

dx1dx2ψ
†
↑(x1)ψ†

↓(x2)U (x12)ψ↓(x2)ψ↑(x1), (3)

where the two-body potential U (x12) depends on the rela-
tive position x12 = x1 − x2 of the particles and has the same
periodicity as the one-body potentials. It is convenient to
express H↑↓ in terms of the Bloch wave functions. For this
purpose, we combine the Fourier expansions of the Bloch
state |nkσ 〉 = 1√

Nc

∑
j eik·x j |n jσ 〉, where x j is the position of

the lattice site j, and the Wannier function Wnσ (x − x j ) =
1√
Nc

∑
k e−ik·x j φnkσ (x), where Wnσ (x − x j ) = 〈x|n jσ 〉 is the

usual definition in the tight-binding approximation. This leads
to |xσ 〉 = ∑

n j W ∗
nσ (x − x j )|n jσ 〉, suggesting that

ψσ (x) =
∑
nk

φnkσ (x)cnkσ . (4)

Here, the operator cnkσ annihilates a spin-σ fermion in the nth
Bloch band with momentum k.

The two-body dispersion Eq is determined by the
Schrödinger equation

H |�q〉 = Eq|�q〉, (5)

where q is the total momentum of the particles and |�q〉
represents the two-body bound state for a given q. Here, the
conservation of q is due to the discrete translational invari-
ance of H . The exact solutions of Eq can be achieved by the
functional minimization of 〈�q|H − Eq|�q〉 [13,20], where

|�q〉 =
∑
nmk

α
q
nmkc†

n,k+ q
2 ,↑c†

m,−k+ q
2 ,↓|0〉 (6)

is the most general variational ansatz (i.e., for a given q)
with complex parameters α

q
nmk. Here, |0〉 represents the vac-

uum of particles and the normalization of |�q〉 requires∑
nmk |αq

nmk|2 = 1. Unlike the continuum model of uniform
systems where the bound-state wave function involves pairs
of particles with k + q

2 and −k + q
2 within a single parabolic

band, here we also allow n 	= m terms to take the interband
couplings that are induced by the periodic lattice potential
into account. They correspond to pairs of particles whose
center-of-mass momenta are shifted by reciprocal-lattice vec-
tors in the extended-zone scheme [20]. By plugging Eq. (4) in

Eq. (3), a compact way to present the functional is

〈H − Eq〉 =
∑
nmk

(
εn,k+ q

2 ,↑ + εm,−k+ q
2 ,↓ − Eq

)∣∣αq
nmk

∣∣2

+ 1

Nc

∑
nmn′m′;kk′

U nmk
n′m′k′ (q)αq∗

n′m′k′α
q
nmk, (7)

where the noninteracting terms are simply determined by
Eq. (2) and the most general interaction-dependent matrix
elements are given by a complicated integral

U nmk
n′m′k′ (q) = 1

Nc

∫
dx1dx2n′∗

k′+ q
2 ,↑(x1)m′∗

−k′+ q
2 ,↓(x2)

× U (x12)ei(k−k′ )·x12 m−k+ q
2 ,↓(x2)nk+ q

2 ,↑(x1).
(8)

Then we set ∂〈H − Eq〉/∂α
q∗
nmk = 0, and obtain an integral

equation that must be self-consistently satisfied by both α
q
nmk

and Eq as

α
q
nmk = −

1
Nc

∑
n′m′k′ U n′m′k′

nmk α
q
n′m′k′

εn,k+ q
2 ,↑ + εm,−k+ q

2 ,↓ − Eq
. (9)

To simplify Eqs. (8) and (9), next we restrict our analy-
sis to the zero-ranged contact interactions where U (x12) =
U (x1)δ(x12) with δ(x) the Dirac-delta function. Such local
two-body potentials are known to be well suited for most of
the cold-atom systems.

For instance, in the case of Hubbard-type tight-binding
Hamiltonians with on-site interactions, Eq. (8) can be written
as

U nmk
n′m′k′ (q) =

∑
S

USn′∗
k′+ q

2 ,↑Sm′∗
−k′+ q

2 ,↓Sm−k+ q
2 ,↓Snk+ q

2 ,↑S,

(10)

where S labels the basis sites in a unit cell, i.e., sublattices in
the system, US is the on-site interaction with the possibility of
a sublattice dependence, and nkσS = 〈S|nkσ 〉 is the projection
of the Bloch function onto the Sth sublattice. Thus Eq. (9)
reduces to

α
q
nmk = −

∑
S USn∗

k+ q
2 ,↑Sm∗

−k+ q
2 ,↓S

εn,k+ q
2 ,↑ + εm,−k+ q

2 ,↓ − Eq

× 1

Nc

∑
n′m′k′

m′
−k′+ q

2 ,↓Sn′
k′+ q

2 ,↑Sα
q
n′m′k′ . (11)

This integral equation suggests that one can determine all pos-
sible Eq solutions by representing Eq. (11) as an eigenvalue
problem in the nmk basis, i.e., the two-body problem reduces
to finding the eigenvalues of an N2 × N2 matrix for each q.
Alternatively, one can introduce a new parameter set βSq =∑

nmk nk+ q
2 ,↑Sm−k+ q

2 ,↓Sα
q
nmk, and reduce the integral Eq. (11)

to a self-consistency relation

βSq = − 1

Nc

∑
nmkS′

US′n∗
K↑S′m∗

−K′↓S′m−K′↓SnK↑S

εn,k+ q
2 ,↑ + εm,−k+ q

2 ,↓ − Eq
βS′q, (12)

where K = k + q
2 and K′ = k − q

2 are used as a shorthand
notation. Thus, for a given q, the two-body problem reduces
to finding the roots of a nonlinear equation that is determined
by setting the determinant of an Nb × Nb matrix to 0. We

053311-2



TWO-BODY PROBLEM IN A MULTIBAND LATTICE AND … PHYSICAL REVIEW A 103, 053311 (2021)

illustrate these two approaches in the next section, where we
focus on the experimentally more relevant case of sublattice-
independent on-site interactions, and set US = −U with U �
0 for the attractive case of interest in this paper.

III. BIPARTITE LATTICES

For the sake of simplicity, below we consider a generic bi-
partite lattice with a two-point basis as a nontrivial illustration
of our results, and denote its sublattices with S = {A, B}. In
this case, the self-consistency equations can be combined to
give (Mq

AA Mq
AB

Mq
BA Mq

BB
)(βAq

βBq
) = 0, where the matrix elements are

Mq
SS = 1 − U

Nc

∑
nmk

∣∣nk+ q
2 ,↑S

∣∣2∣∣m−k+ q
2 ,↓S

∣∣2

εn,k+ q
2 ,↑ + εm,−k+ q

2 ,↓ − Eq
, (13)

Mq
AB = − U

Nc

∑
nmk

n∗
K↑Bm∗

−K′↓BnK↑Am−K′↓A

εn,k+ q
2 ,↑ + εm,−k+ q

2 ,↓ − Eq
, (14)

with Mq
BA = Mq∗

AB. Thus the nontrivial bound-state solutions
require the condition det Mq = Mq

AAMq
BB − |Mq

AB|2 = 0 to be
satisfied. In this paper we are interested in the time-reversal
symmetric systems where nk↑S = n∗

−k↓S ≡ nkS = 〈S|nk〉.
In the presence of two sublattices, the one-body contribu-

tions to the Hamiltonian can be written as

H0 =
∑
kσ

(c†
Akσ c†

Bkσ
)
(
d0

kτ0 + dk · τ
)(cAkσ

cBkσ

)
, (15)

where cSkσ annihilates a spin-σ fermion in the Sth sublattice
with momentum k, and d0

k and dk = (dx
k, dy

k, dz
k ) parametrize

the most general Hamiltonian matrix in the sublattice basis.
Here, τ0 is an identity matrix and τ = (τx, τy, τz ) is a vec-
tor of Pauli spin matrices. The one-body dispersions εsk↑ =
εs,−k,↓ = εsk are given by

εsk = d0
k + sdk, (16)

where s = ± denotes the upper and lower bands, and dk =√
(dx

k )2 + (dy
k )2 + (dz

k )2 is the magnitude of dk. The sublattice
projections of the Bloch functions can be written as

〈A|sk〉 = −dx
k + idy

k√
2dk

(
dk − sdz

k

) , (17)

〈B|sk〉 = dz
k − sdk√

2dk
(
dk − sdz

k

) . (18)

By plugging these expressions into Eqs. (13) and (14), we find

Mq
AA = 1 − U

4Nc

∑
ss′k

(
1 + s dz

K
dK

)(
1 + s′ dz

K′
dK′

)
εs,k+ q

2
+ εs′,k− q

2
− Eq

, (19)

Mq
BB = 1 − U

4Nc

∑
ss′k

(
1 − s dz

K
dK

)(
1 − s′ dz

K′
dK′

)
εs,k+ q

2
+ εs′,k− q

2
− Eq

, (20)

Mq
AB = − U

4Nc

∑
ss′k

s dx
K−idy

K
dK

s′ dx
K′+idy

K′
dK′

εs,k+ q
2
+ εs′,k− q

2
− Eq

. (21)

Before proceeding with the numerical applications, next we
show that these exact expressions are in perfect agreement

with those of the Gaussian-fluctuation theory that is presented
in Ref. [21].

To reveal a direct link between the variational approach
to the two-body bound-state problem and the effective-action
approach to the many-body pairing problem in the Gaus-
sian approximation, first we consider the normal state with
vanishing saddle-point order parameters in the system, i.e.,
�A = �B = 0 for the sublattices. Then we substitute ω +
2μ = Eq after the analytical continuation of the Matsubara
frequency iν� = ω + i0+ of the pairs, and take the zero-
temperature limit. Within the Gaussian approximation, the
fluctuation contribution to the thermodynamic potential can
be written as �G = ∑

q (�∗
T q �∗

Rq)(F q
T T F q

T R
F q

RT F q
RR

)(�T q
�Rq

), where
�T q = (�Aq + �Bq)/2 describes the total fluctuations and
�Rq = (�Aq − �Bq)/2 describes the relative fluctuations. In
Ref. [21], �Sq is defined as the fluctuations of the complex
Hubbard-Stratonovich field �Sq around the saddle-point order
parameter �S for the Sth sublattice, i.e., �Sq = �S + �Sq.
The matrix elements are reported as [21]

F q
T T = 1

U
− 1

2N

∑
ss′k

1 + ss′ dx
Kdx

K′+dy
Kdy

K′+dz
Kdz

K′
dk+ q

2
dk− q

2

εs,k+ q
2
+ εs′,k− q

2
− Eq

, (22)

F q
RR = 1

U
− 1

2N

∑
ss′k

1 − ss′ dx
Kdx

K′+dy
Kdy

K′−dz
Kdz

K′
dk+ q

2
dk− q

2

εs,k+ q
2
+ εs′,k− q

2
− Eq

, (23)

F q
T R = − 1

2N

∑
ss′k

s dz
K

dK
+ s′ dz

K′
dK′ − iss′ dx

Kdy
K′−dy

Kdx
K′

dk+ q
2

dk− q
2

εs,k+ q
2
+ εs′,k− q

2
− Eq

, (24)

where F q
RT = F q∗

T R . Here, N = 2Nc is the number of lattice sites
in the system, i.e., Nb = 2. We note that since the elements
of Fq and Mq are related to each other through a unitary
transformation, the condition det Fq = F q

T T F q
RR − |F q

T R|2 = 0
coincides precisely with det Mq = 0.

IV. NUMERICAL APPLICATION

As a specific illustration of the theory, next we apply
our generic results to study the two-body problem in a non-
isolated flat band, i.e., a flat band that is in touch with
others. In this context the Mielke checkerboard lattice in
two dimensions is one of the simplest ones to study since
it exhibits a single flat band that is in touch with a single
dispersive band at some k points. Such a lattice can be de-
scribed by d0

k = −2t cos(kxa) cos(kya), dx
k = −2t cos(kxa) −

2t cos(kya), dy
k = 0, and dz

k = 2t sin(kxa) sin(kya) [19]. Here,
a is the lattice spacing between the nearest-neighbor sites of
a square lattice, and the primitive vectors b1 = (π/a,−π/a)
and b2 = (π/a, π/a) determine the reciprocal lattice. In this
paper we let t → −|t | because it is advantageous to have the
flat band as the lower one. This is because, no matter how
weak U is, the low-energy bound states that are most relevant
to the presence of a flat band appear just below it, i.e., they do
not overlap with the one-body states. Thus the dispersive band
ε+,k = 2|t | + 4|t | cos(kxa) cos(kya) touches quadratically to
the flat band ε−,k = −2|t | at the four corners of the first
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FIG. 1. (a) One-body dispersion εsk is shown for the Mielke
checkerboard lattice when the lower band is flat. The bands touch at
the four corners of the first Brillouin zone. (b) Two-body dispersion
Eq is shown for U = 5|t | as a function of qxa when qya = 0. The
conditions F q

RR = 0 and F q
T T = 0 are in perfect agreement with the

upper and lower branches, respectively. The quadratic expansion
Eq = Eb + q2/(2mb) is an excellent fit for the lower branch in the
small-q limit.

Brillouin zone k ≡ {(±π/a, 0), (0,±π/a)}. A portion of the
band structure is shown in Fig. 1(a) for an extended zone.

For the two-body problem of interest in this paper, first we
find all possible Eq values by solving the eigenvalue problem
that is governed by Eq. (11). The exact solutions are shown
in Fig. 1(b) for U = 5|t | when qya = 0. Note that all of the
high-energy bound states have an instability towards a one-
body decay in the −4|t | � Eq � 12|t | region. For this reason
we focus only on the low-energy states with Eq < −4|t |. In
Fig. 1(b) there are two distinct bound-state branches appearing
in the two-body problem. In contrast to the upper branch that
appears nearly featureless in the shown scale, the lower one
disperses quadratically with momentum in the small-q limit.
Given that our quadratic expansion Eq = Eb + q2/(2mb) is an
excellent fit around q = 0, next we analyze both the offset
Eb < −4|t | of the lower branch and its effective mass mb > 0
in greater detail.

For this purpose, first we note in Fig. 1(b) that the con-
ditions F q

RR = 0 and F q
T T = 0 are in perfect agreement with

the upper and lower branches, respectively. This is because
the coupling term F q

T R integrates to 0 when qx = 0 and/or
qy = 0. Then, in contrast to Eq. (11), we note that Eqs. (22)
and (23) offer an analytically tractable approach. For instance,
one can determine both Eb and mb of the lower branch by
substituting Eq = Eb + ∑

i j qi(m−1
b )i jq j/2 in Eq. (22), and

FIG. 2. (a) Lowest-energy Eb = Eq=0 of the bound state is shown
for the upper and lower branches as a function of U . (b) Inverse
of the effective mass mb of the bound state is shown for the lower
branch as a function of U together with its intraband and inter-
band contributions, where 1/mb = 1/mintra

b + 1/minter
b . (c) Same as

in (b) but with a larger region. Here, mb = 5π/[Ua2 ln(64|t |/U )]
and mb = U/(8a2t2) fit very well in the small- and large-U limits,
respectively.

expanding the condition F q
T T = 0 up to second order in q.

Here, (m−1
b )i j corresponds to the i jth element of the inverse

of the effective-mass tensor mb of the lower branch. Thus
the condition F 0

T T = 0 for the zeroth-order term leads to a
closed-form expression

1 = U

N

∑
sk

1

2εsk − Eb
(25)

for the Eb of the lower branch. Note that the familiar one-band
result is recovered by Eq. (25), after setting dk = 0 in the one-
body dispersion shown in Eq. (16). Similarly the condition
F 0

RR = 0 gives an expression for the Eb of the upper branch. In
Fig. 2(a) we show Eb for both the upper and lower branches as
a function of U . For the lower branch of main interest here, we
find that Eb = −4|t | − U/2 is an excellent fit in the small-U
limit but it approaches to Eb = −4|t | − U in the large-U limit.

While the condition ∂F q
T T /∂qi|q=0 = 0 for the first-order

term is always satisfied, the condition ∂2F q
T T /(∂qi∂q j )|q=0=0
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for the second-order term leads to a closed-form expression
(m−1

b )i j = (m−1
b )intra

i j + (m−1
b )inter

i j for the effective-mass ten-
sor, where

(
m−1

b

)intra

i j = 1

2

∑
sk

∂2εsk/(∂ki∂k j )
(2εsk−Eb)2∑

sk
1

(2εsk−Eb)2

, (26)

(
m−1

b

)inter

i j = −2

∑
sk

sdkgi j
k

(2d0
k−Eb)(2εsk−Eb)∑

sk
1

(2εsk−Eb)2

, (27)

are the so-called intraband and interband contributions,
respectively. Here, 2gi j

k = ∂ (dk/dk )∂ki · ∂ (dk/dk )∂k j

is precisely the quantum-metric tensor of the Bloch
states [19,21,22]. It is truly delightful to note that the
expressions Eqs. (26) and (27) are formally equivalent to the
ones reported in the recent literature in an entirely different
but a related context, i.e., the effective-mass tensor of the
Cooper pairs in the presence of helicity bands that is induced
by spin-orbit coupling [17]. In particular they suggest that
while the intraband processes depend only on the one-body
band structure, the interband ones are controlled by the
quantum geometry of the Bloch states. In addition, the
familiar one-band result is recovered merely by Eq. (26),
after setting dk = 0 in the one-body dispersion shown in
Eq. (16). This leads not only to (m−1

b )inter
i j = 0 but also to

(m−1
b )intra

i j = δi j/(2m) for the one-body dispersion that is
quadratic in k, e.g., d0

k = ε0 + k2/(2m), where δi j is the
Kronecker delta.

For the specific case of a Mielke checkerboard lattice, mb
turns out to be a diagonal matrix with isotropic elements,
leading to 1/mb = 1/mintra

b + 1/minter
b , and they are shown in

Fig. 2(b) as a function of U . By the trial and error approach,
we find that mb = 5π/[Ua2 ln(64|t |/U )] fits very well in
the small-U limit. Since the effective intraband mass of the
one-body dispersion diverges for the flat band to begin with,
we note that U 	= 0 is responsible for mb 	= ∞ through the
interband processes with the dispersive band, e.g., it can
be shown that (m−1

b )inter
i j ≈ U

N

∑
k gi j

k [1 − U/(4ε+,k − 2Eb)]

in the U → 0+ limit. Here, 1
Nc

∑
k gi j

k diverges by itself due
to the touching points, and the second term is crucial for
producing a finite effective mass in the Mielke flat band, i.e., it
cancels precisely those diverging points. Thus our calculation
reveals the quantum-geometric mechanism that gives rise to
a finite mb in the U → 0+ limit as long as U is nonzero.
However, away from the small-U limit, Fig. 2(b) shows that
the intraband processes within the dispersive band also give

a similar contribution. The physical mechanism is known to
be very different in the large-U limit [20,23,24], where the
tunneling of the bound state is possible only through virtual
dissociation of the pair, and this leads to mb ∼ U/(8a2t2) as
shown in Fig. 2(c).

In particular to the small-U limit, we would like to em-
phasize that our generic result mb ∝ A/[U ln(B/U )] for the
nonisolated flat bands is in distinct contrast with that mb ∝
A/U of the isolated ones [13], where A and B are real
constants depending on the lattice structure. To be more pre-
cise, it was found that the quadratic expansion of Eq works
very well for some isolated flat bands with an offset Eb =
−U/Nb defined from the flat band and an effective-mass tensor
(m−1

b )i j = U
N

∑
k gi j

k in the small-U limit [13]. Here, gi j
k is the

corresponding quantum-metric tensor of the Bloch states in
the flat band in the presence of other flat and/or dispersive
bands. In comparison to the intraband contribution of Eq. (26)
for a nonisolated flat band, there is no such contribution for
an isolated flat band in the small-U limit due to the presence
of a band gap between the flat band and others. However,
we again note that U 	= 0 is fully responsible for mb 	= ∞
through merely the interband processes with the rest of the
Bloch states in the system.

V. CONCLUSION

In summary, above we constructed a variational approach
to study the two-body bound-state problem in a generic
multiband lattice, and gave a detailed account of bipartite
lattices with an on-site interaction that manifest time-reversal
symmetry. For this case we showed that the lowest-energy
bound states disperse quadratically with momentum, whose
effective-mass tensor has two physically distinct contributions
coming from (i) the intraband processes that depend only on
the one-body dispersion and (ii) the interband processes that
also depend on the quantum-metric tensor of the underlying
Bloch states. In particular we applied our theory to the Mielke
checkerboard lattice for its simplicity, and revealed how the
interband processes help produce a finite effective mass for
the bound states in a nonisolated flat band. As an outlook,
our theory can be extended to the nonisolated flat bands of
kagome and Lieb lattices that have recently been realized in a
number of physical systems [6–11].
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