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Resonant control of photoelectron directionality by interfering one- and two-photon pathways
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Coherent control of interfering one- and two-photon processes has for decades been the subject of research to
achieve the redirection of photocurrent. The present study develops two-pathway coherent control of ground-state
helium atom above-threshold photoionization for energies up to the N = 2 threshold, based on a multichannel
quantum defect and R-matrix calculation. Three parameters are controlled in our treatment: the optical inter-
ference phase ��, the reduced electric field strength χ = E2

ω/E2ω, and the final state energy ε. A small energy
change near a resonance is shown to flip the emission direction of photoelectrons with high efficiency, through an
example where 90% of photoelectrons whose energy is near the 2p2 1Se resonance flip their emission direction.
However, the large fraction of photoelectrons ionized at the intermediate state energy, which are not influenced
by the optical control, make this control scheme challenging to realize experimentally.
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I. INTRODUCTION

Coherent control scenarios have generated extensive atten-
tion in condensed matter systems and in atomic and molecular
physics. The basic idea is to introduce a difference in two
alternative electric dipole transition amplitudes in order to
manipulate the interference between them and thereby control
an observable outcome. In particular, phase-sensitive coher-
ently controlled quantum interference enables observation of
novel physics. For example, the two-color phase-sensitive
coherent control can be applied to various scenarios in phys-
ical chemistry and molecular physics in order to control the
branching ratio among different reaction products [1–3], to
rotate the molecular polarization, and to selectively ionize
oriented molecules [4]. In condensed matter physics it is pri-
marily of interest to control the current flow direction in a
semiconductor [5,6], and in quantum computation to depress
the linkage error of qubits [7]. This technique is also used in
femtosecond and attosecond experiments [8] and in the strong
field regime [9], and to achieve quantum path control between
short and long electron trajectories [10].

Compared with the extensive experimental literature, there
are comparatively few theoretical calculations that provide
a full treatment of such coherently controlled systems [11].
Several calculations have been carried out for photoioniza-
tion of Ne [12,13], H2 [14], and dc-field dressed hydrogen
and alkali-metal atoms in a limited energy range [15,16].
The present study treats the ω − 2ω coherent control of he-
lium ionization, an atom for which the electron correlations
have been extensively calculated and interpreted [17–22]. The
present study computes the photoelectron angular distribution
(PAD) to analyze the phase dependence of the directional
right-left (or upper-lower) asymmetry parameter, especially
as influenced by Fano-Feshbach resonances, and the role of
autoionizing states in affecting the interference between one-
and two-photon ionization pathways. In contrast to previous
studies of the coherent control of photoelectron branching

ratios into multiple open channels [23–26], the present treat-
ment considers ionization into a single open channel that
possesses, however, three contributing partial waves.

II. THEORY

The bichromatic laser electric field considered in our treat-
ment is given by �E (t ):

�E (t ) = ε̂(E2ωe−i(2ωt+�2ω ) + Eωe−i(ωt+�ω ) + c.c.). (1)

Here Eω,2ω are the electric field amplitudes for the fundamen-
tal and second harmonic. The two fields have a variable but
well-defined phase relation, denoted by �ω,2ω, and both of the
fields are chosen here to be linear polarized along a common z
axis, i.e., ε̂ = ẑ. The frequency range considered is ω = 1.0–
1.2 a.u. The schematic diagram of the ionization process is
shown in Fig. 1. A ground-state He atom at Eg = −2.90 a.u.
absorbs either one photon with energy 2ω or two photons with
each energy ω, reaching a final state f with energy from −0.9
to −0.5 a.u. (indicated by the upper shaded region of Fig. 1).
The two-photon pathway is an above threshold ionization
(ATI), with intermediate energies given by the lower shaded
region of Fig. 1. The resonances converging to the N = 2
threshold are of particular interest. The atomic orbital angular
momentum is initially Li = 0, and it changes after absorption
of one electric dipole photon to L f = 1, or after two-photon
absorption to L f = 0, 2. The parity π flips between even and
odd for each photon absorption step, and the atomic spin
S remains in the singlet state since spin-spin and spin-orbit
interactions are neglected in this study.

It is well known that the ω − 2ω scheme displays no inter-
ference effects that can influence the total yield [27]. This is
because the even- and odd-parity final states are in principle
distinguishable, which implies that no interference occurs in
any observable that commutes with the parity operator such as
the integrated absorption rate. However, the ω − 2ω scheme
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FIG. 1. Schematic energy level diagram of helium for the rel-
evant transitions. The He ground state is ionized, with the one-
and two-photoionization pathways indicated by arrows. The shaded
regions show the energy ranges considered for the final and inter-
mediate states, both of which are between the N = 1 and N = 2
thresholds. The dashed lines give the lowest few bound and autoion-
izing energy levels [17] below the N = 1 and N = 2 thresholds,
respectively, with 2S+1Lπ spectroscopic labels from left to right as
1Se, 1Po, and 1De. The autoionization levels that are relevant to our
calculations are those above the N = 1 thresholds. There are no
intermediate-state resonances involved in the frequency range con-
sidered, only an open ionization continuum.

influences the angular emission of the photoelectron, since
an angular observable represents an operator that does not
commute with parity. This interference has been confirmed
by experiments [25–28], which show that tuning the phase
difference �� = 2�ω − �2ω causes a sinusoidal modulation
that can be observed in the integrated lower or upper (negative
or positive z) dominance in the photoejection directions. The
remainder of this article shows the sinusoidal modulation in
the computed photoelectron angular distribution dW (θ )

d	
:

dW (θ )

d	
= |c0Y00(θ )eiφ0 + c1Y10(θ )ei(φ1+��) + c2Y20(θ )eiφ2 |2

= Wtot

4π

4∑
j=0

β jPj (cos θ ). (2)

Here θ is the polar angle between the ejected electron and
the polarization axis; there is no φ dependence owing to the
azimuthal symmetry. Wtot is the angle-integrated transition
rate and β0 ≡ 1. In the first line of Eq. (2), the differential
transition rate dW (θ )

d	
is given by a coherent sum of the different

angular components, with complex transition amplitude cl eiφl

for partial wave l , where cl is real and positive. Since a
photoelectron in our calculation can escape only with He+

in the 1s state, its angular momentum takes the values l =
L f = 0, 1, 2. The experimentally controllable optical phase is
�� = 2�ω − �2ω, which is distinct from the intrinsic phases
in the amplitudes φl that reflect the atomic physics. Note that
the latter are strongly energy dependent near resonances and
thresholds: they include contributions from the long-range
Coulomb potential, the electron correlations, and the interme-
diate scattering states.

The second line of Eq. (2) rearranges the summed prod-
ucts of spherical harmonics Yl0(θ ) into Legendre polynomials
Pj (cos θ ) with real coefficients β j . The even (odd) order
Pj (cos θ ) gives the symmetric (antisymmetric) photoelectron
distribution along θ = π/2 which produce differences be-
tween the lower and upper halves of the emission sphere,
i.e., the negative and positive z regions, respectively. In the
absence of interference, the odd orders of Pj (cos θ ) would
vanish and no asymmetry would be observed between the two
hemispheres. With some specific values of β j , it is possible
to guide most electrons to one side, as we will demonstrate
in the latter discussion. A directional asymmetry parameter
αL = WL/(WL + WU ) has been measured in some experiments
[25–28], so we use it to quantify the ratio between the lower-
directed electron current and the total:

WL = 2π

∫ π

π
2

dW (θ )

d	
sin θdθ = Wtot

2

(
1 − 1

2
β1 + 1

8
β3

)
,

WU = 2π

∫ π
2

0

dW (θ )

d	
sin θdθ = Wtot

2

(
1 + 1

2
β1 − 1

8
β3

)
.

(3)

For αL = 1 (or 0), all the photoelectrons go to the lower
(upper) side, while at αL = 0.5, there is no preference over
either direction; this usually happens at resonances when one
of the definite parity pathways is dominant. β j and the total
rate Wtot in terms of the transition amplitudes cleiφl are given
here:

Wtot = c0
2 + c1

2 + c2
2,

Wtotβ1 = 2
√

3c0c1 cos [�� − (φ0 − φ1)]

+ 4

√
3

5
c1c2 cos [�� − (φ2 − φ1)],

Wtotβ2 = 2c1
2 + 10

7
c2

2 + 2
√

5c0c2 cos (φ2 − φ0),

Wtotβ3 = 6

√
3

5
c1c2 cos [�� − (φ2 − φ1)],

Wtotβ4 = 18

7
c2

2. (4)

Therefore the directional asymmetry parameter αL is

αL = 1

2
−

√
3

2

c0c1

c0
2 + c1

2 + c2
2

cos [�� − (φ0 − φ1)]

−
√

15

8

c1c2

c0
2 + c1

2 + c2
2

cos [�� − (φ2 − φ1)]

≡ 1

2
+ A(χ, ε) cos [�� − ϕ(ε)]. (5)

The second equality of Eq. (5) recasts the directional asym-
metry parameter αL in terms of an amplitude A(χ, ε) and a
phase ϕ(ε), both of which are energy sensitive (ε = Eg + 2ω

is the final state energy). The amplitude A also depends on
the electric fields Eω,2ω, as a function of χ = E2

ω/E2ω, while
ϕ is independent of the field strengths. 0 � A � 1

2 and 0 �
ϕ � 2π . In order to maximize αL, ϕ should equal the optical
phase difference. As we will show, ϕ is encoded with electron-
correlation information as are the phases φi.
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The transition amplitudes cleiφl for weak electric fields can
be computed using perturbation theory [29,30]:

c0eiφ0 =
√

2π

3
E2

ω〈 f0|G(ω, �r′, �r)�r′ · �r|i〉,

c1eiφ1 =
√

2πE2ω〈 f1|rz|i〉,

c2eiφ2 =
√

2π

3
E2

ω〈 f2|G(ω, �r′, �r)(3r′
zrz − �r′ · �r)|i〉. (6)

Here |i〉 and | fl〉 are the energy eigenstates for the unperturbed
helium atom. In the formula above, we rearrange the dipole
operators: usually for one- and two-photon transitions we have
d (1) = �r · ε̂ and d (2) = (�r′ · ε̂)(�r · ε̂) (where vector operator
�r = �r1 + �r2 is the sum for the two electrons in helium; dipole
approximation is applied). In Eq. (6) the single-photon and
two-photon electric dipole transition operators are written as
rank-0, -1, and -2 tensors for different l . For the two-photon
amplitudes, the Green’s function is introduced for the inter-
mediate ATI transition and can be written formally as

G(ω, �r′, �r) =
∫∑

m

〈�r′|m〉〈m|�r〉
ω − �mi

. (7)

�mi = Em − Eg, where intermediate energies Em include all
the eigenvalues of the unperturbed helium Hamiltonian that
obey the parity and angular momentum selection rules for
single-photon ionization [31]. A mixed notation

∫∑
m of sum-

mation and integration is used, because |m〉 includes both
bound and continuum states with different normalizations.

Equation (6) are computed using generalized multichannel
quantum defect (MQDT) [32–35] and the streamlined R-
matrix method [36]. In our calculation, an artificial boundary
is set at the radius R0 = 15 a.u. from the nucleus, within which
the electron-electron interactions will be fully considered.
For the region outside the boundary, the Gailitis-Damburg
transformation [37–39] is used to incorporate the electron cor-
relations up to the second order in 1/r. The Green’s function
G(ω, �r′, �r) [Eq. (7)] is solved through an inhomogeneous R-
matrix method implemented by Robicheaux and Gao [31,40].
The details of all these methods can be found in Ref. [30]. Our
calculation follows the PAD results treated in previous studies
such as Refs. [30,41,42].

III. RESULTS AND DISCUSSION

In this paper, the optical control of αL will be discussed
in terms of three parameters: the relative laser phase ��, the
reduced field strength χ = E2

ω/E2ω, and the final state energy
ε that plays a major role owing to the existence of resonances.
The computation of A(χ, ε) and ϕ(ε) versus energy is the
main feature of our work, plus the identification of regions
where very high control is readily achievable. With the knowl-
edge of αL, the redirection of photoelectron emission can
be discussed in a more complete manner, as control can be
optimized by choosing energies that maximize the directional
asymmetry. In addition, photocurrents can be redirected not
only through phase control, but also by tuning the photon
frequency with fixed phases and field strengths.

First, consider our results for αmax
L when the reduced field

strength χ and optical phase difference �� are optimized
at each energy. To maximize αL the choice of optical phase

FIG. 2. (a) The solid curve shows the maximized ratio of lower-
oriented electrons αmax

L obtained by optimizing the reduced field
strength χ = E2

ω/E2ω and optical phase �� at each energy. The
dashed curve shows the αL when χ = 1. The background vertical
lines give the position of resonances (with different symmetries
indicated by different line types); those positions are near the local
minima of the αL curves. (b) The directional asymmetry phase ϕ as
the solid curve, namely the optical phase corresponding to αmax

L . ϕ

experiences a dramatic change over 2π or ±π across a resonance,
which can be traced back to the dipole transition moment phases φl

that are shown as dashed curves.

is �� = ϕ(ε) [Fig. 2(b)]. The choice of χ is determined
by writing the amplitude A in the form A(χ, ε) ∝ χ/(a(ε) +
b(ε)χ2), with a(ε) and b(ε) being determined from Eq. (6).
A single peak of A(χ, ε) exists at χ0(ε). Note that whatever
is the value of χ , there is no influence on the value of ϕ, and
therefore the two parameters can be tuned separately and inde-
pendently. By selecting a proper χ , we can largely improve the
efficiency of coherent phase control of the directional electron
photoemission.

Our calculated αmax
L = 1/2 + A(χ0(ε), ε) is plotted in

Fig. 2(a) as the solid curve. Observe that αmax
L ranges between

0.65 and 1.0 and indicates a quite high-efficiency level of
control. However, at energies near the resonances, which are
the regions of our greatest interest, αmax

L drops down. This is
expected since the symmetry of any specific resonance has
a single transition amplitude there that overwhelms the am-
plitude from other channels, and the PAD behaves as if only
a single pathway is allowed. This is even more obvious for
αL at χ = 1 a.u. (shown as the thin dashed curve), where αL

drops back to 0.5 at almost every resonance energy. Accord-
ingly, tuning the reduced field strength χ can alleviate but not
eliminate the asymmetry-diminishing tendency at resonance
energies.

The directional asymmetry phase ϕ(ε) is presented in
Fig. 2(b). When far away from the resonance, ϕ(ε) expe-
riences a small change over the whole range, fluctuating
only over 0.55π–0.7π . However, across the resonance it
changes dramatically over the full possible range of 2π
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or ±π . These features of ϕ(ε) would enable frequency-
sensitive coherent control to redirect the photocurrent, as
is discussed below. The changes of ϕ(ε) show a behav-
ior similar to that of the dipole transition phases φl (the
dashed curves), which are properties of the final and inter-
mediate scattering states. The wave function of a detected
photoelectron satisfies the incoming wave boundary condition
[43]: It approaches the outgoing wave portions of a plane
wave pointing towards the detector at infinity, implying that
the scattering wave function can parametrized as ψ f (r) →

1√
2πk

(eikrri/k − e−2iδl e−ikrr−i/k ), where δl = ηl + πτl , with ηl

the Coulomb phase parameters: ηl = ln(2k)
k + arg[�(l + 1 −

i
k )] − lπ

2 , and τl incorporate both the quantum defects and the
influences from all the closed channels [44]. For the single-
photon transition we have φ1 = δ1. For a two-photon ATI pro-
cess, there is an extra phase that comes from G(ω, �r′, �r). Since
the undetected intermediate scattering wave can be treated
as purely outgoing at large distance [31], G(ω, �r′, �r) can be
written into a principal value part and an “on shell” part as [32]

G(ω, �r′, �r) = G (P )(ω, �r′, �r) − iπ〈�r′|m(sh)〉〈m(sh)|�r〉, (8)

where G (P )(ω, �r′, �r) is the principal value Green’s function,
and the on-shell state 〈�r|m(sh)〉 is 〈�r|m〉 at energy Em = Eg + ω

[see Eq. (7)]. The complex-valued on-shell contribution
introduces an intermediate phase, which is partly responsible
for the nonzero value of the minimum total cross section
for the two-photon ATI process in the Fano lineshape [30].
In contrast, the minimum total cross section is normally
expected to be zero for an autoionizing state that can decay
into only one continuum.

Based on the discussions of A(χ, ε) and ϕ(ε), we now
explore the possibility of redirecting the photocurrent through
frequency control. As demonstrated in Fig. 2, the asymmetric
phase ϕ changes rapidly with energy when across the reso-
nance, therefore with a fixed optical phase ��, a small change
of ε can flip the escape direction of the photoelectrons be-
tween upper and lower halves of the emission sphere. Now we
consider the difference of αL at two energies ε1 and ε2, using
the same optical quantities (��,χ ). This gives an expression
for (α(1)

L − α
(2)
L ), namely

α
(1)
L − α

(2)
L = A1 cos (�� − ϕ1) − A2 cos (�� − ϕ2)

= Re[ei��(A1e−iϕ1 − A2e−iϕ2 )]. (9)

For this exploration �� = −arg(A1e−iϕ1 − A2e−iϕ2 ), and χ

is chosen to maximize |A1e−iϕ1 − A2e−iϕ2 | at each pair of
energies. Next we scanned through all the (ε1, ε2) from −0.5
a.u. to −0.9 a.u. to search for candidates that have a large
orientation difference. The maximum |α(1)

L − α
(2)
L | for all the

energy points are shown in Fig. 3(a).
The bright grids represent regions where the angular asym-

metry difference |α(1)
L − α

(2)
L | is large, which generally tends

to happen when at least one energy is close to a resonance.
When both ε1, ε2 are far from resonances |α(1)

L − α
(2)
L | is

small, which is expected since according to Fig. 2 in those re-
gions ϕ1,2 show little difference from each other. The points of
greatest interest are near the intersections of the grids, where
|α(1)

L − α
(2)
L | rapidly changes, i.e., in those regions where both

energies are on or near resonance. A specific example point

FIG. 3. (a) The differences in photoelectron directional asym-
metry |α(1)

L − α
(2)
L | are shown for all possible (ε1, ε2) from

−0.5 a.u. to −0.9 a.u. �� and χ are chosen to optimize the dif-
ference |α(1)

L − α
(2)
L | at each value of the two energies on the plane.

The bright grids indicate places where the energy pairs have a large
angular asymmetry, and they show a close overlap with the “reso-
nance mesh” of horizontal and vertical stripes. The blue point near
the S-wave 2p2 resonance indicates the energies considered in (b).
(b) An example demonstrating how frequency-sensitive control can
almost completely redirect the photoelectrons. The parameters are
given in the figure. At �� = 0.63π (dashed vertical line) α

(1)
L − α

(2)
L

is maximized, with the values marked on the ticks. A polar plot of
dW (θ )

d	
using the parameters indicated by the dashed lines is given in

the right panel. With two very close frequencies, one drives most
photoelectrons along the polarization axis +ẑ, while the other oppo-
site that direction.

has been selected near the S-wave 2p2 resonance, shown in
Fig. 3(a) as a blue point, for the following analysis.

The blue point is at ε1 = −0.6226 a.u. and ε2 = −0.6213
a.u., which go across the S-wave 2p2 resonance at −0.6222
a.u. with width � = 2.36 × 10−4 a.u. The corresponding
values of the other key parameters are χ = 0.1017, �� =
0.63π . Their directional asymmetry parameters α

(1),(2)
L versus

�� are presented in Fig. 3(b), and they are entirely out of
phase from each other; when �� = 0.63π , both of the asym-
metry parameters reach their corresponding extrema with
values 0.961 and 0.109. The choice of χ maximizes this dis-
parity, and it enables the one-photon transition (p wave) to be
strong enough to interfere with the strong on-resonance two-
photon transition (s wave). To examine the physics at those
extremum points, the PAD dW (θ )/d	 is calculated with

053118-4



RESONANT CONTROL OF PHOTOELECTRON … PHYSICAL REVIEW A 103, 053118 (2021)

FIG. 4. The ionization rate of photoelectron escaping with dif-
ferent kinetic energies (K.E.), with laser intensities Iω = 2.0 × 1013

W cm−2 and I2ω = 1.10 × 1012 W cm−2. �1s,g = E1s − Eg =
24.58 eV is the energy difference from the 1s threshold and the
ground state. The ionization rate at ω − �1s,g is about 100 times
larger than the rate for 2ω − �1s,g, which makes it challenging to
detect the directional asymmetry properties of the faster electrons,
although the two different energies are readily discriminated.

the parameters cited above, shown in Fig. 3(b) right panel.
This demonstrates how different the photoejection directions
can be at ε1 = −0.6226 a.u. (ω = 31.032 eV) and ε2 =
−0.6213 a.u. (ω = 31.049 eV). The central energies ε1, ε2

have been convolved over a resolution of ±3.5 × 10−4 a.u.
(0.01 eV), in order to simulate a realistic experiment with
finite resolution.

One realization of the reduced field at χ = E2
ω/E2ω =

0.1017 a.u. is to use lasers with intensities Iω = 2.0 × 1013

W cm−2 (fundamental) and I2ω = 1.10 × 1012 W cm−2

(second harmonic), where Eν = √
2Iν/ε0c a.u./5.1422 × 109

V cm−1. Based on these laser intensities, we analyze
here the reasonableness of a possible implementation
of this frequency-sensitive control scheme. The total
rates for asymmetric photoejection in Fig. 3(b) are
Wtot (ε1) = 2.54 × 10−5 a.u. and Wtot (ε2) = 3.08 × 10−5

a.u., but these only include photoelectrons that escaped after
absorbing 2ω of energy. There are extra photoelectrons that
escape from the two-photon pathway intermediate process,
i.e., from absorbing a single photon of frequency ω, which
have not been discussed, because they are not being controlled

by the optical interference effect. The ionization rate for the
“intermediate state leaked” ω-absorption process is much
stronger, usually by a factor of 100, than the 2ω-absorption
process. At energies ε1 and ε2, their corresponding
intermediate ionization rate is around 1.99 × 10−3 a.u. Thus
to observe the experimental interference control predicted in
the present study, electron energy discrimination is required.
The ionization rates Wtot for both the processes covering
final state energy ε from −0.9 to −0.5 a.u. are given in
Fig. 4. The dominance of intermediate ionization is rather
typical for most ATI processes, except for a few cases when
the intermediate states hit a near-zero ionization minimum,
which are found in some alkaline earth atoms such as Ca, Sr,
and Ba. Searching for proper ionization processes that can
suppress the intermediate leakage can be a goal for our future
study. For helium where the intermediate states lie in a flat
continuum for the energy range considered in this study, the
ratio between 2ω and ω absorption is around E2

ω a.u.—very
tiny for electric field below the tunneling region, which
implies that the optical control scheme is not highly efficient.

IV. CONCLUSION

To conclude, the present treatment of energy-dependent
coherent control over the directional asymmetry of helium
ionization has identified the optical phase difference �� and
reduced electric field strength χ that largely enhance the
degree of control of the directional photoejection asymme-
try. Our study suggests an alternative way of redirecting the
photoelectrons by changing the laser frequency but with a
fixed relative phase and field strength ratio, and we presented
an example using this frequency-sensitive controlling scheme
to redirect photoelectron with final state energies across the
S-wave 2p2 resonance. However, due to the existence of
intermediate-state photoionization, the coherent control can
only influence a small fraction of the total electron current
which makes any experimental test of our predictions de-
manding. Future studies of the alkaline earth atoms that have
a continuum ionization minimum of either the Fano or Cooper
type might circumvent this issue.
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