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Hugenholtz-Pines theorem for multicomponent Bose-Einstein condensates
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The Hugenholtz-Pines (HP) theorem is derived for Bose-Einstein condensates (BECs) with internal degrees
of freedom. The low-energy Ward-Takahashi identity is provided in the system with the linear and quadratic
symmetry breaking terms. This identity serves to organize the HP theorem for multicomponent BECs, such as
the binary BEC as well as the spin- f spinor BEC in the presence of a magnetic field with broken U(1) × SO(3)
symmetry. The experimental method based on the Stern-Gerlach experiment is proposed for studying the Ward-
Takahashi identity.
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I. INTRODUCTION

An exact relation among correlation functions reflects the
symmetry that a system has. The Hugenholtz-Pines (HP)
theorem is one of the Ward-Takahashi (WT) identities for
a Bose-Einstein condensate (BEC) [1], ensuring a gapless
Nambu-Goldstone mode owing to the spontaneously broken
U(1) symmetry. This theorem plays a crucial role in under-
standing the low-energy properties of superfluid liquid 4He
as well as ultracold gaseous atomic BECs, and also plays a
critical role in developing theoretical frameworks on the scalar
BEC [2]. Diversity of study on ultracold atomic gases stems
from maximally utilizing the controllability and internal de-
grees of freedom in these systems. In ultracold atomic gases,
BECs with internal degrees of freedom, such as spin 1, 2, and
3 BECs where U(1) × SO(3) symmetry is broken, have been
realized [3–8], which show exotic phases [9].

In the ultracold atomic spinor BECs, the Hamiltonian in
the absence of the magnetic field has U(1) × SO(3) sym-
metry. However, a magnetic field breaks SO(3) symmetry;
for example, the ferromagnetic spinor BECs have a gapped
transverse spin excitation in the presence of the magnetic field
[9,10]. For correctly understanding the low-energy properties
of these excitations in the BEC, the HP theorem is an im-
portant relation. The original derivation of the HP theorem
for the scalar BEC is to employ the U(1) symmetry in the
energy function for counting the number of the condensate
lines in the Feynman-diagrammatically represented energy
function [1]. The relations between the diagonal and off-
diagonal self-energies can be indeed derived in the low-energy
and low-momentum limits by using the fact that because of
the U(1) symmetry, the number of the incoming BEC lines is
equal to the number of the outgoing BEC lines in each term of
the energy function. However, the SO(3) symmetry mixes the
multicomponent order parameters, where the strategy based
on the energy function originally given by Hugenholtz and
Pines [1], which exploits a simple relation between the num-
ber of the incoming and outgoing BEC lines, is hard to
utilize.

In this paper, we derive the general HP theorem for a
multicomponent BEC where the quadratic symmetry breaking

field remains. This relation can be directly applied to derive
the HP theorem for the spinor BECs in the presence of a
magnetic field that breaks SO(3) symmetry. We also show the
HP theorem for the binary BECs. We propose an experimental
method to study the WT identity for a BEC with internal
degrees of freedom.

We here exactly clarified the HP theorem with broken
U(1) × G symmetry in the presence of G symmetry breaking
external fields H ′. This generalized HP theorem is summa-
rized in the following way:

G−1(0)Gα� = [Gα, H ′]�, (1)

where G−1(0) is the inverse Green’s function in the static and
low-momentum limits, � the order parameter in the Nambu
space, Gα a generator of U(1) × G symmetry, and H ′ the G
symmetry breaking external fields. Here, the generator Gα and
the symmetry breaking external fields H ′ are also given in
the Nambu space. We take h̄ = 1 for simplicity. The effect
of the symmetry breaking external fields is included through
the noncommutativity between the symmetry generator Gα

and the symmetry breaking external fields H ′. The identity (1)
serves to deductively organize the HP theorem for the spin- f
spinor BECs with the broken U(1) × SO(3) symmetry. These
WT identities will be helpful to test the quantum effective
theory developed from experimental data [11,12].

II. FORMULATION

We prove the identity (1) by making use of the linear
response theory. Consider a general action S0 with a global
symmetry of a Lie group G1 × G2, which may include two-
body and higher-body interactions of fields with internal
degrees of freedom ψ (x) = (ψ1(x), . . . , ψr (x))T in real space
and imaginary time with x ≡ (r, τ ). Let gα=1,...,n be genera-
tors of the Lie group G1 × G2 in the action S0, where n is
the dimension of this symmetry group. The number of the
internal degrees of freedom r corresponds to the dimension
of the representation of the generator gα . We introduce the
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actions SJ and S′ breaking the symmetry linear and quadratic
in the field ψi, respectively, which are given by

SJ ≡ 1

2

∫
dx[JT(x)ψ (x) + ψT(x)J (x)], (2)

S′ ≡
∫

dx
∫

dx′ψT(x)h′(x − x′)ψ (x′), (3)

with
∫

dx ≡ ∫ h̄β

0 dτ
∫

dr. Here, J (x) is source currents that
break the symmetry G1, given by J (x) ≡ (J1(x), . . . , Jr (x))T,
and h′(x − x′) is G2 symmetry breaking external
fields, given by [h′(x − x′)]i j ≡ h′

i j (r − r′)δ(τ − τ ′) =
h′

i j (r
′ − r)δ(τ − τ ′). We first study the general form of the

WT identity with respect to the field ψi, and then extend to
the Nambu space in order to be immediately applicable to the
HP theorem of multicomponent BECs.

The total action S ≡ S0 + S′ + SJ has the following sym-
metry. The action S is invariant under a transformation at once
ψ (x) → Uαψ (x), J (x) → UαJ (x), as well as H ′(x − x′) →
UαH ′(x − x′)UT

α , where Uα ≡ exp(εαgα ) with a parameter εα .
The action S is, on the other hand, not invariant under the
transformation ψ (x) → Uαψ (x) alone, owing to the presence
of the symmetry breaking external fields J and H ′.

Consider the case where the gauge of the symmetry break-
ing external fields is slightly but globally turned, such that
J (x) → UαJ (x), and H ′(x − x′) → UαH ′(x − x′)UT

α , where
Uα � 1 + εαgα with an infinitesimally small parameter εα .
The total action then reads S + εαSεα

, where Sεα
≡ Sεα,J +

Sεα,H ′ with

Sεα,J ≡ 1

2

∫
dx[ψT(x)gαJ (x) − JT(x)gαψ (x)], (4)

Sεα,H ′ ≡ 1

2

∫
dx

∫
dx′ψT(x)[gα, h′(x − x′)]ψ (x′). (5)

The linear response of the field with respect to the input
action εαSεα

is given by δ〈ψ (x)〉J,εα
≡ 〈ψ (x)〉J,εα

− 〈ψ (x)〉J .
Here, the expectation value of O(x) is defined by 〈O(x)〉J,εα

≡
Z−1

J,εα

∫
D[ψ j]O(x) exp(−S − εαSεα

) with the partition func-
tion ZJ,εα

≡ ∫
D[ψ j] exp(−S − εαSεα

). We have also defined
the notation 〈O(x)〉J ≡ 〈O(x)〉J,εα=0.

Within the first order of εα , we obtain the relation

δ〈ψ (x)〉J = εα

∫
dx′G(x − x′)gαJ (x)

+ εα

∫
dx′

∫
dx′′G(x − x′)

× [gα, h′(x′ − x′′)]〈ψ (x′′)〉J

+ εα

∫
dx′

∫
dx′′�[gα,h′](x, x′, x′′). (6)

Here, the Green’s function G(x − x′) is given by G(x −
x′) = −〈φ(x)φT(x′)〉J , where φ(x) = ψ (x) − 〈ψ (x)〉J with
〈φ(x)〉J = 0. The three-point correlation function �[gα,h′] with
the commutation relation [gα, h′] is defined as

�[gα,h′](x, x′, x′′) ≡ − 1
2 〈φ(x)φT(x′)[gα, h′(x′ − x′′)]φ(x′′)〉J .

(7)

In the momentum and Matsubara frequency space with
k = (p, iωn), the identity reads

δ〈ψ (k)〉J = εαG(k)gαJ (k)

+ εαG(k)[gα, h′]〈ψ (k)〉J + εα�[gα,h′](k), (8)

where we have assumed h′(x − x′) ≡ h′δ(r − r′)δ(τ − τ ′).
It is straightforward to extend this relation to a system

with a U(1) × G symmetry, which is useful to discuss the
HP theorem for BECs with internal degrees of freedom. We
obtain the WT identity for multicomponent superfluids by
extending the field ψ and external fields J and h′ in the
Nambu space: ψ → ψ ≡ (ψ1, . . . , ψr, ψ

∗
1 , . . . , ψ∗

r )T, J →
J ≡ (J1, . . . , Jr, J∗

1 , . . . , J∗
r )T, and h′ → H ′ = diag(h′, h′∗).

The unitary transformation in the Nambu space is given by
Uα ≡ exp(iεαGα ) with a real number εα , where Gα is given
by

Gα ≡F (gα ) ≡
(
gα 0
0 −g∗

α

)
, (9)

and the generator gα is represented as a Hermitian matrix. By
extending Eq. (8) in the Nambu space, we find the relation
given by

G−1(k)
δ〈ψ(k)〉J

iεα

= GαJ(k) + [Gα, H ′]〈ψ(k)〉J

+ G−1(k)�[Gα,H ′](k). (10)

The three-point correlation function is given in the form

�[Gα,H ′](p) ≡
∑

jk

[gα, h′] jk (γ1 jk (p), . . . , γr jk (p),

γ ∗
1 jk (−p), . . . , γ ∗

r jk (−p))T, (11)

where

γi jk (p) ≡ −
∑

q

〈φi(p)φ∗
j (q)φk (q)〉J , (12)

γ ∗
i jk (−p) ≡ −

∑
q

〈φ∗
i (−p)φ∗

j (q)φk (q)〉J . (13)

This term originates from the fact that h′ is quadratic sym-
metry breaking. These three-point correlation functions γi jk

and γ ∗
i jk are absent because of the conservation law of the

momentum and energy in the correlation functions, since we
are considering φi(p) with p 	= 0.

If the gauge of the symmetry breaking external fields
is statically turned as an input in the context of the lin-
ear response theory, then the gauge of the field is statically
dragged with the same amount as that in the input, which
provides δ〈ψ〉J,εα

= εαgα〈ψ〉J in a general representation, or
δ〈ψ〉J,εα

= iεαGα〈ψ〉J for superfluids in the Nambu space.
Since we impose the static and global transformation, we take
the static limit iωn = 0 as well as the zero-momentum limit
p → 0 in the linear response theory, which provides

G−1(0)Gα� = GαJ + [Gα, H ′]�, (14)

where we defined J = limp→0 J(p, iωn = 0), and the order
parameter in the Nambu space � = limp→0〈ψ(p, iωn = 0)〉J .
Since the U(1) symmetry is not explicitly broken in superflu-
ids, we take the limit J → 0. The WT identity in the presence
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of the quadratic symmetry breaking terms is now given by
Eq. (1).

The Goldstone-Salam-Weinberg equality [13] is one of
the WT identities for spontaneously broken symmetry. This
equality focuses on a system with the invariance under the
symmetry transformation with respect to ψ (x) in the source
current vanishing limit J → 0, where an explicit quadratic
symmetry breaking is not included, i.e., H ′ = 0. The WT
identity for symmetry breaking by terms of higher canon-
ical dimensions, such as quadratic symmetry breaking, is
discussed by Zinn-Justin [14]. Reference [14] shows WT
identities given by the derivative of the generating function
with respect to the sources Ji and h′

i j , where the notation of
the source for quadratic symmetry breaking is given by μi j

or Ki j (x) in Ref. [14], instead of h′
i j . Two forms of the WT

identity can be found in Ref. [14] for quadratic symmetry
breaking. One is the identity composed of two terms: the
single and second derivatives of the generating function Z
with respect to J , i.e., δZ/δJj (x) and δ2Z/δJi(x)δJk (x). The
other identity is also given by two terms: the single derivatives
of Z with respect to K and J , respectively, i.e., δZ/δJj (x) and
δZ/δKk j (x). These two WT identities for the quadratic sym-
metry breaking are not a relation between typical correlation
functions as noted in Ref. [14], because the second derivatives
are taken with respect to Ji(x) and Jk (x) at the same point,
where the derivative of Kk j (x) also provides the correlation
function at the same point, i.e., G(x, x). The relation in Eq. (1)
in the long-wavelength limit is one of the WT identities differ-
ent from those for the correlation at the same point discussed
in Ref. [14].

III. APPLICATION

A. Relations in scalar and binary BECs

We first discuss typical cases in the absence of the
quadratic symmetry breaking H ′. The theorem is given by
G−1(0)Gα� = 0, which is identical to the original version of
the Goldstone-Salam-Weinberg theorem [13], where Gα� is
an eigenvector of the zero eigenvalue. In the spontaneously
broken U(1) symmetry case in a scalar BEC, the HP theorem
is given by G−1(0)I� = 0, with I ≡ F (1) = σ3 and � =
(0,

∗
0 )T. Here, σi=1,2,3 are the Pauli matrices. The inverse

Green’s function is given by

G−1(k) = G−1
0 (k) − �(k), (15)

where �(k) is the (2×2) matrix self-energy, G−1
0 (k) ≡

iωnσ3 − (εp − μ) with the chemical potential μ, and εp ≡
p2/(2m) with a mass m. The HP theorem is thus given by the
well known form

�11(22)(0) − �12(21)(0) = μ, (16)

where �11(22)(0) and �12(21)(0) are the diagonal and off-
diagonal self-energies, respectively. Here, we have assumed
the order parameter to be real 0 = ∗

0. This is consistent
with the proof of the HP theorem for the scalar BEC, given
by Hohenberg and Martin [15,16].

For the binary BEC with components “a” and “b”,
the HP theorem is given by G−1(0)Ia(b)� = 0, where the
order parameter in the Nambu space is given by � =

(a,b,
∗
a ,

∗
b )T and Ia(b) ≡ F (σa(b)) with σa = diag(1, 0)

and σb = diag(0, 1). The matrices σa and σb are related to
the gauge transformation of the order parameters a and b,
respectively. By introducing the chemical potential μa(b) and
the (4×4) matrix self-energy, the HP theorem can be given by

�
11(22)
i,i (0) − �

12(21)
i,i (0) = μi, (17)

�
11(22)
i, j (0) − �

12(21)
i, j (0) = 0, (18)

for (i, j) = (a, b) and (b, a), where we have taken the order
parameters to be the real number. For the representation of
the self energy �

αβ
i, j , two subscripts i and j represent the

component in the binary system, and superscripts α and β

distinguish diagonal and off-diagonal self-energies.
Related to the scalar BEC spontaneously broken U(1)

symmetry, a collective mode of the Cooper-pair fluctuation
is also gapless in superfluid Fermi gases [17,18]. The iden-
tity for the BCS-BEC crossover can be reduced to the gap
equation within the Gaussian pair fluctuation approximation.
The physics behind this is also the extended version of the
HP theorem to the superfluid Fermi gas. The Hamiltonian for
the BCS-BEC crossover with a contact interaction U (>0) is
given by

H =
∫

dr
∑

σ=↑,↓
�†

σ (r)

(
− h̄2∇2

2m
− μ

)
�σ (r)

−U
∫

dr�†
↑(r)�†

↓(r)�↓(r)�↑(r), (19)

where �σ is the Grassmann variable with the pseudospin
σ =↑,↓ [17,18]. Integrating out these fermionic fields after
introducing the Hubbard-Stratonovich transformation with an
auxiliary field �(x), we obtain the effective action Seff =
S0 + SGF(φ, φ∗) after employing the stationary phase approx-
imation [17,18], where S0 is the stationary value of the action
with the stationary solution � ≡ (�0,�

∗
0 )T. The action with

the Gaussian pair fluctuation is given by

SGF(φ, φ∗) = −1

2

∑
k

φ†(k)�−1(k)φ(k), (20)

where φ(k) ≡ (�(k),�∗(k))T − � is fluctuations of the order
parameter, and �−1(k) the vertex function given by

�−1(k) =
(

χ−+(k) χ−−(k)
χ++(k) χ+−(k)

)
, (21)

with the correlation function

χ s,s′
(k) ≡ − 1

U
δs,−s′ − 1

β

∑
k′

Tr[σsG(k′ + k)σs′G(k′)], (22)

for s, s′ = ± [17]. Here, we have taken the system volume to
be unity, and G(k) ≡ iνn − (εp − μ)σ3 + �0σ1 is the mean-
field Green’s function, where iνn is the fermionic Matsubara
frequency, and σ± ≡ (σ1 ± σ2)/2. The HP theorem is given
by �−1(0)I� = 0 [19], which provides

χ ss(0) − χ s,−s(0) =0, (23)

where we have assumed the order parameter to be real
�0 = �∗

0. This identity (23) is reduced to the gap equation
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0 = U −1 − ∑
p tanh(βEp/2)/(2Ep) in the Gaussian pair fluc-

tuation approximation, where Ep ≡
√

(εp − μ)2 + �2
0. Since

relations χ s,s′
(0)=χ−s,−s′

(0) hold, we obtain det �−1(0)=0,
which is consistent with the fact that I� is an eigenvector of
the zero eigenvalue. The excitation of the Cooper-pair fluctu-
ation is thus gapless as long as the approximation satisfies the
gap equation in the Gaussian pair fluctuation approximation.

B. Relations in spinor BECs in Bogoliubov approximation

We discuss the relation between the identity (1) and the
Bogoliubov approximation in the spin- f spinor BEC. In
the Bogoliubov approximation, the action is reduced to the
quadratic form given by SB = S0 − ∑

k φ†(k)G−1
B (k)φ(k)/2,

where S0 is the stationary value of the action. Here, the
fluctuation in the Nambu space φ(k) is given by φ(k) ≡
(φ f (k), . . . , φ− f (k), φ∗

f (−k), . . . , φ∗
− f (−k))T, the dimension

of which is 4 f + 2, and G−1
B (k) = iωnσ3 ⊗ I2 f +1 − HB

p is the
Green’s function in the Bogoliubov approximation, where
I2 f +1 is the identity matrix of dimension 2 f + 1, and the
Hamiltonian has the form [9]

HB
p =

(
H (0)

p + H (1) H (2)

[H (2)]∗ [H (0)
−p + H (1)]∗

)
. (24)

The dimension of H (0)
p as well as H (1,2) is 2 f + 1. The identity

(1) in the Bogoliubov approximation is reduced to the form

G−1
B (0)Gα� = [Gα, H ′]�. (25)

In the spin- f spinor BEC, a generator Gα corresponds to
I = F (I2 f +1) as well as Fi = F (fi ) for i = x, y, z, where fx,y,z
are spin matrices, whose dimension of the representation is
2 f + 1.

We apply the identity (25) to spin 1 and 2 spinor BECs in
the Bogoliubov approximation. The Hamiltonian H (0)

p is given
by

H (0)
p ≡ (εp − μ)I2 f +1 + h′, (26)

where h′ ≡ −pfz + qf2z represents the linear and quadratic
Zeeman effects that break the SO(3) symmetry. Here, p and q

are the linear and quadratic Zeeman energies, respectively. In
the spin-1 BEC, we have

H (1) ≡ n

[
c0(ρ + I2 f +1) + c1

∑
i=x,y,z

(fiρfi + fifi )

]
, (27)

H (2) ≡ n

[
c0ρ̃ + c1

∑
i=x,y,z

fiρ̃f
T
i

]
, (28)

where n is the total density, fi ≡ ζ †fiζ , ρ ≡ ζ ζ †, ρ̃ ≡ ζ ζ T

with ζ = ( f , . . . , − f )T/
√

n, and c0,1 are coupling con-
stants of the spin-independent and spin-dependent interaction,
respectively [9]. In the spin-2 BEC, we have

H (1) ≡n

[
c0(ρ + I2 f +1) + c1

∑
i=x,y,z

(fiρfi + fifi ) + 2c2P0ρP0

]
,

(29)

H (2) ≡ n

[
c0ρ̃ + c1

∑
i=x,y,z

fiρ̃f
T
i + c2a00P0

]
, (30)

where c2 is the coupling constant of the spin-singlet pair
interaction, a00 ≡ ζ TP0ζ the spin-singlet pair amplitude per
particle, and P0 the Clebsch-Gordan coefficient matrix,
given by (P0)m1,m2 = 〈0, 0| f , m1; f , m2〉 for f = 2 [9]. Taking
appropriate order parameters shown in Ref. [9], we can ana-
lytically confirm the consistency between the HP theorem (25)
and the Bogoliubov theory in the static and low-momentum
limits in the ferromagnetic, antiferromagnetic, polar, as well
as broken-axisymmetry phases in the spin-1 BEC. In the spin-
2 BEC with appropriate order parameters [9], we can also
analytically confirm that the identity (25) exactly holds in
the ferromagnetic F2 and F1 phases, the uniaxial and biaxial
nematic (UN and BN) phases, the cyclic and C2,3,4 phases, as
well as the D′

2 phase.
In the UN and BN phases in the absence of a magnetic

field, quasi-Nambu-Goldstone modes emerge in the Bogoli-
ubov approximation, for the mean-field ground state energy
has the hidden U(1)×SO(5) symmetry [20]. The identity (25)
also holds for those quasi-Nambu-Goldstone modes, given
in the form G−1

B (0)F13,35� = [F13,35, H ′]� with F13,35 ≡
F (F13,35), where F13,35 is generators of the SO(5) symmetry
[20].

C. HP theorem in spin-1 BECs

The spin-1 BEC has the following (6×6)-matrix Green’s
function:

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11
+1,+1 G11

+1,0 G11
+1,−1 G12

+1,+1 G12
+1,0 G12

+1,−1

G11
0,+1 G11

0,0 G11
0,−1 G12

0,+1 G12
0,0 G12

0,−1

G11
−1,+1 G11

−1,0 G11
−1,−1 G12

−1,+1 G12
−1,0 G12

−1,−1

G21
+1,+1 G21

+1,0 G21
+1,−1 G22

+1,+1 G22
+1,0 G22

+1,−1

G21
0,+1 G21

0,0 G21
0,−1 G22

0,+1 G22
0,0 G22

0,−1

G21
−1,+1 G21

−1,0 G21
−1,−1 G22

−1,+1 G22
−1,0 G22

−1,−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

where the self-energy matrix � has the same form. Since the two-body interaction in the spinor BEC conserves the total spin of
two interacting atoms, the matrices G and � become sparse in a particular phase where the order parameters are given [21]. In
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the following, we list the HP theorem in the spin-1 BEC. The order parameter has the form

 = √
nζ = √

n(ζ+1, ζ0, ζ−1)T, (32)

which gives � = (,∗)T in the Nambu space. The spin-1 matrices are given by

fx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, fy = i√

2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠, fz =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (33)

The HP theorem has been discussed in the spin-1 ferromagnetic and polar BECs [21], which is based not on the symmetry and
the WT identity (1), but on the the gapless condition of the poles in the Green’s function obtained from the Dyson’s equation.

1. Spin-1 ferromagnetic phase

The order parameter in the ferromagnetic phase is given by

ζ = (1, 0, 0)T. (34)

The Green’s function in this phase has the form [21]

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

G11
+1,+1 0 0 G12

+1,+1 0 0
0 G11

0,0 0 0 0 0
0 0 G11

−1,−1 0 0 0
G21

+1,+1 0 0 G22
+1,+1 0 0

0 0 0 0 G22
0,0 0

0 0 0 0 0 G22
−1,−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(35)

where the self-energy matrix � has the same components
[21]. By applying the HP theorem G−1(0)Gα� = [Gα, H ′]�
with Gα = I = F (I2 f +1) as well as Gα = Fi = F (fi ) for i =
x, y, z, we have the HP theorem given by

�
11(22)
+1,+1(0) − �

12(21)
+1,+1(0) − μ − p + q =0, (36)

�
11(22)
0,0 (0) − μ − p + q =0. (37)

By solving the Dyson equation G−1 = G−1
0 − �, where

G−1
0 ≡ iωnσ3 ⊗ I2 f +1 − I2 ⊗ H (0)

p , with (36) and (37), we

find that [G11(12)
+1,+1(0)]−1 = 0, where the correlation function

G11(12)
+1,+1 provides a gapless excitation regardless of the pres-

ence of a magnetic field. We have here used the compact
notation Gαβ

i, j (0) ≡ limp→0 Gαβ
i, j (p, iωn = 0). The correlation

functions G11
m,m for m = 0,−1 read as

G11
0,0(0) = − 1

p − q
, (38)

G11
−1,−1(0) = − 1

�11
−1,−1 − μ + p + q

. (39)

The correlation function G11
0,0 provides the gapful excitation

with the energy gap p − q in the presence of the magnetic field
with the condition p 	= q, where the energy gap does not in-
clude any many-body corrections. This mode turns gapless at
p = q, which includes the case in the absence of the magnetic
field p = q = 0. The correlation function G11

−1,−1 generally
shows the gapful excitation.

2. Spin-1 polar phase

The order parameter in the polar phase is given by

ζ = (0, 1, 0)T. (40)

The Green’s function in this phase has the form [21]

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

G11
+1,+1 0 0 0 0 G12

+1,−1
0 G11

0,0 0 0 G12
0,0 0

0 0 G11
−1,−1 G12

−1,+1 0 0
0 0 G21

+1,−1 G22
+1,+1 0 0

0 G21
0,0 0 0 G22

0,0 0
G21

−1,+1 0 0 0 0 G22
−1,−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(41)

where the self-energy matrix � has the same components
[21]. By applying the HP theorem G−1(0)Gα� = [Gα, H ′]�
with Gα = I = F (I2 f +1) as well as Gα = Fi = F (fi ) for i =
x, y, z, we have the HP theorem given by

�
11(22)
0,0 (0) − �

12(21)
0,0 (0) − μ =0, (42)

�
11(22)
±1,±1(0) − �

12(21)
±1,∓1(0) − μ =0. (43)

Using these results, we obtain the following Green’s func-
tions in the static and long-wavelength limits: The correlation
function G11,12

0,0 provides the gapless excitation; other Green’s
functions in the static and long-wavelength limit read as

G11
±1,±1(0) = − �22

∓1,∓1(0) − μ ± p + q

D±1
, (44)

G12
±1,∓1(0) = + �11

±1,±1(0) − μ

D±1
, (45)

where for m = ±1,

Dm = [
�11

m,m(0) − μ
][

�22
−m,−m(0) − μ

]
−[

�11
m,m(0) − μ − mp + m2q

]
× [

�22
−m,−m(0) − μ + mp + m2q

]
. (46)

The correlation functions G11
±1,±1(0) and G12

±1,∓1(0) provide
the gapful (gapless) excitation in the presence (absence) of
the linear and quadratic Zeeman effect.

3. Spin-1 antiferromagnetic phase

The antiferromagnetic phase is realized in the case p = 0,
where the order parameter is given by

ζ = (1/
√

2, 0, 1/
√

2)T. (47)
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The Green’s function in this phase has the form

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11
+1,+1 0 G11

+1,−1 G12
+1,+1 0 G12

+1,−1

0 G11
0,0 0 0 G12

0,0 0

G11
−1,+1 0 G11

−1,−1 G12
−1,+1 0 G12

−1,−1

G21
+1,+1 0 G21

+1,−1 G22
+1,+1 0 G22

+1,−1

0 G21
0,0 0 0 G22

0,0 0

G21
−1,+1 0 G21

−1,−1 G22
−1,+1 0 G22

−1,−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(48)

where the self-energy matrix � has the same components.
By applying the HP theorem G−1(0)Gα� = [Gα, H ′]� with
Gα = I = F (I2 f +1) as well as Gα = Fi = F (fi ) for i =
x, y, z, we have the HP theorem given by

�
11(22)
±1,±1(0) − �

12(21)
±1,±1(0) − μ + q = 0, (49)

�
11(22)
±1,∓1(0) − �

12(21)
±1,∓1(0) = 0, (50)

�
11(22)
0,0 (0) − �

12(21)
0,0 (0) − μ + q = 0. (51)

Using these results, we obtain the following Green’s functions
in the static and long-wavelength limits: The correlation func-
tions G11(12)

±1,±1 and G11(12)
±1,∓1 provide the gapless excitations; other

Green’s functions in the static and long-wavelength limit read
as

G11
0,0(0) = + �22

0,0(0) − μ

D0,0
, (52)

G12
0,0(0) = − �11

0,0(0) − μ + q

D0,0
, (53)

where

Dm,m′ = [
�11

m,m(0) − μ − p + q
][

�22
−m′,−m′ (0) − μ − p + q

]
− [

�11
m,m(0) − μ − mp + m2q

]
× [

�22
−m′,−m′ (0) − μ + m′ p + m′2q

]
. (54)

The correlation functions G11(12)
0,0 provide the gapful (gapless)

excitation in the presence (absence) of the magnetic field.

D. HP theorem in spin-2 BECs

The spin-2 BEC has the following (10×10)-matrix Green’s
function:

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11
+2,+2 G11

+2,+1 G11
+2,0 G11

+2,−1 G11
+2,−2 G12

+2,+2 G12
+2,+1 G12

+2,0 G12
+2,−1 G12

+2,−2

G11
+1,+2 G11

+1,+1 G11
+1,0 G11

+1,−1 G11
+1,−2 G12

+1,+2 G12
+1,+1 G12

+1,0 G12
+1,−1 G12

+1,−2

G11
0,+2 G11

0,+1 G11
0,0 G11

0,−1 G11
0,−2 G12

0,+2 G12
0,+1 G12

0,0 G12
0,−1 G12

0,−2

G11
−1,+2 G11

−1,+1 G11
−1,0 G11

−1,−1 G11
−1,−2 G12

−1,+2 G12
−1,+1 G12

−1,0 G12
−1,−1 G12

−1,−2

G11
−2,+2 G11

−2,+1 G11
−2,0 G11

−2,−1 G11
−2,−2 G12

−2,+2 G12
−2,+1 G12

−2,0 G12
−2,−1 G12

−2,−2

G21
+2,+2 G21

+2,+1 G21
+2,0 G21

+2,−1 G21
+2,−2 G22

+2,+2 G22
+2,+1 G22

+2,0 G22
+2,−1 G22

+2,−2

G21
+1,+2 G21

+1,+1 G21
+1,0 G21

+1,−1 G21
+1,−2 G22

+1,+2 G22
+1,+1 G22

+1,0 G22
+1,−1 G22

+1,−2

G21
0,+2 G21

0,+1 G21
0,0 G21

0,−1 G21
0,−2 G22

0,+2 G22
0,+1 G22

0,0 G22
0,−1 G22

0,−2

G21
−1,+2 G21

−1,+1 G21
−1,0 G21

−1,−1 G21
−1,−2 G22

−1,+2 G22
−1,+1 G22

−1,0 G22
−1,−1 G22

−1,−2

G21
−2,+2 G21

−2,+1 G21
−2,0 G21

−2,−1 G21
−2,−2 G22

−2,+2 G22
−2,+1 G22

−2,0 G22
−2,−1 G22

−2,−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (55)

where the self-energy matrix � has the same form. Since the two-body interaction conserves the total spin of two interacting
atoms, the matrices G and � are found to be sparse in a particular phase. In the following, we list the HP theorem in the spin-2
BEC. The order parameter has the form

 = √
nζ = √

n(ζ+2, ζ+1, ζ0, ζ−1, ζ−2)T, (56)

which gives � = (,∗)T in the Nambu space. The spin-2 matrices are given by

fx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

1 0
√

3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, fy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0 0 0

i 0 −i
√

3
2 0 0

0 i
√

3
2 0 −i

√
3
2 0

0 0 i
√

3
2 0 −i

0 0 0 i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, fz =

⎛
⎜⎜⎜⎝

2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

⎞
⎟⎟⎟⎠.

1. Spin-2 ferromagnetic F2 phase

The order parameter in the ferromagnetic F2 phase is given by

ζ = (1, 0, 0, 0, 0)T. (57)
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The Green’s function in this phase has the form [22]

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11
+2,+2 0 0 0 0 G12

+2,+2 0 0 0 0
0 G11

+1,+1 0 0 0 0 0 0 0 0
0 0 G11

0,0 0 0 0 0 0 0 0
0 0 0 G11

−1,−1 0 0 0 0 0 0
0 0 0 0 G11

−2,−2 0 0 0 0 0
G21

+2,+2 0 0 0 0 G22
+2,+2 0 0 0 0

0 0 0 0 0 0 G22
+1,+1 0 0 0

0 0 0 0 0 0 0 G22
0,0 0 0

0 0 0 0 0 0 0 0 G22
−1,−1 0

0 0 0 0 0 0 0 0 0 G22
−2,−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (58)

where the self-energy matrix � has the same components [22]. By applying the HP theorem G−1(0)Gα� = [Gα, H ′]� with
Gα = I = F (I2 f +1) as well as Gα = Fi = F (fi ) for i = x, y, z, we have the HP theorem given by

�
11(22)
+2,+2(0) − �

12(21)
+2,+2(0) − μ − 2p + 4q = 0, (59)

�
11(22)
+1,+1(0) − μ − 2p + 4q = 0. (60)

Using these results, we obtain the following Green’s functions in the static and long-wavelength limits: The correlation
functions G11(12)

+2,+2 provide the gapless excitation; other Green’s functions read as

G11
+1,+1(0) = − 1

p − 3q
, (61)

G11
m,m(0) = − 1

�11
m,m(0) − μ − mp + m2q

, (m = 0,−1,−2). (62)

The correlation function G11
+1,+1 provides the gapful excitation with the energy gap p − 3q in the presence of the magnetic field

with the condition p 	= 3q, where the energy gap does not include any many-body corrections. This mode turns gapless in p = 3q,
which includes the case in the absence of the magnetic field p = q = 0. The correlation functions G11

m,m for m = 0,−1,−2
generally show the gapful excitation.

2. Spin-2 ferromagnetic F1 phase

The order parameter in the ferromagnetic F1 phase is given by

ζ = (0, 1, 0, 0, 0)T. (63)

The Green’s function in this phase has the form

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11
+2,+2 0 0 0 0 0 0 G12

+2,0 0 0

0 G11
+1,+1 0 0 0 0 G12

+1,+1 0 0 0

0 0 G11
0,0 0 0 G12

0,+2 0 0 0 0

0 0 0 G11
−1,−1 0 0 0 0 0 0

0 0 0 0 G11
−2,−2 0 0 0 0 0

0 0 G21
+2,0 0 0 G22

+2,+2 0 0 0 0

0 G21
+1,+1 0 0 0 0 G22

+1,+1 0 0 0

G21
0,+2 0 0 0 0 0 0 G22

0,0 0 0

0 0 0 0 0 0 0 0 G22
−1,−1 0

0 0 0 0 0 0 0 0 0 G22
−2,−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (64)

where the self-energy matrix � has the same components. By applying the HP theorem G−1(0)Gα� = [Gα, H ′]� with Gα =
I = F (I2 f +1) as well as Gα = Fi = F (fi ) for i = x, y, z, we have the HP theorem given by

�
11(22)
+1,+1(0) − �

12(21)
+1,+1(0) − μ − p + q = 0, (65)

�
11(22)
+2,+2(0) −

√
3

2
�

12(21)
+2,0 (0) − μ − p + q = 0, (66)

�
11(22)
0,0 (0) −

√
2

3
�

12(21)
0,+2 (0) − μ − p + q = 0. (67)
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Using these results, we obtain the following Green’s functions in the static and long-wavelength limits: The correlation functions
G11(12)

+1,+1 provide the gapless excitations; other Green’s functions in the static and long-wavelength limit read as

G11
+2,+2(0) = + �22

0,0(0) − μ

D+2,0
, (68)

G11
0,0(0) = + �22

+2,+2(0) − μ − 2p + 4q

D0,−2
, (69)

G12
+2,0(0) = −

√
2/3[�11

+2,+2(0) − μ − p + q]

D+2,0
, (70)

G12
0,+2(0) = −

√
3/2[�11

0,0(0) − μ − p + q]

D0,−2
, (71)

G11
m,m(0) = − 1

�11
m,m(0) − μ − mp + m2q

, (m = −1,−2), (72)

where Dm,m′ is given by Eq. (54). The correlation functions G11
m,m for m = +2, 0 and G12

m,m′ for (m, m′) = (+2, 0), (0,+2) provide
the gapful (gapless) excitation in the presence (absence) of the magnetic field. The correlation functions G11

m,m(0) for m = −1,−2
generally show gapful excitations.

3. Spin-2 uniaxial nematic phase

The order parameter in the UN phase is given by

ζ = (0, 0, 1, 0, 0)T. (73)

The Green’s function in this phase has the form [22]

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11
+2,+2 0 0 0 0 0 0 0 0 G12

+2,−2

0 G11
+1,+1 0 0 0 0 0 0 G12

+1,−1 0

0 0 G11
0,0 0 0 0 0 G12

0,0 0 0

0 0 0 G11
−1,−1 0 0 G12

−1,+1 0 0 0

0 0 0 0 G11
−2,−2 G12

−2,+2 0 0 0 0

0 0 0 0 G21
+2,−2 G22

+2,+2 0 0 0 0

0 0 0 G21
+1,−1 0 0 G22

+1,+1 0 0 0

0 0 G21
0,0 0 0 0 0 G22

0,0 0 0

0 G21
−1,+1 0 9 0 0 0 0 G22

−1,−1 0

G21
−2,+2 0 0 0 0 0 0 0 0 G22

−2,−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (74)

where the self-energy matrix � has the same components [22]. By applying the HP theorem G−1(0)Gα� = [Gα, H ′]� with
Gα = I = F (I2 f +1) as well as Gα = Fi = F (fi ) for i = x, y, z, we have the HP theorem given by

h̄�
11(22)
0,0 (0) − h̄�

12(21)
0,0 (0) − μ = 0, (75)

h̄�
11(22)
±1,±1(0) − h̄�

12(21)
±1,∓1(0) − μ = 0. (76)

Using these results, we obtain the following Green’s functions in the static and long-wavelength limits: The correlation
functions G11(12)

0,0 provide the gapless excitation; other Green’s functions in the static and long-wavelength limit read as

G11
m,m(0) = + �22

−m,−m(0) − μ + mp + m2q

Dm
, (m = ±1), (77)

G12
m,−m(0) = − �11

m,m(0) − μ

Dm
, (m = ±1), (78)

G11
m,m(0) = + �22

−m,−m(0) − μ + mp + m2q

D′
m

, (m = ±2), (79)

G12
m,−m(0) = − �12

m,−m(0)

D′
m

, (m = ±2), (80)

where Dm is given in Eq. (46), and

D′
m ≡ �12

m,−m(0)�21
−m,m(0) − [�11

m,m(0) − μ − mp + m2q][�22
−m,−m(0) − μ + mp + m2q]. (81)
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The correlation functions G11
±1,±1 and G12

±1,∓1 provide the gapful (gapless) excitation in the presence (absence) of the magnetic
field. The correlation functions G11

±2,±2(0) and G12
±2,∓2 generally show gapful excitations.

4. Spin-2 biaxial nematic phase

The biaxial nematic phase is realized in the case p = 0, where the order parameter is given by

ζ = (1/
√

2, 0, 0, 0, 1/
√

2)T. (82)

The Green’s function in this phase has the form

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11
+2,+2 0 0 0 G11

+2,−2 G12
+2,+2 0 0 0 G12

+2,−2

0 G11
+1,+1 0 0 0 0 0 0 G12

+1,−1 0

0 0 G11
0,0 0 0 0 0 G12

0,0 0 0

0 0 0 G11
−1,−1 0 0 G12

−1,+1 0 0 0

G11
−2,+2 0 0 0 G11

−2,−2 G12
−2,+2 0 0 0 G12

−2,−2

G21
+2,+2 0 0 0 G21

+2,−2 G22
+2,+2 0 0 0 G22

+2,−2

0 0 0 G21
+1,−1 0 0 G22

+1,+1 0 0 0

0 0 G21
0,0 0 0 0 0 G22

0,0 0 0

0 G21
−1,+1 0 0 0 0 0 0 G22

−1,−1 0

G21
−2,+2 0 0 0 G21

−2,−2 G22
−2,+2 0 0 0 G22

−2,−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (83)

where the self-energy matrix � has the same components. By applying the HP theorem G−1(0)Gα� = [Gα, H ′]� with Gα =
I = F (I2 f +1) as well as Gα = Fi = F (fi ) for i = x, y, z, we have the HP theorem given by

h̄�
11(22)
±2,±2(0) − h̄�

12(21)
±2,±2(0) − μ + 4q = 0, (84)

h̄�
11(22)
±2,∓2(0) − h̄�

12(21)
±2,∓2(0) = 0, (85)

h̄�
11(22)
±1,±1(0) − h̄�

12(21)
±1,∓1(0) − μ + 4q = 0. (86)

Using these results, we obtain the following Green’s functions in the static and long-wavelength limits: The correlation
functions G11(12)

±2,±2 and G11(12)
±2,∓2 provide the gapless excitation; other Green’s functions in the static and long-wavelength limit read

as

G11
0,0(0) = + �22

0,0(0) − μ

D′
0

, (87)

G12
0,0(0) = − �12

0,0(0) − μ

D′
0

, (88)

G11
±1,±1(0) = + �22

∓1,∓1(0) − μ + q

D′′
±1

, (89)

G12
±1,∓1(0) = − �11

±1,±1(0) − μ + 4q

D′′
±1

, (90)

where D′
m is given in Eq. (81) and

D′′
m ≡ [

�11
m,m(0) − μ + 4q

][
�22

−m,−m(0) − μ + 4q
] − [

�11
m,m(0) − μ + m2q

][
�22

−m,−m(0) − μ + m2q
]
. (91)

The correlation functions G11
±1,±1 and G12

±1,∓1 provide the gapful (gapless) excitation in the presence (absence) of the magnetic
field. The correlation functions G11

±2,±2(0) and G12
±2,∓2 generally show gapful excitations.

5. Spin-2 cyclic phase

The cyclic phase is realized in the case p = q = 0, where the order parameter is given by

ζ = (1/2, 0, 1/
√

2, 0,−1/2)T. (92)
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The Green’s function in this phase has the form

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11
+2,+2 0 G11

+2,0 0 G11
+2,−2 G12

+2,+2 0 G12
+2,0 0 G12

+2,−2

0 G11
+1,+1 0 G11

+1,−1 0 0 G12
+1,+1 0 G12

+1,−1 0

G11
0,+2 0 G11

0,0 0 G11
0,−2 G12

0,+2 0 G12
0,0 0 G12

0,−2

0 G11
−1,+1 0 G11

−1,−1 0 0 G12
−1,+1 0 G12

−1,−1 0

G11
−2,+2 0 G11

−2,0 0 G11
−2,−2 G12

−2,+2 0 G12
−2,0 0 G12

−2,−2

G21
+2,+2 0 G21

+2,0 0 G21
+2,−2 G22

+2,+2 0 G22
+2,0 0 G22

+2,−2

0 G21
+1,+1 0 G21

+1,−1 0 0 G22
+1,+1 0 G22

+1,−1 0

G21
0,+2 0 G21

0,0 0 G21
0,−2 G22

0,+2 0 G22
0,0 0 G22

0,−2

0 G21
−1,+1 0 G21

−1,−1 0 0 G22
−1,+1 0 G22

−1,−1 0

G21
−2,+2 0 G21

−2,0 0 G21
−2,−2 G22

−2,+2 0 G22
−2,0 0 G22

−2,−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (93)

where the self-energy matrix � has the same components. By applying the HP theorem G−1(0)Gα� = [Gα, H ′]� with Gα =
I = F (I2 f +1) as well as Gα = Fi = F (fi ) for i = x, y, z, we have the HP theorem given by

�
11(22)
±2,±2(0) − �

12(21)
±2,±2(0) ± 1√

2

[
�

11(22)
±2,0 (0) − �

12(21)
±2,0 (0)

] − μ = 0, (94)

√
2[�11(22)

0,±2 (0) − �
12(21)
0,±2 (0)] ± [

�
11(22)
0,0 (0) − �

12(21)
0,0 (0)

] ∓ μ = 0, (95)

�
11(22)
±2,∓2(0) − �

12(21)
±2,∓2(0) ∓ 1√

2

[
�

11(22)
±2,0 (0) − �

12(21)
±2,0 (0)

] = 0, (96)

�
11(22)
±1,±1(0) ∓ 1√

3
�

12(21)
±1,±1(0) ∓ 1√

3
�

11(22)
±1,∓1(0) − �

12(21)
±1,∓1(0) − μ = 0, (97)

�
11(22)
±1,±1(0) ∓

√
3�

12(21)
±1,±1(0) ±

√
3�

11(22)
±1,∓1(0) + �

12(21)
±1,∓1(0) − μ = 0. (98)

Using this result, we find that all the components of the Green’s functions diverge in the static and long-wavelength limits, which
do not provide any gapful excitations.

E. Gedanken experiment

We discuss a gedanken experiment for studying the WT
identity in spinor BECs, by taking an example of the fer-
romagnetic phase in the spin-1 BEC (Fig. 1). We prepare
the ferromagnetic spin-1 BEC with  = (+1,0,−1)T =
(
√

n, 0, 0)T by imposing the magnetic field, the axis of which
is taken as the z axis. We first measure the single-particle
correlation function G11

0,0 for the mF = 0 component by using
the spectroscopy. By using the same initial setup, we take
another operation: We tilt the magnetic field around the x axis
very slowly with a small angle ε with respect to the z axis.

magnetic field

BEC

tilt magnetic field

measure 
correlation function

Stern–Gerlach
experiment

B

mF = +1

F = 1

B
B

δΦ = xΦ

G11
0,0

|δΦ0|2

mF

+1

0
−1

FIG. 1. Idea of experiment to test the Ward-Takahashi identity in
the spinor BEC.

In this case, the small condensate wave function with mF = 0
emerges in the representation of the original quantization axis
(z axis), which is given in the form δ = iεSx, i.e.,

δ =
⎛
⎝δ+1

δ0

δ−1

⎞
⎠ = iε

√
n

2

⎛
⎝0

1
0

⎞
⎠. (99)

We then perform the Stern-Gerlach experiment for measuring
the condensate density, where the direction of the magnetic
field is suddenly switched to the z axis, and we measure
the condensate density with mF = 0, i.e., δn0 = |δ0|2, with
projecting onto the original quantization axis. Based on the
WT identity (1), we have a relation

δ0 = iε

[
−√

n
p − q√

2
G11

0,0(0)

]
. (100)

We thus have the relation between the condensate density δn0

and the correlation function G11
0,0, given by

δn0 = ε2 n(q − p)

2
G11

0,0(0), (101)

where we used Eqs. (99) and (100). The same result can be
derived by using (99) and (38) with the forms δn0 = |δ0|2 =
ε2n/2 and the identity 1 = (q − p)G11

0,0(0). The condensate
density δn0 and the correlation function G11

0,0 measured in the
experiment should satisfy the relation (101). The idea of this
experiment well reflects the spirit of the proof of the identity
in this paper.
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The correlation function G11
0,0(p, 0) evaluated from the

experimental data should show the asymptotic behavior for
reaching G11

0,0(0) = 1/(q − p) in the long-wavelength limit.
Recently, the extraction of the quantum effective action from
experimental data has been studied in ultracold atoms [11,12],
where in principle the correlation function could be evaluated
by using this technique. Our results, which provide one of the
WT identities, will be helpful to test the quantum effective
theory developed from experimental data.

IV. CONCLUSIONS

In summary, we have clarified the Hugenholtz-Pines (HP)
theorem for multicomponent Bose-Einstein condensates

(BECs). After deriving an explicit form of the Ward-
Takahashi (WT) identity in the presence of the quadratic
symmetry breaking, we have deductively organized the HP
theorem in BECs with internal degrees of freedom, such as a
binary BEC and the spinor BECs with broken U(1)×SO(3)
symmetry. We discussed an idea of an experiment for study-
ing the WT identity in spinor BECs using the Stern-Gerlach
experiment.
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