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Anomalous ellipticity dependence of the generation of near-threshold harmonics in noble gases
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We measured the ellipticity dependence of the harmonic yield of He, Ne, Ar, Kr, and Xe. It is found that the
harmonic yield in general decreases monotonically with increasing laser ellipticity but anomalous dependence
does occur for each atom for some harmonic orders. We found that the degree of anomaly is weakest in helium
but is stronger for the heavier atoms. The anomaly also depends on laser intensity. To explain these features, we
developed a quantum trajectory Monte Carlo (QTMC) model based on the quantum path integral theory to study
high-order harmonic generation (HHG). The model includes the effect of Coulomb potential from the target ion,
thus it is capable of calculating near-threshold harmonics quantitatively. This model reveals that the presence
of Coulomb potential would generate orbiting trajectories which are responsible for the anomalous ellipticity
dependence near the threshold.
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I. INTRODUCTION

High-order harmonic generation (HHG) is a fundamental
atomic and molecular process in strong laser fields that plays
a crucial role in the development of ultrafast science and
technology [1–3]. HHG not only serves as a coherent light
source in the extreme ultraviolet (XUV) range [4–7] but also
provides a useful tool for probing ultrafast electronic structure
and dynamics of atoms or molecules [8–13]. For harmonics
that are above the ionization energy Ip, they can be understood
by the three-step model [14,15]: first, the electron is freed by
a strong laser field. Then it is accelerated in the laser field.
Finally, when the electron returns to the parent ion, it may
recombine with the ion core and the energy it obtained in
the laser field is emitted in the form of high-order harmonics.
The three-step model provides an intuitive understanding of
the harmonics in the plateau and cutoff region qualitatively. It
can also be understood well by the strong-field approximation
(SFA) of Lewenstein et al. [16].

More recently, attention has been directed at near-threshold
harmonics (NTHs). These harmonics offer great potential as
possible light sources for vacuum-ultraviolet frequency combs
[17–20]. However, the mechanism of NTH is still not well
understood. Chini et al. [17] measured the NTH spectrum of
Ar and proposed that resonantly enhanced excitation makes
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a great contribution to the NTH of Ar. On the other hand,
Xiong et al. [21–23] suggested that, in addition to resonantly
enhanced excitation, the NTH is also affected by the rescatter-
ing process. The NTH is understood by a four-step model: (1)
ionization, (2) acceleration in the laser field, (3) trapping in the
excited states after returning to the core, and (4) subsequent
emission of a photon. The excited states are usually consid-
ered to be Rydberg states [24]. A similar process also happens
in strong-field ionization, which is called frustrated ionization
[20,25,26]. Moreover, Yost et al. found that the 7th, 9th, 11th,
and 13th harmonic yields of Xe generated from a 1070 nm
laser field are roughly proportional to the sixth power of the
driving laser intensity. To explain the laser intensity depen-
dence, they proposed a quantum path interference method for
the NTH generation [5,27].

To test whether the three-step model can effectively explain
the generation of NTH, experiments have been carried out
using elliptically polarized laser fields [28–34]. Anomalous
ellipticity dependence of harmonic yield for NTH has been
reported for different atoms and molecules. Different from
the harmonics in the plateau region, the NTH yield does not
drop monotonically with increasing laser ellipticity. Avanaki
et al. [34] measured the ellipticity dependence of the NTH
yield of He, Ne, Ar, and Kr and explained that the anoma-
lous ellipticity dependence is due to the multiwave mixing
process. Anomalous ellipticity dependence is also observed
in molecules. Soifer et al. [31] measured the ellipticity de-
pendence of the NTH yield of O2 and suggested that the
anomalous ellipticity dependence originates from resonantly
enhanced excitation. Furthermore, it has been proposed that
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the Coulomb potential will affect the interference between the
two quantum paths, which would lead to an enhancement of
NTH in Ne [33].

From the theory side, the analysis of NTH so far has not
been fully supported by quantitative calculations, for example,
the species dependence. It is generally considered that the
time-dependent Schrödinger equation (TDSE) can be used
to calculate the NTH, but such calculations are very time
consuming and do not offer the possibility of understanding
the generation mechanism. The SFA is easier to calculate but
is not accurate enough in the near-threshold region because of
the neglect of the Coulomb potential. The Coulomb correction
model in Ref. [33] cannot explain the atomic species depen-
dence observed in Ref. [28], nor our experiment reported here.

In this paper, we measure the ellipticity dependence of
the harmonic yield of He, Ne, Ar, Kr, and Xe. Different
from the previous work [34], in our experiment, anoma-
lous ellipticity dependence varies with atomic species and
laser intensity. These results cannot be explained by previous
mechanisms. We propose a quantum trajectory Monte Carlo
(QTMC) model for HHG that can be used to calculate the
NTH [35,36]. The Coulomb potential and species-dependent
transition dipoles are taken into consideration in our model
to study the ellipticity dependence of the NTH. It was found
that the results matched well with our experiment. Besides,
our method can analyze the electron trajectory individually
and calculate the harmonic spectrum generated from specific
trajectories, which offers a more intuitive understanding of the
mechanism of the NTH generation.

This paper is organized as follows. Section II shows the
experimental method. In Sec. III, we introduce our theoretical
model. Section IV discusses the results of the experiment and
our theoretical interpretations. A summary and outlook are
given in Sec. V.

II. EXPERIMENTAL METHOD

We apply a Ti:sapphire laser system (Astrella-USP-1K,
Coherent, Inc.) to generate high-order harmonics, which de-
livers 35-fs, 800-nm pulses at a repetition rate of 1 kHz with
the maximum energy of 7 mJ per shot. A half-wave plate and
a quarter-wave plate are installed to adjust the polarization
state of the laser. The ellipticity ε is controlled by rotating the
half-wave plate in front of the fixed quarter-wave plate to keep
the major axis of the polarization ellipse fixed. The value of
ε is determined by the amplitude ratio of the minor axis and
major axis of the elliptically polarized laser field. The total
intensity is kept constant throughout the experiment [31]. The
laser is focused on a gas jet by a 500 mm focal length lens. The
diameter of the nozzle is 100 μm. The laser intensity is esti-
mated from the cutoff law [37,38]. The generated harmonics
are dispersed by a 300 grooves/mm grating. The multi-order
diffractions of the harmonics with different frequencies have
different diffraction angles after the harmonics go through the
grating. A possible systematic error of the measured harmonic
yield may result from the polarization-dependent reflectivity
of the grating. In our experiment, due to the small elliptic-
ity of the generated NTH, the error induced by the grating
is about 5%, which is within our measurement error range
(7%). Finally, the diffracted harmonics are imaged on the
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FIG. 1. (a) The harmonic spectrum measured in the experiment
without the aluminium foil and (b) with the Al foil. The red line is the
transmission coefficient of the Al foil as a function of the harmonic
order. (c) The zoom of panels (a) and (b) around the 7th harmonic.

microchannel plate (MCP) fitted with a phosphor screen of
90 mm diameter.

Different from HHG in the plateau and cutoff region, the
NTH are harder to observe. Figure 1(a) shows the measured
harmonic spectrum. It is found that, except for the first-
order diffraction, there also exist some high-order diffractions
from the higher-order harmonics. For example, the red line
in Fig. 1(c) shows the zoomed-in Fig. 1(a) around the 7th
harmonic. It is found that the 7th harmonic includes con-
tributions from its first-order diffraction and the third-order
diffraction from the 21st harmonic. It is worth noting that
the fifth order diffraction from the 35th harmonic and the
higher-order diffraction are ignored, because of the low yield
of the cutoff-region harmonics (>33rd). Also around the 7th
harmonic, we can observe the fourth-order diffraction from
the 27th harmonic, the fourth-order diffraction from the 29th
harmonic, and so on. To eliminate these obstructions, we
installed an Al foil before the diffraction grating. The density
of it is 2.6989 g/cm3 and the thickness is 0.4 microns [39].
The red line in Fig. 1(b) is the transmission of the Al foil
as a function of harmonic order and Fig. 1(b) displays the
measured harmonic spectrum after the Al foil is installed.
One can see that Al foil filters out harmonics below the 11th
order and retains higher-order harmonics and their multi-order
diffraction signals. For example, the green line in Fig. 1(c)
shows the zoomed-in Fig. 1(b) around the 7th harmonic. The
signal of the 7th harmonic is filtered out and it only retains
the third-order diffraction from the attenuated 21st harmonic.
Thus, we can subtract the diffraction signals and obtain the
NTH signals using the following formula :

I (ωNT H ) = Iwithout Al(ωNT H ) − Iwith Al(ωNT H )/T (ωhigh ), (1)

where I (ωNT H ) is the intensity of the NTH, Iwithout Al(ωNT H )
is the harmonic intensity of the NTH without the Al foil,
Iwith Al(ωNT H ) is the NTH intensity with Al foil and T (ωhigh )
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is the transmission coefficient of the corresponding high-order
harmonic.

III. THEORETICAL METHOD

In this section, we introduce our theoretical model. We
extend the quantum trajectory Monte Carlo (QTMC) method
[36] of strong-field ionization to HHG. Starting with TDSE
for one-electron model atom (atomic units are used in the this
paper),

i
∂

∂t
|ψ (�r, t )〉 = Ĥ |ψ (�r, t )〉,

Ĥ = T̂ + Vc + Ve, (2)

here T̂ is the electron kinetic energy operator T̂ = −∇̂2/2, Vc

is a soft-core Coulomb potential and the Ve = �r · �E (t ) is the
interaction with the laser field. �E (t ) is the laser electric field.
According to path interference theory [40], the wave function
at �r + ��r and t + �t is

|ψ (�r + ��r, t + �t )〉 = U (�r, t, �r+��r, t+�t )|ψ (�r, t )〉, (3)

where U (�r, t, �r + ��r, t + �t ) is the propagator. It is de-
fined by the transition-probability amplitude between the two
space-time points (�r, t ) and (�r + ��r, t + �t ):

U (�r, t, �r + ��r, t + �t ) =
∑

N,��r→0,�t→0

e−iS(��r,�t ). (4)

The N in this equation represents all the possible quantum
paths and S is the integral of the Lagrangian L:

S =
∫

Ldt,

L = T − Vc − Ve = L0 + Le,

L0 = T − Vc,

Le = −Ve. (5)

The harmonics are generated from the time-dependent in-
duced dipole between a final state |ψ f (�r, t )〉 and an initial state
|ψi(�r, t0)〉.

d (t ) = 〈ψ f (�r, t )| �A(�r, t ) · �∇|ψi(�r, t0)〉, (6)

where t0 is the ionization time. Based on Eqs. (3) and (4), the
time-dependent final state |ψ f (�r, t )〉 can be expressed as

|ψ f (�r, t )〉 =
∑

N

e−i
∫ t

t0
(L0+Le )dt |ψi(�r, t0)〉, (7)

Inserting Eq. (7) into Eq. (6), we obtain the time-dependent
induced dipole:

d (t ) = A0(ω)ε̂
∑

N

∫
UN (E (t ), θ (t ))σN (E (t ), θ (t ))dr, (8)

where σN (E (t ), θ (t )) represents the transition dipole moment
of the electron in a potential Vc and is defined as

σN (E (t ), θ (t )) = 1

(2π )3/2

f (±)(k̂(t ) · r̂(t ))

�r(t )

× exp(−i�k(t ) · �r(t )) �∇ψi(�r, t0), (9)

where �k(t ) is the electron momentum as a function of time,
�r(t ) is the electron position, E (t ) is the energy of the electron,
θ (t ) is the angle of the electron momentum, and f (±)(k̂(t ) ·
r̂(t )) is called the scattering amplitude and can be calculated
as given in Ref. [41].

The propagator induced by the laser field is denoted by
UN (E (t ), θ (t )) as

UN (E (t ), θ (t )) = e−i
∫ t

t0
Ledt e− 1

2 i
∫ t

t0
(−ih̄�k)dt

. (10)

For clarity, the detailed derivation from Eq. (6) to Eq. (8) is
given in the Appendix.

The sum in Eq. (8) should include all the possible paths.
Similar to the approximation used in the application of QTMC
for strong-field ionization, we only consider paths that satisfy
the classical Lagrangian equation of motion to calculate the
harmonics. The Lagrangian equation is expressed as

d

dt

(
∂L

∂�k

)
− ∂L

∂�r = F,

F = − �E (t ) − ∂Vc

∂�r . (11)

where �k is the momentum and �r is the coordinate.
A Monte Carlo method is used to generate at least 1 mil-

lion electron trajectories that have different ionization times,
momenta, and positions. The initial conditions of the elec-
tron (position, momentum, and ionization time) are given by
the ionization theory, such as the ADK model [42–44] or
the PPT model [45]. In this work, we use the ADK model.
We then calculate the phase S = ∫ t

t0
Ledt , the propagator

UN (E (t ), θ (t )), and the transition dipole moment of the elec-
tron, σN (E (t ), θ (t )), of each trajectory. They are multiplied to
obtain the induced dipole of each trajectory dN (t ):

dN (t ) = ηN (�r, �p, t )UN (E (t ), θ (t ))σN (E (t ), θ (t )), (12)

where ηN (�r, �p, t ) is the ionization distribution of the ADK
model. The induced dipoles of each trajectory, dN (t ), are
superimposed coherently to obtain the final induced dipole:

d (t ) = A0(ω)ε̂
∑

N

∫
dN (t )dr. (13)

Equations (12) and (13) are similar to the widely used
quantitative rescattering theory (QRS) [46]. ηN (�r, �p, t ) is the
ionization probability of each trajectory. UN (E (t ), θ (t )) is
the propagator induced by the electric field, and its coher-
ent superposition corresponds to the wave packet in QRS.
σN (E (t ), θ (t )) is the transition dipole moment of the electron
in a potential Vc for the corresponding electron trajectory. Its
modulus squared is the cross section which represents the
recombination probability of the electron.

Comparing with the classical trajectory Monte Carlo
(CTMC) [31,47] method, our model introduces a phase for
each trajectory that leads us to a coherent superposition of
transitions from all trajectories to obtain harmonics quan-
titatively, including both their amplitudes and phases. Our
method also considers the recombination cross section and
the influence of Coulomb potential on the electron trajectory.
Thus in principle it can calculate the NTH more accurately.
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FIG. 2. (a) The harmonic spectrum of atomic hydrogen calcu-
lated from the present QTMC method, the TDSE, and the SFA,
respectively. (b) The harmonic yield on a linear scale for harmonics
near the ionization threshold. The figure shows the failure of the
SFA in the near-threshold region and the good agreement between
the TDSE and QTMC. The laser is linearly polarized.

We display a comparison of the harmonic spectra calcu-
lated by our model, the SFA, and the TDSE in Fig. 2. The
harmonic spectra are generated from the interaction between
an 800 nm linearly polarized laser field and the hydrogen
atom. The laser intensity envelope has a trapezoidal shape
with 12 constant cycles, and 2 cycles on and off with peak
intensity of 3 × 1014 W/cm2. In Fig. 2(a), the harmonics from
the three calculations show similar structures, with the plateau
and cutoff harmonics at the same positions. The difference lies
in the near-threshold region (about the 9th), where harmonics
calculated by the SFA model disappear, in disagreement with
the TDSE and the present QTMC [see Fig. 2(b)]. In contrast,
results from QTMC and TDSE match well. It is worth not-
ing that, with a larger number of electron trajectories, the
calculated QTMC results are in better agreement with the
TDSE results. We remark that the comparison above between
the QTMC and TDSE has been made for linearly polarized
lasers. For HHG from elliptically polarized light, the compu-
tational demand for solving the TDSE increases significantly
because calculations have three spatial dimensions instead of
only two spatial dimensions for a linearly polarized laser. For
the QTMC calculation, the increase of computing time from
linear to elliptical polarization is less severe. Thus, the QTMC
method can be used to investigate HHG from elliptically po-
larized lasers.

IV. RESULTS AND DISCUSSION

Figure 3 shows the measured harmonic yield of Kr as a
function of the laser’s ellipticity. The harmonic yields for
different ellipticity are normalized to the one with ellipticity
ε = 0. One can see the ε dependence of the 7th and 9th
harmonics (below the threshold) are anomalous. The peak
harmonic yield is about 1.11 when ε is about 0.09. For the

FIG. 3. The measured harmonic yields (normalized, see text)
showing anomalous ellipticity dependence. Target is krypton. Exper-
iment: with markers. Theory: QTMC calculations with the Coulomb
potential included (red lines) and without (green lines). The impor-
tance of the Coulomb potential is clearly seen for harmonic orders
seven and nine.

11th and 13th harmonics (above the threshold), the yields
decrease monotonically with the increase of ε. The measured
results are in good agreement with QTMC calculations.

The red lines in Fig. 3 show the calculated results based
on the QTMC method. It is based on a soft-core Coulomb
potential where the potential takes a Coulomb form when the
electron is a large distance from the core:

Vc = −(1 + 9e−r2
)√

r2 + α2
, (14)

where α is the soft-core parameter. α is set at 5.60 such that
it gives the correct Ip of Kr. In the equation, r represents the
distance of the electron from the nucleus. The laser intensity
is 2 × 1014 W/cm2, which was estimated from the cutoff
(33rd) of the harmonic spectrum in the experiment when the
laser is linearly polarized. The error of the estimated laser
intensity is ± 10%, which ranged from 1.8 to 2.2 × 1014

W/cm2. The error of the estimated laser intensity will lead
to a slight variation of the calculated ε dependence but has
no influence on our final conclusion. The laser envelope has
a trapezoidal shape with 12 constant cycles, and 2 cycles on
and off and a wavelength of 800 nm. The harmonic yield
increases initially with ε and then decreases for the 7th and 9th
harmonics. For the 11th and 13th harmonics, the yields decay
monotonically with the increase of ε. Our calculated ellipticity
dependence agrees well with the measured one within error.
To demonstrate the influence of the Coulomb potential, we
calculate the harmonic yield of Kr as a function of ε by re-
moving the asymptotic Coulomb potential. They are shown as
green lines in Fig. 3. Clearly, without the Coulomb potential,
all harmonics decrease monotonically as ε is increased, thus
demonstrating the important role of the Coulomb potential
for the anomalous ellipticity dependence for near-threshold
harmonics, but less so as the harmonic order is increased.
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FIG. 4. (a) The calculated harmonic spectra for ellipticity ε = 0.
(b) The phase difference of the mth trajectory calculated with and
without the Coulomb potential. The inset of panel (b) shows a zoom-
in of panel (b) when the phase difference >0.3. (c) The weight of
the trajectories with different phase difference. (d) The harmonic
spectrum generated from trajectories whose phase difference is >0.3
(red line) versus those where the phase difference is <0.3 (blue line).

In Fig. 4, we discuss how the Coulomb potential affects
the NTH. Figure 4(a) shows the calculated harmonic spectra
based on the QTMC model for ε = 0. With the inclusion of
the Coulomb potential, the yields of the 7th, 9th, and 11th
harmonics drop by one or two orders of magnitude when
compared with calculations where the Coulomb potential is
not included. To investigate the reason for the drop, we cal-
culated the time-averaged phase of each trajectory 〈Se〉 =
Se/(tend − t0) and the phase difference of each trajectory with

and without the Coulomb potential �Se = 〈SC
e 〉 − 〈SNC

e 〉. 〈SC
e 〉

is the time-averaged phase with the Coulomb potential and
〈SNC

e 〉 is the phase without the Coulomb potential. Here t0 is
the initial time and tend is the end time of the laser pulse. We
then ordered these trajectories according to phase difference
from small to large, as 1st, 2nd, ..., mth. Figure 4(b) shows
these arranged phase difference. Note that we have taken the
test of the �Se calculated in a half optical cycle, one optical
cycle, and whole pulse duration. Due to the periodicity of laser
electric field, similar results as in Fig. 4(b) can be obtained.
In Fig. 4(c), we count the weights of the trajectories with
different �Se. As shown in Figs. 4(b) and 4(c), most trajecto-
ries have small phase differences. The distribution of weights
is maximum when the phase difference is 0.18. Moreover,
there are a few trajectories that have phase differences larger
than 0.3. These latter trajectories account for about 3% of
the total trajectories [from trajectory 0.97 × 106 to trajectory
1 × 106 trajectory, see also Fig. 4(c)]. The trajectories with the
larger phase difference are heavily affected by the Coulomb
potential. Based on Eqs. (12) and (13), we selected trajecto-
ries whose phase differences are greater than 0.3 to calculate
the harmonic spectrum and compare it to the spectrum from
trajectories where the phase difference is smaller than 0.3.
Note that changing this value within the range of 0.3 ± 0.05
will not influence the conclusions. These two sets of harmonic
spectra are shown in red lines (>0.3) and blue lines (<0.3) in
Fig. 4(d). It shows that, in the plateau region, the harmonics
generated from trajectories whose phase difference is smaller
than 0.3 are dominant. In the near-threshold region, the main
contribution to the harmonics is from trajectories whose phase
differences are larger than 0.3.

We display the typical classical trajectory whose phase
difference is larger than 0.3 in Fig. 5(a). For comparison,
Fig. 5(b) shows the classical trajectory without the Coulomb
potential under the same initial conditions. One can find that
the electron under the Coulomb potential will orbit near the
core. Therefore, we name these trajectories which have phase
differences larger than 0.3 “orbiting trajectories,” which ap-
pear only when the Coulomb potential is present. On the other
hand, there are electron trajectories that leave the ion core
initially and then return to recollide with the core directly.
They are nonorbiting trajectories and are not significantly
affected by the Coulomb potential. Figure 5(c) displays the
phase distributions of orbiting trajectories as a function of
time. The color in Fig. 5(c) represents the phase of the mth
trajectory at the given time. It can be found that the phase of
the trajectory changes from 0 to 2π gradually within one-half
cycle. Like the periodicity of the electric field, in the next
half optical cycle, it will vary from 2π back to 0 periodi-
cally. Figure 5(e) is the weight of the trajectories with nearly
0 or 2π phase as a function of time and Fig. 5(g) is the
time-frequency analysis of the harmonic spectrum generated
from the orbiting trajectories. It is found that harmonics are
generated over a broad time range (from 3.3 to 3.7 optical
cycles) and only a few trajectories have a nearly 0 or 2π phase
in a specific time and almost trajectory phase changes from 0
to 2π during this time interval. The large variation of phases of
these trajectories leads to destructive interference from these
orbiting trajectories and the reduction of the NTH yield. For
the nonorbiting trajectories, Figs. 5(d) and 5(f) show that their
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FIG. 5. The (a) orbiting trajectory and (b) nonorbiting trajectory
(b) over one half optical cycle. The arrow represents the direction of
electron motion. (c), (d) The phase of the orbiting and nonorbiting
trajectories, respectively, over one-half optical cycles. The color rep-
resents the phase of the mth trajectory at the given time. (e), (f). The
weight of the orbiting (red line) and nonorbiting trajectories (blue
line) with nearly 0 or 2π phase. (g), (h) Time-frequency analysis
of harmonics generated using orbiting and nonorbiting trajectories.
Vertical scale is the harmonic order. Panel (g) shows that harmonics
are emitted over a longer duration and the intensity is weaker. Panel
(h) shows that harmonics are emitted over a short time duration and
much stronger.

phases are almost the same for the interval of 3.25 to 3.35
optical cycles, and the phase varies only from 0 to 0.2 radians.
These trajectories will interfere constructively. Indeed, the
time-frequency analysis in Fig. 5(h) shows that the NTH yield
generated from the nonorbiting trajectories is one order of
magnitude higher than the yield generated from the orbiting
trajectories. Comparing these two results, we find that, for
trajectories affected by the Coulomb potential, the electron
will orbit near the core to acquire larger phases, leading to
destructive interference and depression of the NTH yields.

Next, we investigate how the abundance of orbiting trajec-
tories and the depression of NTH are affected by the ellipticity
of the driving laser. Figure 6(a) shows the orbiting trajectories

FIG. 6. (a) The orbiting trajectories for different laser elliptici-
ties, for ε = 0, 0.05, 0.09, respectively. (b) The percentage of orbiting
trajectories as a function of laser ellipticity ε.

for three different values of ε. When ε = 0, the electron orbits
near the core. Under this condition, as discussed above, the
Coulomb potential will introduce additional phase and lead
to destructive interference between the trajectories. With the
increase of ε, the electric field polarized along the �y direction
is increased to break the orbiting. As the ε reaches 0.09, the
electron would no longer be able to orbit. With even higher
ellipticity, the electron would leave the core very quickly,
reducing the contribution of orbiting trajectories to nil.

Figure 6(b) displays the weight of orbiting trajectories
as a function of laser ellipticity. One can see that, when
ε = 0, the weight of these trajectories is maximum. Due to
destructive interference, the NTH yield is minimum. With in-
creasing ellipticity, the number of orbiting trajectories drops,
and the destructive interference is reduced, thus the NTH
yield is higher than when laser ellipticity is zero. When ε

is 0.09, the weight of orbiting trajectories reaches the mini-
mum (0.5%). Note that, in Fig. 4(d), we have shown that the
near-threshold harmonics mainly result from these orbiting
trajectories, which account for 3% of the total trajectories
when ε = 0. Therefore, ε = 0.09 causes a large drop in the
orbiting trajectory. In this case, the yield of NTH will be
enhanced by 1.2 to 1.5 times (see Fig. 3) when compared with
the NTH yield at ε = 0. With the laser ellipticity continuing
to increase, the weight of orbiting trajectories is no longer
reduced, but the electron will move away quickly from the
core, thus the harmonic yield will drop continuously.

Figure 7 shows the measured ellipticity dependence of the
He, Ne, Ar, and Xe harmonic yields, for harmonics from 7
to 15 and the simulation from the QTMC model is given in
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FIG. 7. The measured (markers) ellipticity dependence of He, Ne, Ar, and Xe for harmonic order from 7th to 15th. The laser intensity is
about 2 × 1014 W/cm2 and the max error (standard deviation) of our experiment data is about 7%. The results from QTMC are given as red
lines.

red lines. In each graph, the harmonic yields are normalized
to the yield at ε = 0. For helium, the harmonic yields from
the experiment drop monotonically with ε except for the 11th
harmonic where the yield reaches 1.05 at ε = 0.05. Our calcu-
lation was unable to reveal the anomaly. For neon, anomalous
ellipticity dependence occurs for the 13th harmonic with a
maximum yield of 1.29 when ellipticity is 0.08. The theory
predicts more monotonic drop with ε and for higher ε the drop
is more severe for higher harmonics than the theory predicts.
For argon, clear anomalous ellipticity dependence occurs for
the 9th harmonic, with a yield of 1.15, with an ellipticity of
0.1. The 11th harmonic also shows a weak anomaly with a
yield of 1.05 at an ellipticity of 0.05. For krypton, the anomaly
has been observed for the 7th and 9th harmonics (see Fig. 3).
For xenon, the anomaly occurs at the 7th harmonic with a
yield of 1.12 when the ellipticity is 0.09. Comparing our
calculated results with the experiment, the harmonic order
and the position of the maximal anomaly from experiments
are mostly reproduced but discrepancies still occur in some
results. Note that all the data shown in Fig. 7 are taken at
the same laser intensity. This is quite a challenge since these
targets have vast differences in ionization rates at the same
intensity. In the QTMC calculations, each atom is modeled by
a screened soft-core potential. The parameter α for each atom
is chosen such that it gives the correct ionization potential.
The values of α are 15.70, 4.10, 5.24, 5.70 for He, Ne, Ar, and
Xe, respectively. The discrepancies between theory and ex-
periment mainly result from three factors: (1) the uncertainty
of the estimated laser parameters, (2) the possible propagation
effect in experiment, and (3) the error of the calculated initial
momentum distribution based on the ADK model. It has been

shown [48] that the center of the transverse momentum dis-
tribution has a shift when the atom is driven by an elliptically
polarized laser field.

As has been discussed above, the existence of anoma-
lous ellipticity dependence results from the orbiting trajectory
electrons. Since each trajectory depends on the initial con-
dition at ionization, in Fig. 8(a), we analyze the statistics of
the initial momentum distributions of electrons that evolve
as orbiting trajectories, for the case of Kr. The laser param-
eters are the same as those used in Fig. 3. Our simulation
shows that the initial momentum for such orbiting trajectories
has a Gaussian distribution around (px, py) = (−0.1,−0.1),
with the full width at half maxima (FWHM) of 0.1. The
color coding in Fig. 8(a) shows the percent of trajectories
that have initial momenta on the px-py plane. In Fig. 8(b),
we show how the calculated ellipticity dependence of the

FIG. 8. (a) The initial momentum distribution of the electrons af-
ter ionization that emerge into orbiting trajectories. (b) The ellipticity
dependence of model atom whose initial momentum distribution is
around (px, py ) = (−0.1,−0.1) (Con. 1) and (0.0, 0.0) (Con. 2).
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harmonic yield varies with initial momentum distribution.
For this purpose, we choose a Gaussian-type momentum
distribution with FWHM width of 0.02, with the center at
(px, py) = (−0.1,−0.1) [Con. 1 in Fig. 8(b)], and another
with the center at (px, py ) = (0.0, 0.0) [Con. 2 in Fig. 8(b)].
Clearly, in Fig. 8(b), it shows that the ellipticity dependence
of harmonic yields for the former shows a strong anomaly,
while for the latter the harmonic yield drops precipitously as
ε increases. This result establishes that anomalous ellipticity
dependence of near-threshold harmonics is due to electrons
with orbiting trajectories, which in turn is determined by
the special initial momentum distribution after electrons are
released by tunneling.

Since the initial momentum distributions depend on the
target as well as the laser intensity, we expect that the anoma-
lous ellipticity dependence would depend on the atomic (and
molecular) targets, as well as the laser intensity. According
to the ADK model, the initial momentum distributions of the
ionized electrons have a Gaussian distribution with the center
at (px = 0, py = 0). The FWHM of the initial momentum
distribution is given by [35,36]

VFW HM ∝
√

ln 2

√
E0√
2Ip

, (15)

where E0 is the maximum electric field. Thus, the higher Ip is,
the narrower the FWHM of the initial momentum distribution.
For helium, it has the narrowest initial momentum distribution
(0.15 with our laser parameters) among the noble gases. Thus,
anomaly in ellipticity dependence is hardest to observe.

Finally, in Fig. 9(a) we look at the dependence of anoma-
lous ellipticity on the intensity of the driving laser, using the
9th harmonic of Kr as an example. It is found that, at the
low intensity of 1.5 × 1014 W/cm2, the 9th harmonic yield
of Kr decreases monotonically with increasing ε, which is in
stark contrast with the anomalous dependence observed at the
higher intensity of 2 × 1014 W/cm2. The observed ellipticity
dependence for these two intensities is accurately confirmed
by our theoretical calculations. In Fig. 9(b), we show the cal-
culated ellipticity dependence of the 9th harmonic of krypton
at different laser intensities based on our model. It shows that,
at low intensity (<1.7 × 1014 W/cm2), the harmonic yield of
Kr decreases monotonically with increasing ellipticity. With
further increase of intensity, the anomalous ellipticity depen-
dency of the 9th harmonic of krypton gradually becomes
obvious. From Eq. (15), a lower intensity will make the initial
momentum distribution of the ionized electron narrower, thus
limiting the contribution from orbiting electrons to prevent the
appearance of anomalous ellipticity dependence.

V. SUMMARY AND CONCLUSION

In summary, we have investigated the ellipticity depen-
dence of harmonic yields of rare-gas atoms of He, Ne, Ar,
Kr, and Xe for near-threshold harmonics (NTH). Experimen-
tally, we found that, for each noble-gas atom, the yield of
NTH would exhibit an anomaly, meaning that the harmonic
yield does not drop monotonically as the laser’s ellipticity
ε is increased. The anomaly occurs for all noble-gas atoms
studied, but He shows the weakest dependence. The NTH

FIG. 9. (a) The measured and calculated ellipticity dependence at
two different laser intensities for the 9th harmonic of krypton. (b) The
calculated ellipticity dependence of the 9th harmonic of krypton at
different laser intensities based on QTMC.

that exhibits anomaly depends on the species and laser in-
tensity. To understand these experimental results we carried
out QTMC calculations for the generation of NTH. It was
found that the Coulomb potential between the ion core and the
ionized electron is crucial for the appearance of anomalous el-
lipticity dependence. The QTMC simulation further offers an
interpretation of the origin of the anomaly. With the presence
of the Coulomb potential and the laser field, it was found that
a certain small fraction of electrons would undergo orbiting
in that the electron does not escape from the ion immediately.
Instead, the electron can orbit around the ion core a number
of times before escape. In the process, such delayed escape
introduces a larger phase (or action) associated with each
trajectory. The result of the destructive interference of these
trajectories has been found to be the reason for the observed
anomaly of the ellipticity dependence of the yield of NTH.

While it has long been recognized that the Coulomb po-
tential is important for any strong-field processes near (below
or above) the ionization threshold, precisely what role the
Coulomb potential plays is more difficult to understand,
especially within the time-dependent Schrödinger equation
picture. Using the QTMC picture, by invoking classical tra-
jectories and associating each trajectory with a phase, the role
of the Coulomb potential becomes more apparent. As demon-
strated in this article, the combing laser field and the Coulomb
potential allows the appearance of orbiting in the classical
sense, or the orbiting of the wave packet in the quantum sense.
With the QTMC, the orbiting that appears in classical physics
is easily understood. In NTH, on the other hand, it is the
phase (or action), or more precisely, the interference from
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different trajectories, that are responsible for the occurrence
of the anomaly of harmonic yields versus ellipticity of the
laser. These orbiting trajectories could be qualitatively related
to Rydberg states [24]. More precisely, the wave packet de-
scribing these orbiting electrons are made of Rydberg states.
Since Rydberg states exist only in the presence of a Coulomb
potential, near-threshold phenomena occurring in strong fields
cannot be explained without accounting for the Coulomb po-
tential. A pure quantum formulation of a theory in this energy
region would be required to treat Rydberg states correctly, but
this cannot be easily done in view of the dense density of
Rydberg states. The QTMC method employed here seems a
good model for understanding near-threshold phenomena in
strong-field physics.
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APPENDIX

In this Appendix, we show the detailed derivation from
Eq. (6) to (8). The harmonics are generated from the recombi-
nation between a final state |ψ f 〉 and an initial state |ψi〉. The
induced dipole between these two states is

di f = 〈ψ f | �A(�r, t ) · �∇|ψi〉, (A1)

where �A(�r, t ) is the electric vector potential and for a
monochromatic light �A(�r, t ) = A0(ω) cos(�k · �r − ωt )ε̂. ε̂ is
the polarization vector. Therefore, the induced dipole is [3]
:

di f = A0(ω)〈ψ f |e−i�k·�r ε̂ · �∇|ψi〉. (A2)

In the dipole approximation, it is written as

di f = A0(ω)ε̂〈ψ f | �∇|ψi〉. (A3)

According to the Eqs. (A.2) and (A.3), at a given time t1, the
final state |ψ f 〉 can be expressed as

|ψ f 〉 =
∑

N

e−i
∫ t1

t0
(L0+Le )dt |ψi〉. (A4)

Based on the formula

eÂ+B̂ = eÂeB̂e
1
2 [Â,B̂], (A5)

the term e−i
∫ t1

t0
(L0+Le )dt can be split as

e−i
∫ t1

t0
(L0+Le )dt = e−i

∫ t1
t0

(L0 )dt e−i
∫ t1

t0
(Le )dt e− 1

2 i
∫ t1

t0
(−ih̄�k)dt

,

(A6)

where we have used [L0, Le] = [T,−Ve] = −ih̄�k using Eq. (5)
in the main text. Therefore, the final state |ψ f 〉 is

|ψ f 〉 =
∑

N

e−i
∫ t1

t0
(L0 )dt e−i

∫ t1
t0

(Le )dt e− 1
2 i

∫ t1
t0

(−ih̄�k)dt |ψi〉. (A7)

Inserting Eq. (A.7) into Eq. (A.3), we obtain the induced
dipole:

di f = A0(ω)ε̂
∑

N

〈ψi|e
1
2 i

∫ t1
t0

(−ih̄�k)dt ei
∫ t1

t0
(Le )dt

× ei
∫ t1

t0
(L0 )dt �∇|ψi〉,

di f = A0(ω)ε̂
∑

N

∫
ψ∗

i e
1
2 i

∫ t1
t0

(−ih̄�k)dt ei
∫ t1

t0
(Le )dt

× ei
∫ t1

t0
(L0 )dt �∇ψidr. (A8)

If a operator is Hermitian operator, we have the formula

〈ψ |Ôϕ〉 = 〈Ô+ψ |ϕ〉. (A9)

Thus we have

di f = A0(ω)ε̂
∑

N

∫
e−i

∫ t1
t0

(Le )dt e− 1
2 i

∫ t1
t0

(−ih̄�k)dt

× ψ∗
i ei

∫ t1
t0

(L0 )dt �∇ψidr, (A10)

where we have used

[ei
∫ t1

t0
(Le )dt ]+ = e−i

∫ t1
t0

(Le )dt
,

[e
1
2 i

∫ t1
t0

(−ih̄�k)dt ]+ = e− 1
2 i

∫ t1
t0

(−ih̄�k)dt
, (A11)

and

(ÂB̂)+ = B̂+Â+. (A12)

The factor ψ∗
i ei

∫ t1
t0

L0dt is the solution of the Schrödinger
equation of an electron with momentum k in the potential Vc:[

−1

2
�∇2 + Vc

]
ψi(r) = Eψi(r), E = k2

2
. (A13)

From Ref. [41], the solution of this Schrödinger equation is

e−i
∫ t1

t0
L0dt

ψi(�r) = 1

(2π )3/2

f (±)(k̂ · r̂)

�r exp(i�k · �r). (A14)

This wave function is an outgoing (+) or incoming (−) spher-
ical wave. The function f (±)(k̂ · r̂) is called the scattering
amplitude and can be obtained as

f (+)(k̂ · r̂) = 1

2ik

∑
l

(2l + 1)[exp (2iδEl ) − 1]Pl (cos θ ),

f (−)(k̂ · r̂) = 1

2ik

∑
l

(−1)l (2l + 1)

× [1 − exp (−2iδEl )]Pl (cos θ ), (A15)

where the Pl cos(θ ) is the Legendre function, l is the angular
momentum which ranges from 0 to ∞, and E is the energy of
the electron state including the bound state (Rydberg states)
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and the continuous state. We can insert Eq. (A.14) into Eq.
(A.10):

di f = A0(ω)ε̂
∑

N

∫
e−i

∫ t1
t0

Ledt e− 1
2 i

∫ t1
t0

(−ih̄�k)dt

× 1

(2π )3/2

f (±)(k̂ · r̂)

�r exp
(−i�k · �r

) �∇ψidr. (A16)

The factor 1
(2π )3/2

f (±) (k̂·r̂)
�r exp(−i�k · �r) �∇ψi is similar to the

form of the transition dipole moment and can be defined as

1

(2π )3/2

f (±)(k̂ · r̂)

�r exp(−i�k · �r) �∇ψi = σN (E , θ ), (A17)

where E = k2/2 is the energy of the electron and θ =
atan(ky/kx ) is the angle of the electron momentum.

The remaining term e−i
∫ t1

t0
Ledt e− 1

2 i
∫ t1

t0
(−ih̄�k)dt is the propaga-

tor induced by the laser field and will be denoted as

e−i
∫ t1

t0
Ledt e− 1

2 i
∫ t1

t0
(−ih̄�k)dt = UN (E , θ ). (A18)

Therefore, we obtain the final form of the induced dipole for
the harmonic generation at a given time t1:

di f (t1) = A0(ω)ε̂
∑

N

∫
UN (E , θ )σN (E , θ )dr. (A19)

In the laser field, the energy of the electron E and the angle
of the electron momentum θ varies with time. Therefore, at
any time for each trajectory N we can acquire the energy of
the electron E (t ) and the angle of the electron momentum
θ (t ). Inserting these two terms into the Eq. (A.15), the time-
dependent induced dipole is

d (t ) = A0(ω)ε̂
∑

N

∫
UN (E (t ), θ (t ))σN (E (t ), θ (t ))dr.

(A20)
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