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Breathing mode in two-dimensional binary self-bound Bose-gas droplets
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In this work, we study the stationary structures and the breathing mode behavior of a two-dimensional self-
bound binary Bose droplet. We employ an analytical approach using a variational ansatz with a super-Gaussian
trial order parameter and compare it with the numerical solutions of the extended Gross-Pitaevskii equation.
We find that the super-Gaussian is superior to the often used Gaussian ansatz in describing the stationary and
dynamical properties of the system. For sufficiently large nonrotating droplets the breathing mode is energetically
favorable compared to the self-evaporating process. However, for small self-bound systems our results differ
based on the ansatz. Inducing angular momentum by imprinting multiply quantized vortices at the droplet center,
this preference for the breathing mode persists independent of the norm.
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I. INTRODUCTION

For bound systems to form without external confine-
ment, a balance between repulsive and attractive forces is
required. This principle holds for systems ranging from
water droplets to atomic nuclei and metallic clusters. For
ultracold bosonic atoms the possibility to form self-bound
droplets was proposed for binary gases with suitably tuned
contact interactions [1,2], where higher-order terms in the
total energy density functional may become sizable. In fact,
such Bose droplets were first discovered for dipolar bosonic
systems [3–8], where the effective interatomic interactions
may be adjusted such that self-bound states become stabi-
lized by quantum fluctuations [6,9–14]. The experimental
discovery of droplets in dipolar gases was soon followed by
their realization in binary Bose gases [15,16], implementing
Petrov’s original proposal [2]. The quantum fluctuation con-
tributions to the total energy density functional are effectively
represented by the Lee-Huang-Yang (LHY) terms [17], ex-
tending the usual mean field (MF) Gross-Pitaevskii equation
(see [18,19] for a review). Usually, the LHY terms can be
neglected as their contribution to the total interaction energy is
negligible. However, in the case of a binary condensate where
the MF interactions between components are tuned such that
they become very small, the LHY contributions may domi-
nate the system’s properties [2]. In a binary three-dimensional
condensate the LHY terms are positive definite [17] and thus
purely repulsive. A three-dimensional binary condensate on
the verge of collapse in the MF description can thus be sta-
bilized via the repulsive LHY terms. In lower dimensions,
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however, the corrections can take on an attractive or repulsive
form [20–22].

The proposal and realization of self-bound Bose gas
droplets sparked recent research efforts to set focus on dif-
ferent aspects such as vorticity embedded in dipolar [23,24]
or contact-interacting systems [25–29], supersolid behav-
ior in dipolar and spin-orbit coupled systems [30–38], or
collective excitations [39–43]. For trapped gases, the ele-
mentary excitation modes have been of fundamental interest
ever since the celebrated experimental realizations of atomic
Bose-Einstein condensates [44–46]: Examples range from a
hydrodynamic description [47] to the Bogoliubov–de Gennes
equations [18,19,48] and to solving the Euler-Lagrange equa-
tions [49–52]. Breathing mode oscillations were discussed in
terms of the underlying symmetry properties of a Bose gas
in two dimensions [53], and semiclassical methods have been
probed to describe low-lying excitations in the limit of large
boson numbers [54]. Collective excitations of BECs carrying
vortices or vortex lattices have also been studied extensively;
to mention only a few examples from the vast literature,
see Refs [53–62]. More recently and in the context of Bose
droplets, in Ref. [63] a variational approach for solving the
Euler-Lagrange equations was applied to calculate the breath-
ing mode in a harmonically confined three-dimensional Bose
gas where the MF interactions are completely canceled, such
that the LHY interaction is effectively the only interaction
acting on the gas, creating a so-called LHY fluid.

Excitations compete with the self-evaporative process, nat-
urally occurring in self-bound Bose gases due to a nonpositive
chemical potential μ � 0, and are generally only observ-
able if the associated excitation energy is lower than |μ|.
However, this requirement can stay unfulfilled for self-bound
systems [2] depending on the system’s dimensionality, if the
excitation energy exceeds |μ|; see Refs. [40,42].

Recent works on collective excitations in self-bound
systems have mainly focused on one-dimensional
droplets [20,39] or on the crossover between the
soliton and droplet regime [39]. Besides solving the
Bogoliubov–de Gennes equations in one [42] and in
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three dimensions [2,43], a Gaussian trial order parameter
is often utilized to describe the properties of the droplet
state [39,40,43]. However, due to the self-bound nature and
the resulting flat-top profile of the droplet, the classical
Gaussian shape proves to be a poor approximation of
stationary properties of droplets. Yet the Gaussian shape
still represents the dynamics reasonably well in one
dimension [39], although overestimating the results in
three dimensions [43]. In search for a better approximation
of the order parameter, a

√
1 − tanh(x) function in the

Thomas-Fermi limit has been utilized [29], which imposes
difficulties in an analytical variational ansatz. To overcome
the limitations by these functions, we here study the breathing
mode and stationary properties using a super-Gaussian
ansatz [41,64] which allows for a more precise and simpler
analytic description of a flat-top shape.

In continuation of our previous work [26], in this paper
we investigate the lowest breathing modes of self-bound Bose
gas droplets in two dimensions. These modes are generally
of monopole type where the radial extent of the droplet os-
cillates unidirectionally. The work is structured as follows. In
Sec. II we introduce the basic model for a two-dimensional
binary self-bound Bose gas droplet. In Sec. III we use a
super-Gaussian function as a trial order parameter and solve
the Euler-Lagrange equations for complex fields of droplets.
The calculation is followed by an analysis and comparison of
stationary properties to numerical results self-bound systems
in Sec. III A and the breathing frequency in Sec. III B. We
continue in Sec. IV by studying droplets carrying angular mo-
mentum in the form of a phase-imprinted singly or multiply
quantized vortex at the droplet center. We analyze the breath-
ing mode frequency and energetically compare the mode with
the self-evaporation process.

II. MODEL

For an explicit review on the two-component extended
Gross-Pitaevskii formalism that describes quantum droplets
in bosonic mixtures, as introduced in Refs. [2,20], we refer
to the recent work by Fort and Modugno [65]. Here, let
us now consider a binary Bose-Einstein condensate in two
dimensions, and label the two components by the indices 1
and 2. The atoms are chosen to have equal mass and equal
intra-component scattering lengths a11 = a22 = a, with an
inter-component scattering length denoted by a12. The number
of atoms in each component is set to be equal and conse-
quently one also has equal atom densities n1 = n2 = n. The
two-component system thus reduces to effectively only one
component, where the MF interaction cancels and only the
LHY terms beyond mean field remain, and the time-dependent
extended Gross-Pitaevskii equation (eGPe) takes the form

i
∂ψ̃

∂ t̃
=

[
−1

2
∇̃2 + 8π

ln2(a12/a)
|ψ̃ |2 ln

( |ψ̃ |2√
eñ0

)]
ψ̃, (1)

see Ref. [20]. Here h̄ = m = 1, ψ̃ = ψ̃ (r̃, t̃ ) is the order pa-
rameter with r̃ = (x̃, ỹ), and

ñ0 = e−2γ−3/2

2π

ln(a12/a)

aa12
(2)

is the equilibrium density, where γ is the Euler-Mascheroni
constant. As in Refs. [20,25,26,28,34], we can use scaling
invariances to bring the system into dimensionless form via
t̃ = t0t , r̃ = r0r, and ψ̃ = ψ0ψ , where

t0 = ln2(a12/a)

8π
√

en0
, r0 =

√
ln2(a12/a)

8π
√

en0
, ψ0 =

√√
en0.

(3)

The dimensionless eGPe then reads

i
∂ψ

∂t
=

(
−1

2
∇2 + |ψ |2 ln |ψ |2

)
ψ, (4)

where ψ = ψ (r, t ) is the order parameter with r =
(x, y) [25]. The system is then normalized via N =∫

d2r|ψ (r)|2 = Ñ/(r2
0ψ

2
0 ), with Ñ the total number of

particles of both components. (We comment on typical ex-
perimental parameters in the conclusions). Given Eq. (4) the
energy density E[ψ] of the self-bound system is then given by

E[ψ] = 1

2
|∇ψ |2 + 1

2
|ψ |4 ln

|ψ |2√
e

. (5)

For the comparison of the variational ansatz discussed in the
following, Eq. (4) is solved numerically using the Fourier
split-step method in imaginary and real time.

III. SUPER-GAUSSIAN VARIATIONAL ANSATZ

In this section we use a super-Gaussian trial order param-
eter to calculate the stationary and dynamic properties of a
self-bound binary droplet by taking advantage of the Euler-
Lagrange equations for a complex field. We then continue by
comparing the analytical solution to the numerical solution of
the eGPe in Eq. (4). Recent works which made use of a varia-
tional analysis of such self-bound states used either a Gaussian
ansatz for one- or three-dimensional droplets [39,40,43], or a√

1 − tanh x ansatz in the Thomas-Fermi approximation for
two-dimensional droplets [29]. While the Gaussian ansatz for
the breathing frequency yields small errors compared to the
numerical eGPe solution for one-dimensional problems [39],
it has limitations to properly describe the spatial properties of
self-bound systems as it lacks the characteristic flat-top shape
for high norms. Furthermore it overestimates the breathing
mode frequency in three dimensions [43]. On the other hand,
a

√
1 − tanh x function accurately describes the spatial prop-

erties, but faces limitations to describe the system for small
norms [29] and also becomes analytically cumbersome when
treated with the Euler-Lagrange equations. In comparison, a
super-Gaussian ansatz offers a good middle ground, with the
advantage that it can be analytically handled [41,64,66,67].
For the following calculation we thus use the super-Gaussian
as a trial order parameter. Assuming a circular droplet shape,
we write

ψ (r, t ) = A(t ) exp

(
ib(t )r2 − 1

2

(
r

R(t )

)2m)
(6)

with radial coordinate r, real amplitude A(t ), chirp b(t ), and
width R(t ). The real and positive exponent m is determined as
a function of the norm N .
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The dynamics of a complex field, such as the reduced two-
dimensional two-component Bose gas for some generalized
coordinate qi = {A(t ), b(t ), R(t )}, emerges from the respec-
tive Euler-Lagrange equations

∂L

∂qi
= d

dt

∂L

∂ q̇i
, (7)

where the Lagrangian L is calculated by averaging the La-
grangian density L over the full space

L = 〈L〉 =
∫

d2rL. (8)

The Lagrangian density L for the two-dimensional droplet
system results from the energy density for a self-bound system
in Eq. (5) as

L[ψ,ψ∗] = i

2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− E[ψ]. (9)

Normalizing the wave function gives the number of particles
in the condensate,

N =
∫

d2r |ψ |2 = π

m
�

(
1

m

)
A2R2, (10)

where �(m) is the gamma function. We continue to write
�( 1

m ) = �1, �( 2
m ) = �2, and �( 2

m )/�( 1
m ) = �. After evalu-

ation of the integral in Eq. (8) by inserting the trial wave
function in Eq. (9) and eliminating powers of A in favor of
the norm N , the Lagrangian reads

L

N
= −ḃR2� − 2b2R2� − m2

2R2�1

− Nm

2πR2

2−1/m

�1
ln

(
Nm

πR2

1

�1

)
+ N

4πR2

2−1/m

�1
(m + 1).

(11)

Thus, the Euler-Lagrange equations for the variational param-
eters b(t ) and R(t ) become

b = 1

2

Ṙ

R
(12)

and

R̈ = 1

�2

[
m2

R3
+ N

2πR3
2−1/m(m − 1)

+ Nm

πR3
2−1/m ln

(
Nm

πR2

1

�1

)]

= −dUeff

dR
. (13)

Let us now first determine m as a function of N . We extremize
the Lagrangian L with respect to m, which gives the transcen-
dental equation, with the analytical exact value mexact,

0 = mexact

2
(ln 2 − mexact ) + N

4π
2−1/mexact (2 ln 2 − 1). (14)

For large N we have an approximation mapprox:

mapprox ≈
√

N

2π
(ln 4 − 1). (15)

FIG. 1. Optimal value for the exponent m of the super-Gaussian
ansatz with increasing norm N , solved numerically for Eq. (14)
(dashed line) and approximated for large N according to Eq. (15)
(dotted-dashed line). The inset shows the difference �m = mexact −
mapprox. With increasing N the error �m approaches zero, suggesting
that the analytical approximation is suitable for flat-top droplets.

In Fig. 1 we plot m according to Eqs. (14) and (15) as dashed
and dotted-dashed lines respectively, as well as the differ-
ence �m = mexact − mapprox (see inset). The difference �m
approaches 0 as N → ∞, so that we can use the approximate
expression in Eq. (15) for droplets with large N , in particular
�m/mexact < 0.025 for N > 95. Looking at the minimum of
the effective potential Ueff, as defined in Eq. (13), gives us an
expression for the maximum density nm and the radial extent
of the condensate R0, such that

A2
∣∣
t=0 = nm = exp

[
1

2m
(1 − m) − mπ

21/m

N

]
. (16)

For large norms the maximum density approaches 1/
√

e as
expected for this choice of scaling [25–27,34]. The mean
radius

√
〈r2〉 depends on the width of the cloud,

〈r2〉 = �R2, (17)

which simply reduces to the Gaussian case 〈r2〉 = R2 for m =
1. Furthermore, the width of a stationary condensate is

R2
0 = N

πnm

m

�1
. (18)

The low-lying excitation frequencies are found by assuming a
single sinusoidal oscillation in R(t ) with frequency ω0, such
that the breathing frequency ω0 is given by

d2Ueff

dR2
= ω2

0, (19)

and one obtains

ω2
0 = n2

m

�1

�

2π

Nm
2−1/m. (20)

The result in Eq. (20) can be divided into a low and high
norm N regime. In the low norm regime, the behavior is dom-
inated by the exponential behavior of nm, which approaches a
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FIG. 2. Mean radius
√

〈r2〉 of the self-bound droplet as a func-
tion of the norm N , based on different approaches as indicated by
the legend. While the Gaussian trial order parameter (m = 1) is
a good approximation for small N , it fails to describe the mean
radius accurately for larger norm. The inset shows the relative error

δ = 1 −
√

〈r2
m=1〉/〈r2

mexact
〉 in the range of small norms N � 10 (in

dimensionaless units as defined in Eq. (3)).

constant value for high norm, such that the 1/N dependency
governs the breathing frequency’s behavior.

From the time-independent eGPe, Eq. (4), we obtain the
chemical potential μ as

μ = −nm

2

(mπ

N
+ 2−1/m

)
. (21)

With N → ∞, μ then approaches −1/(2
√

e) as suggested by
Refs. [20,25].

A. Stationary properties

Let us now use the previously obtained expressions for the
exact and approximative value of m as well as the Gaussian
case (m = 1) and compare them to the numerical solution of
the eGPe equation, Eq. (4). In the following, unless otherwise
specified, we will use solid lines for the Gaussian case with
m = 1, dashed lines and dotted-dashed lines for m according
to Eqs. (14) and (15), respectively, and numerical results of
the eGPe in bullets for norms 1 � N � 1000. (For norms 1 �
N � 10, the relative error between the Gaussian and exact
solutions in the low norm regime is shown as insets in the
respective figures).

We start by comparing the mean radius
√

〈r2〉 in Fig. 2. As
expected from our previous discussion about m, the exact and
approximate descriptions perfectly overlap for large N . With
decreasing N the approximate description starts to deviate and
our variational approach is well approximated by the Gaussian
form of the order parameter for m = 1. For all values of N
the numerical results obtained by solving the eGPe coincide
directly with mexact solution. For the case of a large norm,
the mean radius follows the behavior expected of a growing
droplet. For a smaller norm, however, the system’s proper-
ties are dominated by the kinetic energy. This bears some

FIG. 3. Maximum density nm of the droplet based on the vari-
ational and numerical solutions, as indicated in the legend. As
proposed in Refs. [20,25], nm approaches 1/

√
e with increasing N for

the super-Gaussian trial order parameter in its exact and approximate
forms. With increasing norm N the Gaussian (m = 1) deviates sig-
nificantly. The numerical solutions of the eGPe, Eq. (4), are in good
agreement with the variational results for mexact and mapprox. The inset
shows the relative error δ = 1 − nm=1/nmexact for small norm N � 10
(in dimensionaless units as defined in Eq. (3)).

similarity to the bright soliton-like structures known to occur
in one-dimensional systems [68–71].

As mentioned above, the maximum density nm approaches
1/

√
e and mapprox in Eq. (15) gives the correct behavior in the

limit of large N , as it can be seen in Fig. 3. With increasing
N the Gaussian with m = 1 starts to deviate strongly from
the super-Gaussian and numerical solution of the self-bound
system. For small N , however, m = 1 approximates the super-
Gaussian reasonably well, with only small deviations, while
mapprox differs significantly as expected. All our numerical
values lie within a 2% deviation directly below the super-
Gaussian with mexact.

Having analyzed the mean radius
√

〈r2〉 and the maximum
density nm we now look at the density profile, comparing
the exact super-Gaussian, the Gaussian and the numerical
solutions of the eGPe in Fig. 4. The dashed lines represent the
Gaussian with m = 1, and the full lines the super-Gaussian.
As already anticipated from the previous discussion, for small
N both solutions coincide with each other. For increasing N
the deviations increase and the super-Gaussian solution slowly
approximates the characteristic flat-top shape.

Finally, let us look at the chemical potential μ, as specified
it in Eq. (21) above. Due to μ � 0 in self-bound conden-
sates, an underlying self-evaporation process exists. Thus, in
principle no other mode with energy E should be observ-
able as long as E/|μ| � 1. As before we compare the exact
and approximate solutions for m, the Gaussian solution with
m = 1 and the numerical results in Fig. 5. While the exact and
approximate solutions converge towards the theoretical value
of 1/(2

√
e) for high N , the Gaussian solution deviates signif-

icantly. Again, the numerical solution of the eGPe, Eq. (4),
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FIG. 4. Density distributions n(R) based on the Gaussian trial
order parameter (dashed), the super-Gaussian trial order parameter
with mexact (dotted-dashed), and a numerical solution of the eGPe
(full lines) for different N . With increasing N the super-Gaussian
density distribution approaches the flat-top limit (in dimensionaless
units as defined in Eq. (3)).

agrees well with the variational approach both in the limits of
small and large norms N .

B. The breathing mode in a two-dimensional droplet

We now compare the analytical results for the breathing
mode frequency ω0 in Eq. (20) to the numerical results ob-

FIG. 5. Chemical potential μ of the droplet based on the vari-
ational and numerical solutions, as specified by the legend. The
super-Gaussian ansatz correctly predicts the large N limit, while
the Gaussian ansatz clearly deviates from it. For small N the ap-
proximate approach overestimates the chemical potential, while the
Gaussian offers a good fit. The inset shows the relative error δ =
1 − μm=1/μmexact for small norm N � 10 (in dimensionaless units as
defined in Eq. (3)).

FIG. 6. Breathing frequency ω0 of the nonrotating droplet. For
large N the numerical solutions of the eGPe, Eq. (4), coincide
with the super-Gaussian ansatz calculation, while for smaller N the
assumption of a single breathing frequency in Eq. (19) no longer
holds, due to the emergence of a beating pattern. The inset shows
the relative error δ = 1 − ω0,m=1/ω0,mexact for small norm N � 10 (in
dimensionaless units as defined in Eq. (3)).

tained by solving the eGPe, Eq. (4), for 1 � N � 1000. We
excite the breathing mode by introducing a small interaction
perturbation, multiplying the interaction term in Eq. (4) with a
(dimensionless) factor k = 1.001 which is decreased back to
k = 1.000 linearly in a time interval t0 = 500. The interaction
perturbation k is chosen such that the size modulations dur-
ing the time propagation are small compared to

√
〈r2〉. The

breathing frequency ω0 is measured via Fourier analysis of√
〈r2〉. We then calculate ω0/|μ| via the analytical chemical

potential in Eq. (21) and Fig. 5, and also compare to the
numerical solution.

Figure 6 shows ω0 in comparison to analytical results with
varying m, and in comparison to the numerical solution of
the eGPe. For large N the approximate and exact solution
coincide and give the correct behavior for ω0 as we can
confirm from the comparison to the numerical solution of
the eGPe. However, when approaching the low norm regime
the numerical results start to deviate strongly from the an-
alytical solutions. This may be explained by an emerging
beating pattern in the numerical results, where several sig-
nificant breathing mode frequencies may occur. We illustrate
this beating pattern in the Appendix, comparing the Fourier
analysis for a low and high norm droplet system. We as-
sume, however, in Eq. (19) that the oscillating system only
produces one single frequency. Similar to our observation for
a two-dimensional droplet, the deviations between the Gaus-
sian ansatz and the numerical results of the eGPe have also
been found for a three-dimensional system [43]. However,
such deviations between analytical and numerical approaches
are absent for the one-dimensional self-bound system [39].
With the chemical potential in Eq. (21) we calculate the ratio
ω0/|μ| shown in Fig. 7. Surprisingly, all three analytical so-
lutions overlap for high N , while the eGPe solution starts to
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FIG. 7. ω0/|μ| for droplets based on the different approaches,
as specified in the legend. All three analytical solutions coincide
for the high norm regime, and are energetically favorable over the
self-evaporation for N � 36 (in dimensionaless units as defined in
Eq. (3)).

deviate as ω0/|μ| → 1. From the analytical results, we obtain
that the breathing mode is observable from N � 36, while
the numerical solution of the eGPe suggests N � 21. This
is in stark contrast to the one-dimensional case where the
breathing mode for a droplet without angular momentum is
observable at any norm N [42] and the quasi-one-dimensional
case [40] where it is observable for most configurations. A
similar behavior of the breathing mode as in Fig. 6 can be
observed for three-dimensional systems without angular mo-
mentum [2,43].

IV. BREATHING MODE IN DROPLETS WITH ANGULAR
MOMENTUM

We continue our analysis by studying systems where angu-
lar momentum is enforced, imprinting a phase through initial
states of the form

ψinit (r) = CrS exp (−αr2 + iθS). (22)

Here, C is a normalization constant, r and θ are the radial
and angular coordinates, and α is some positive constant.
A number of S = L/N quanta of circulation [25] are thus
induced in the (metastable) solutions, where L = ∫

dr ψ∗L̂zψ

is the angular momentum in two dimensions. The numerical
approach used here is the same as presented in [25]. How-
ever, while in Ref. [25], the discussion mainly covers stability
properties of droplets carrying angular momentum, we here
investigate the breathing mode behavior. An analytical ex-
tension to the previous chapters can be found in Ref. [72].
Starting the time evolution from the states of the form as in
Eq. (22) and propagating them in imaginary time, we then
follow the same excitation scheme as in Sec. III B and obtain
the breathing mode frequency ω0 via a Fourier analysis of√

〈r2〉 and the chemical potential μ. Here, we choose systems
with L/N = 1.0, 2.0, 3.0 as shown in Fig. 8 for N = 850.

FIG. 8. Density distributions for self-bound droplets at N =
850 with angular momentum L/N = 1.0, 2.0, 3.0. The size of the
droplets and minimum norm N for stability follow the heuristically
derived relation in Ref. [25]. The phase in cases with nonzero angular
momentum is shown as small insets in each figure (in dimensionaless
units as defined in Eq. (3)).

As stated before, the breathing mode will only be observ-
able if the condition ω0 < μ is fulfilled. Due to the small
oscillations of

√
〈r2〉 when measuring ω0 we can calculate

μ numerically at any given point in the real-time evolution.
Figs. 9 and 10 show the breathing frequency ω0 and the ratio
ω0/|μ| for the systems as described above in the range 1 �

FIG. 9. Frequency spectrum for droplets with angular momen-
tum as specified in the legend. With increasing L/N the breathing
frequency ω0 decreases. The onset of each branch is given by the
real-time stability of the system. For the multiply quantized systems,
the stability requirement for the minimum required norm N is equal
to that found in [25] (in dimensionaless units as defined in Eq. (3)).
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FIG. 10. Availability of the breathing mode for droplets with
angular momentum as given in the figure. The breathing mode exists
if ω0 < |μ| and is energetically favorable for a rotating system as
long as the stability requirement is fulfilled and occurs for L/N = 0
if N � 21 (in dimensionaless units as defined in Eq. (3)).

N � 1000. Both quantities, ω0 and ω0/|μ| follow the same
pattern, where the droplet without angular momentum corre-
sponds to the highest lying branch followed by the multiply
quantized vortices with lower ω0 as L/N increases.

With increasing L/N the droplet requires a higher norm N
in order to support the size of the vortex core, as otherwise
the modified kinetic energy due to angular momentum over-
comes the attractive two-dimensional LHY term. We observe
this behavior in Figs. 9 and 10 as the onset of the branches
for the respective L/N values. Further, the onset follows the
minimum N requirement for a droplet to support a vortex with
L/N as in Ref. [25]. As the numerical solution is the same
as in Fig. 7, the breathing mode continues to be observable
from N � 21 while the analytical solution in Fig. 7 becomes
observable for N � 36. This is in stark contrast to the one-
dimensional case where the breathing mode is observable at
any norm N [42] and the quasi-one-dimensional case [40]
where it is observable for most configurations.

V. CONCLUSIONS

We have studied the breathing mode for symmetric
two-dimensional self-bound binary Bose-gas droplets with
components in the nonrotating case as well as for systems
with a multiply charged vortex imprinted at the center. For
the breathing mode of the droplet with L/N = 0 we em-
ployed a variational super-Gaussian ansatz [41] and compared
it to the widely used Gaussian ansatz [39,40,43] as well
as the numerical solution of the eGPe. We found that the
super-Gaussian supersedes the Gaussian in predictability of
stationary and dynamical properties of the self-bound system.
However, for lower norms there is a great discrepancy be-
tween the numerical solution of the eGPe and the analytical
solutions for the breathing mode, such that the ratio ω0/|μ|

barely exceeds 1 when the analytical solution suggests that
ω0/|μ| > 1, as shown in Figs. 6 and 7. Such discrepancy
between the numerical and analytical solutions can also be
observed for three-dimensional droplets [43], but does not oc-
cur for one-dimensional systems [39]. We furthermore found
that the breathing mode in self-bound droplets without an-
gular momentum can be observed from N � 36, for which
ω0/|μ| < 1. This is similar to the quasi one-dimensional and
three-dimensional case [2,40,43]. However this behavior is
different from that of a one-dimensional system, for which
the breathing mode is observable at any N [39].

We continued our investigation by introducing angular mo-
mentum in the shape of a multicharged vortex imprinted at the
droplet center. For this metastable system [26] we find that
with increasing L/N the breathing frequency decreases, and
droplets with angular momentum have ω0/|μ| < 1. Further-
more, the stability requirement in N for droplets to support a
vortex with L/N is the same as in [25].

Relating our results to experimental parameters, for exam-
ple those of 39K, a choice of the norm of N = 1000 in the data
presented above corresponds to Ñ ≈ 105 atoms in a transverse
harmonic trap with oscillator length of lz = 0.1 μm. In units
of the Bohr radius a0, scattering lengths are a12 = −50.0a0

and a = 50.5a0. The density n is then n ≈ 1014cm−3 and
typical timescales are in ms (see also Ref. [26]).

The current work may be continued by further investigating
the discrepancy between the numerically obtained breathing
frequencies and the analytical solution. The super-Gaussian
may be used as a trial order parameter in calculating the ideal
trap-opening mechanism, while retaining the droplet state,
commonly referred to as a shortcut to adiabaticity [73,74].

Note added. Recently, we became aware of a very recent
work by Otajonov et al. [72] who likewise make use of the
super-Gaussian ansatz, considering droplets carrying angular
momentum and a sinusoidal modulation of the LHY term.
Here, we set focus on the competition between the Gaussian
and super-Gaussian ansatz and the breathing mode in an ex-
perimentally feasible setting.
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APPENDIX: EMERGING BEATING PATTERN

We provide two examples (Fig. 11) for the Fourier analysis
in Sec. III B for a low and high norm droplet system without
angular momentum. For the low norm droplet the discussed
beating pattern is clearly observable. The mean radius

√
〈r2〉

is measured over 200 × 103 timesteps with �t = 0.05; how-
ever, we omit the first 10 000 timesteps due to the interaction
strength modulation taking t0 = 500 as described in the main
text.
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FIG. 11. (a) Mean radius
√

〈r2〉 in the first 10000 timesteps after interaction strength modulation for a droplet with N = 1000. (b) Fourier
spectrum for a droplet with N = 1000 after interaction strength modulation. (c) Mean radius

√
〈r2〉 in the first 20 000 timesteps after interaction

strength modulation for a droplet with N = 25.12. The beating pattern besides one main frequency is clearly observable. (d) Fourier spectrum
for a droplet with N = 25.12 after interaction strength modulation. Besides the main frequency, we can also observe smaller peaks with lower
frequency, which emerge from the beating pattern (in dimensionaless units as defined in Eq. (3)).
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