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Radial Fulde-Ferrell-Larkin-Ovchinnikov-like state in a population-imbalanced Fermi gas
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The possibility of a Fulde-Ferrell-Larkin-Ovchinnikov-like (FFLO-like) state in a population-imbalanced
Fermi gas with a vortex is proposed. Employing the Bogoliubov-de Gennes formalism, we determine self-
consistently the superfluid order parameter and the particle number density in the presence of a vortex. We
find that, upon increasing the population imbalance, the superfluid order parameter spatially oscillates around
the vortex core in the radial direction, indicating that the FFLO-like state becomes stable. We find that the radial
FFLO-like states cover a wide region of the phase diagram in the weak-coupling regime at T = 0, in contrast
with the conventional case without a vortex. We show that this inhomogeneous superfluidity can be detected as
peak structures of the local polarization rate associated with the node structure of the superfluid order parameter.
Since the vortex in the three-dimensional Fermi gas with population imbalance has been already realized in
experiments, our proposal is a promising candidate of a FFLO-like state in cold atom physics.
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I. INTRODUCTION

The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states were
proposed as inhomogeneous fermionic superfluids and su-
perconductors with spatial oscillation of the order parameter
[1,2]. The possibility of the FFLO states has been extensively
discussed not only in condensed-matter physics such as su-
perconductors [3–10] and 3He under confinement [11–15] but
also in high-energy physics such as high density QCD [16–18]
and nuclear matter (proton superconductors and neutron su-
perfluids) in a neutron star [19,20] and in a magnetar [21].
The FFLO states have been originally proposed as a ground
state of superconductor with a Zeeman energy associated with
magnetic field [1,2], but the realization of the FFLO state in
electron system is still challenging, because the magnetic field
causes orbital effects, which suppress the superconductivity,
in addition to the Zeeman effects. Indeed, in the electron sys-
tems there are few promising candidates for the FFLO state. In
the following, we simply refer to the “FFLO” state as a super-
fluidity where the order parameter spatially oscillates and its
sign changes somewhere in the system, while in the original
works [1,2] the FFLO states are characterized by the order
parameter �(r) described by a plane wave as �(r) = �0eiq·r
(FF state) and by a standing wave as �(r) = �0 cos(q · r) (LO
state).

Ultracold Fermi gases have attracted much attention as an
ideal system to realize the FFLO states both experimentally
[22–27] and theoretically [28–42], because one can tune in-
dependently the Zeeman effects and the orbital effects. One
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of the most promising candidates is a one-dimensional (1D)
Fermi gas with a population imbalance [37–40,43,44]. In this
system, the FFLO state has been predicted to cover a large
region of the phase diagram with respect to the interaction
strength and population imbalance. Recently, the density pro-
file of population imbalanced 1D Fermi gas was found to
qualitatively agree with a theoretical prediction, exhibiting the
FFLO state [26,27]. However, the evidence of the FFLO state
has not been directly detected. Although it has been known
that the FFLO state is also favored in two-dimensional (2D)
systems [45], it has not been realized yet.

On the other hand, in the three-dimensional (3D) case, the
realization of the FFLO state is still more challenging. In
this case, it has been predicted that the FFLO states occupy
only a narrow region in the phase diagram at zero temperature
[28,32], and this region vanishes with increasing temperature
[34] because the phase separation into a nonpolarized super-
fluid and a fully polarized normal fluid occurs. We note that,
in the presence of the trapping potential, the spatial oscillation
of the superfluid order parameter at the trap edge has been
proposed within the Bogoliubov-de Gennes (BdG) formalism.
However, because the amplitude of the oscillation is much
smaller than the value of the superfluid order parameter in
the bulk, it is difficult to detect. In Refs. [46,47], the angular-
FFLO state, in which the superfluid order parameter oscillates
in the angular direction of a toroidal trap, has been discussed.
See also Ref. [48] for a FFLO state in a superconducting ring.
Furthermore the FFLO state stabilized by an optical lattice
has been proposed [49]. However, in both cases, any direct
evidence of the FFLO state have not been observed, so far.

In this paper, we theoretically propose an experimentally
accessible route to reach a FFLO-like state in 3D systems. In
our idea, we consider a quantum vortex in the 3D superfluid
Fermi gas with a population imbalance. In contrast with the
case with no vortices, where the excess atoms gather at the
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trap edge, in the presence of a vortex, they can localize near
the vortex core. As a result, the polarized Fermi gas is realized
around the vortex core and a FFLO-like state appears in the
wide region of the phase diagram with respect to the interac-
tion strength and population imbalance at zero temperature.
We emphasize that this situation should have already been
experimentally realized [22,50], although the observation of
the FFLO-like state has not been reported. Thus only a more
precise measurement is needed to clearly detect the FFLO-like
state. In this paper, we take h̄ = kB = 1.

II. FORMALISM

To clarify our idea we investigate a singly isolated quan-
tum vortex in the two-component Fermi gas with population
imbalance within the BdG formalism [51–53], starting from
the Hamiltonian

HBdG =
∑

σ=↑,↓

∫
drψ†

σ (r)

(
−∇2

2m
− μσ

)
ψσ (r)

+
∫

dr(�(r)ψ†
↑(r)ψ†

↓(r) + H.c.)

− Us

∑
σ=↑,↓

∫
drn−σ (r)ψ†

σ (r)ψσ (r). (1)

Here ψσ (r) is the field operator of a Fermi atom with pseu-
dospin σ =↑,↓ and atomic mass m. μσ is the chemical
potential of the σ component. The population imbalance is
included in the difference between μ↑ and μ↓. The second and
third terms describe the contribution from the superfluid order
parameter �(r) = −Us〈ψ↓(r)ψ↑(r)〉 and the Hartree potential
−Usn−σ (r) = −Us〈ψ†

−σ (r)ψ−σ (r)〉, respectively, where nσ (r)
is the number density of the σ component.

We consider a single vortex along the z axis with the
winding number w = 1 at ρ = 0 in the cylindrical coordinates
r = (ρ, θ, z). In this cylindrically symmetric situation, we
can write the superfluid order parameter and particle number
density as �(r) = �(ρ)eiθ and nσ (r) = nσ (ρ), respectively.
In this paper, we consider the FFLO state with a spatial oscil-
lation of �(ρ) along the radial direction.

The mean fields, i.e., �(ρ) and nσ (ρ), as well as the
chemical potential μσ , are determined self-consistently by
solving the gap equation and the particle number equations
for a given interaction strength and population imbalance
P = (N↑ − N↓)/(N↑ + N↓), where Nσ = ∫

drnσ (r) is the to-
tal atomic number of the σ component. This procedure can be
achieved by conventional diagonalization, i.e., the Bogoliubov
transformation for a finite-size system having the cylindrical
symmetry with the system radius R (0 � ρ � R) and height L
(0 � z � L).1 In addition to �(ρ) and nσ (ρ), we calculate the
local density of states (LDOS) given by

N↑(ω, ρ) = − 1

π
ImG11(r, r, iωn → ω + iε), (2)

N↓(ω, ρ) = 1

π
ImG22(r, r, iωn → ω + iε), (3)

1See Appendix for the details of the calculations.
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FIG. 1. Calculated (a) superfluid order parameter and (b) local
population imbalance P(ρ ) = [n↑(ρ ) − n↓(ρ )]/[n↑(ρ ) + n↓(ρ )], as
a function of ρ. The solid line shows the results with P = 0. The
dotted and dashed line are corresponding the case with N = 1 and
N = 2, respectively, where N is the number of the node structure.
In this figure we take (kFas )−1 = −0.5. The arrows denote the node
structure in the case with N = 2 (dashed line).

where ωn = (2n + 1)πT (n ∈ Z) is the Matsubara frequency
at temperature T , and ε is an infinitesimally small parameter.
Here

Ĝ(r, r′, iωn) = −
∫ β

0
eiωnτ 〈Tτ {�(r, τ ), �†(r′, 0)}〉dτ (4)

is a 2 × 2 single-particle Green’s function with the
two-component Nambu-Gor’kov field operator �(r, τ ) =
(ψ↑(r, τ )ψ†

↓(r, τ )). Finally, we summarize the setup of the nu-
merical calculations. We take RkF = 50 and LkF = 20 for the
system size of the ρ and z directions, respectively, where kF

is the Fermi momentum. We take the cutoff energy Ec = 9εF

with the Fermi energy εF = k2
F/(2m). We fix T = 0.

III. RESULTS

In Fig. 1, we show the self-consistent solutions of �(ρ)
in the weak-coupling regime with (kFas)−1 = −0.5, where as

is the s-wave scattering length.2 In the absence of the pop-
ulation imbalance (P = 0), the ordinary vortex is obtained.
As P increases, we find that �(ρ) spatially oscillates around
the vortex core and approaches the value in the bulk away
from the vortex core, which indicates a FFLO-like state is
locally realized near the vortex core. Here, we note that the
superfluid order parameter oscillates in the ρ direction. Thus,
the rotational symmetry around the vortex core remains in
this solution, in contrast with the original FF and LO states.
Further increasing P, the number N of nodes [where �(ρ) =
0] increases. The dotted and dashed lines in Fig. 1(a) corre-
spond to the N = 1 and N = 2 cases, respectively. Here, we

2See Appendix for the definition of as.
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comment on the effects of trapping potential, which is not
explicitly considered in this work. The system size of cold
atomic gases is typically about 100k−1

F –1000k−1
F , which is

much longer than the vortex size obtained in our calculation
(≈10k−1

F , as shown in Fig. 1). Thus, one can neglect the effects
of trapping potential as long as one focuses on the physics
around the vortex core.

This dependence of �(ρ) on P can be understood as fol-
lows: In the presence of the population imbalance, the excess
atoms gather into the region where the superfluid order pa-
rameter is small, because the excess atoms feel the superfluid
order parameter as a potential. The sign change of the su-
perfluid order parameter at vortices and FFLO nodal planes
leads to the formation of low-lying quasiparticle states. Bo-
goliubov quasiparticle states in the vortex core are discretized
to the Caroli-de Gennes-Matricon (CdGM) states with level
spacing ≈�2

0/εF, where �0 is the bulk value of the super-
fluid order parameter [54,55], while the FFLO nodal planes
are accompanied by midgap Andreev bound states [56–58].
When the population imbalance is small, the excess atoms are
accumulated by the CdGM states and thus localize around the
vortex core. However, upon increasing the number of excess
atoms, the vortex size also increases to contain more atoms,
leading to the increase of energy of the vortex. Eventually,
it becomes energetically favorable to make a node structure,
which is accompanied by midgap Andreev bound states and
can accumulate the excess atoms. Hence, the existence of a
vortex line can become a trigger for realizing the FFLO-like
state. Indeed, as shown in Fig. 1(b), the local polarization
rate defined by P(ρ) = [n↑(ρ) − n↓(ρ)]/[n↑(ρ) + n↓(ρ)] has
peak structures around the nodes [ρkF � 13, 24 for the dashed
line in Fig. 1(b)], which can be measured as evidence of our
proposal.

We also emphasize that the amplitude of the oscillation
of �(ρ) is comparable to the bulk value of the superfluid
order parameter. This is in contrast with the trapped case,
where, although the similar oscillation is predicted at the trap
edge, the amplitude is much smaller than the value of �(r)
at the trap center [35]. The resultant local polarization cannot
possess pronounced peak structures at the nodal planes. Thus,
the FFLO-like state proposed in this work is more promising
to experimentally detect.

The spatial structure of the superfluid order parameter
�(r) = �(ρ)eiθ is shown in Fig. 2. We find the clear oscil-
lation of �(r) in the radial direction ρ. In addition to these
nodes, the real (imaginary) part of �(r) vanishes along the
y (x) axis. This is simply because of the phase factor eiθ

associated with the vortex.
The midgap Andreev bound states and the CdGM states,

which are associated with the nodal planes of the FFLO-like
state and the vortex, respectively, can be detected by an obser-
vation of the LDOS Nσ (ω, ρ). Figure 3 shows the calculated
LDOS with the same parameters as in the case with N = 2 in
Fig. 1 (dashed lines). While in the bulk region the clear gap
structure opens in LDOS, in the region where the superfluid
order parameter spatially oscillates (ρkF � 30), LDOS has
a finite value with an energy inside the superfluid gap. To
clearly see this, in the lower panels in Fig. 3, we show the
ρ dependence of LDOS with a fixed energy (ω = −0.16εF

for ↑ spin and ω = 0.28εF for ↓ spin). In each panel, we find

FIG. 2. Spatial structure of the superfluid order parameter
�(r) = �(ρ )eiθ in the x-y plane. The parameters are taken to be the
same as those in the N = 2 case in Fig. 1.

three peak structures. The peak around the vortex core ρ � 0
corresponds to the CdGM states, and the others correspond
to the midgap Andreev bound states. Thus, the disappearance
of the gap structure in LDOS except around the vortex core
can be evidence of the realization of a FFLO-like state. Since
the occupied LDOS can be experimentally observed by us-
ing local photoemission spectroscopy [59], the characteristic
structures in the LDOS of the ↑ component are accessible.

Finally, we show the phase diagram with respect to
(kFas)−1 and P at T = 0 in Fig. 4. We find that the FFLO
state covers a wide region of the phase diagram in the
weak-coupling regime (kFas)−1 � 0 in contrast with the con-
ventional superfluid phase without the spatial oscillation of
�(r), which is realized only in the case with small population
imbalance.

We also mention that, as one goes into the strong-coupling
regime where (kFas)−1 > 0, the FFLO-like state continuously

FIG. 3. Calculated LDOS of the (a) ↑ and (b) ↓ components
(upper panels). The parameters are taken to be the same as those in
the N = 2 case in Fig. 1. Values of LDOS along the dashed lines in
upper panels are also shown (lower panels). We use ω = −0.16εF for
↑ spin and at ω = 0.24εF for ↓ spin. The arrows indicate the midgap
Andreev states around the nodal planes of the FFLO state.
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FIG. 4. Phase diagram of the population imbalanced Fermi gas
with a vortex. N in the FFLO state denotes the number of the node
structure. In the shaded area in the strong-coupling regime, the phase
separation into the nonpolarized superfluid and the fully polarized
normal fluid occurs. The conventional superfluid (SF) state with-
out spatial oscillation of the superfluid order parameter is obtained
only in the absence of the population imbalance P = 0 within our
calculation.

changes into the phase-separated state between the strongly
polarized region around the vortex core and the spin-balanced
superfluid region, which happens in the trapped case with-
out a vortex. Since the FFLO-like state is stabilized by the
mismatch of the size of the Fermi surface between the ↑
and ↓ components, in the spin-balanced superfluid region, the
FFLO oscillation cannot be realized. On the other hand, in
the strongly polarized region around the vortex core, since
the local polarization rate P almost reaches unity, the super-
fluid order parameter itself is strongly suppressed. Thus, the
FFLO-like state is favored in the weak-coupling regime. The
phase boundary between the FFLO-like and phase-separated
states cannot be defined because the FFLO-like state contin-
uously changes into the phase-separated state as increasing
the interaction strength. However, within our calculation,
we cannot find the FFLO-like solution in the region where
(kFas)−1 � 0.1.

IV. SUMMARY

To summarize, we have proposed a route to reach a FFLO-
like superfluid in a 3D Fermi gas. We have considered a
population-imbalanced Fermi gas with a vortex. Applying the
BdG formalism to this system, we have shown that the spatial
oscillation of the superfluid order parameter appears near the
vortex core and the number of the node structure increases
as the population imbalance increases. We have also found
that the FFLO nature can be seen as peak structures in the
local polarization rate, as well as vanishing gap structure in the
LDOS. We have shown that the FFLO-like states cover a wide
region of the phase diagram in the weak-coupling regime at
zero temperature in contrast to the conventional case without
a vortex.

Finally, we comment on the effects of fluctuations on the
FFLO-like state. It has been reported that the ordinary FFLO
state is strongly suppressed by the phase fluctuations of the

order parameter in a uniform three-dimensional system
[60,61]. Since in the FFLO-like state discussed in this paper
the spatial oscillation of the order parameter appears locally
around the vortex core, in contrast with the ordinary FFLO
states, it is still an open question how the fluctuations affect
the FFLO-like state in our situation. Therefore, we leave this
as a future problem.
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APPENDIX: DIAGONALIZATION OF THE
BOGOLIUBOV-DE GENNES HAMILTONIAN IN

CYLINDRICAL SYSTEM

In this section, we summarize the procedure of the di-
agonalization of the BdG Hamiltonian in Eq. (1) under the
cylindrical symmetry. For this purpose, it is useful to expand
ψσ (r) with respect to a set of eigenfunctions of the kinetic-
energy term in the cylindrical coordinate as

ψσ (r) =
∞∑
j=1

∞∑
l=−∞

∑
kz

cl,kz
j,σ f j,l,kz (r), (A1)

where

f j,l,kz (r) = φ j,l (ρ)eilθ eikzz

√
2πL

. (A2)

Here L is the height to the z direction of the system (0 � z �
L), kz = 2πnz/L (nz ∈ Z), and the normalized radial wave
function φ j,l (ρ) is given by

φ j,l (ρ) =
√

2

RJl+1(α j,l )
Jl

(
α j,l

ρ

R

)
, (A3)

where Jl is Bessel function, α j,l is the jth zero of Jl , and
R is the system radius (0 � ρ � R). In this basis, the BdG
Hamiltonian in Eq. (1) can be written as

HBdG =
∑
l,kz

∑
j, j′

�
l,kz
j

†
hl,kz

j, j′�
l,kz

j′ . (A4)

Here, we have introduced the Nambu-Gor’kov field operator
in the cylindrical coordinate as

�
j,kz
j =

(
cl,kz

j,↑
c−l−1,−kz

j,↓
†

)
, (A5)

�
j,kz
j

† = (
cl,kz

j,↑
†

c−l−1,−kz

j,↓
)
, (A6)
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and the matrix hl,kz

j, j′ is given by

hl,kz

j, j′ =
(

ξ
↑
j,l,kz

δ j, j′ + F l,↑
j, j′ �l

j, j′

�l
j, j′ −ξ

↓
j,l+1,kz

δ j, j′ − F l+1,↓
j, j′

)
, (A7)

with the superfluid order parameter

�l
j, j′ =

∫ R

0
ρdρφ j,l (ρ)�(ρ)φ j′,l+1(ρ), (A8)

and the Hartree potential

F l,σ
j, j′ = −Us

∫ R

0
ρdρφ j,l (ρ)n−σ (ρ)φ j′,l (ρ). (A9)

The Hamiltonian can be diagonalized by the Bogoliubov-
Valatin transformation,

γ
l,kz
j,σ =

∑
j′,σ ′

(W −1)l,kz

{ j,σ },{ j′,σ ′}�
l,kz

j′,σ ′ , (A10)

with an orthogonal matrix Ŵ as

HBdG =
∑

σ

∑
j,l,kz

E l,kz
j,σ

(
γ

l,kz
j,σ

)†
γ

l,kz
j,σ , (A11)

where El,kz
j,σ are the eigenvalues of the Hamiltonian. We note

that the matrix in the original BdG Hamiltonian in Eq. (1)
is diagonal in terms of l and kz. Thus, it is sufficient to
numerically solve the eigenvalue equation with l and kz fixed.

Using the set of eigenfunction W and eigenvalues E , the
self-consistent equations for the superfluid order parameter
and the particle number density can be obtained as

�(r) = −Use−iθ

2πL

∑
l,kz

∑
j, j′

φ j,l+1(ρ)φ j′,l (ρ)dl,kz

j, j′ , (A12)

n↑(r) = 1

2πL

∑
l,kz

∑
j, j′

φ j,l (ρ)φ j′,l (ρ)η↑
j, j′ , (A13)

n↓(r) = 1

2πL

∑
l,kz

∑
j, j′

φ j,l+1(ρ)φ j′,l+1(ρ)η↓
j, j′ , (A14)

respectively. Here, we have defined

dl,kz

j, j′ =
∑
i,σ

W l,kz

{ j,↓},{i,σ }W
l,kz

{ j′,↑},{i,σ }nF
(
El,kz

i,σ

)
, (A15)

η
↑
j, j′ =

∑
i,σ

W l,kz

{ j,↑},{i,σ }W
l,kz

{ j′,↑},{i,σ }nF
(
El,kz

i,σ

)
, (A16)

η
↓
j, j′ =

∑
i,σ

W l,kz

{ j,↓},{i,σ }W
l,kz

{ j′,↓},{i,σ }
[
1 − nF

(
El,kz

i,σ

)]
. (A17)

To avoid the well-known ultraviolet divergence, we need to
introduce a cutoff energy Ec in the gap equation. We also
note that the interaction strength is conveniently measured by
the s-wave scattering length as in cold atom physics. In the
cylindrical system, as is known to be related to the coupling
constant Us and the cutoff energy Ec as [35,62]

1

kFas
= −8πεF

Usk3
F

+ 2

π

√
Ec

εF
. (A18)

Using the Bogoliubov-Valatin transformation (A10) and
the eigenfunctions f j,l,kz (r), we can write the matrix element
of the single-particle Green’s function Gi j (r, r′, iωn), which is
defined by Eq. (4), as

G11(r, r′, iωn) =
∑
j, j′

∑
l,kz

∑
i,σ

W l,kz

{ j,↑},{i,σ }W
l,kz

{ j′,↑},{i,σ }
iωn − El,kz

i,σ

× f j,l,kz (r) f ∗
j′,l,kz

(r′), (A19)

G22(r, r′, iωn) =
∑
j, j′

∑
l,kz

∑
i,σ

W l,kz

{ j,↓},{i,σ }W
l,kz

{ j′,↓},{i,σ }
iωn − El,kz

i,σ

× f ∗
j,−l−1,−kz

(r) f j′,−l−1,−kz (r
′), (A20)

G12(r, r′, iωn) =
∑
j, j′

∑
l,kz

∑
i,σ

W l,kz

{ j,↑},{i,σ }W
l,kz

{ j′,↓},{i,σ }
iωn − El,kz

i,σ

× f j,l,kz (r) f j′,−l−1,−kz (r
′), (A21)

G21(r, r′, iωn) = G∗
12(r′, r,−iωn). (A22)

The LDOS shown in Fig. 3 is obtained by the analytic contin-
uation of the diagonal elements of the single-particle Green’s
function as Gii(r, r′, iωn → ω + iδ) with δ being an infinites-
imally small positive number.

[1] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[2] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47,

1136 (1964) [Sov. Phys. JETP 20, 762 (1965)].
[3] Y. Matsuda and H. Shimahara, J. Phys. Soc. Jpn. 76, 051005

(2007).
[4] S. Kitagawa, G. Nakamine, K. Ishida, H. S. Jeevan, C. Geibel,

and F. Steglich, Phys. Rev. Lett. 121, 157004 (2018).
[5] C.-w. Cho, J. H. Yang, N. F. Q. Yuan, J. Shen, T. Wolf, and R.

Lortz, Phys. Rev. Lett. 119, 217002 (2017).
[6] S. Kasahara, Y. Sato, S. Licciardello, M. Čulo, S. Arsenijević,
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