
PHYSICAL REVIEW A 103, 053117 (2021)
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We address theoretically the problem of laser-induced dynamics of an electron, whose effective mass is
position dependent (e.g., due to an effect of a semiconductor nanostructure environment). We derive the
associated classical acceleration-gauge Hamiltonian HAG(t ) under the most general conditions, even without
imposing the dipole approximation. It is shown that HAG(t ) possesses an intriguing structure arising due to the
spatial dependence of the electronic mass. Subsequently, we restrict ourselves to a weak-field intensity regime,
and derive the corresponding quantum mechanical acceleration-gauge Hamiltonian ĤAG(t ) which differs from
its classical counterpart by an extra quantum term, Q̂M. Our theoretical findings are illustrated numerically by
calculating the probability |T (E )|2 of the resonance transmission of an electron through a model semiconductor
nanostructure. It is demonstrated that the quantum mechanical Q̂M term of ĤAG(t ) does often affect crucially the
profile of |T (E )|2.
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I. INTRODUCTION

The purpose of this work is to generalize the concept of
the acceleration-gauge (AG) representation [1] to a situation
when a charged particle with a position-dependent mass un-
dergoes laser driving in the presence of an external potential.
This study is partially motivated by our recent paper [2],
where we have investigated the transmission of an electron
through a semiconductor nanostructure in the presence of
a weak monochromatic laser field. The theory presented in
Ref. [2] was based upon the AG, and we have tacitly as-
sumed that the effective (renormalized) mass of the electron
moving in the semiconductor nanostructure environment is
constant (i.e., position independent). However, in most if
not all experimental arrangements involving semiconductor
nanostructures, the renormalized electron mass actually does
depend appreciably upon position [3,4], as the chemical com-
position of the semiconductor substrate is varied intentionally
from layer to layer in order to create potential barriers or
wells. This fact naturally prompts us to formulate the AG
theory adequate for such circumstances.

For the case of a constant mass, the concept of AG rep-
resentation was first introduced by Kramers and Henneberger
[1]. Subsequently, the AG became well established as a valu-
able element of the toolset of theoretical atomic, molecular,
and optical (AMO) physics. Indeed, the AG has proven its
merits in enabling the physical interpretation of such phe-
nomena as high-harmonic generation and above threshold
ionization [5], the strong-field and high-frequency stabiliza-
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tion effect [6], enhancement/suppression of tunneling by weak
laser driving [7], laser-assisted scattering [2,8], and even in the
context of forming unusual chemical bonds between atoms
dressed by laser light [9], or for the creation of an artificial
laser-generated atom with no nucleus [10]. The just mentioned
examples strongly suggest that looking for the AG represen-
tation, for the case of a position-dependent mass, constitutes
per se a legitimate and promising direction of research.

The structure of the paper is as follows. In Sec. II we give
an overview of our most significant theoretical results and
their numerical illustrations, while emphasizing the physical
contents, and suppressing deliberately all the technical details
regarding the underlying derivations and computations. On
the other hand, Sec. III is devoted exclusively to a system-
atic self-contained technical elaboration and discussion of all
the theory sketched in Sec. II. Those readers who wish to
focus mainly on the physics phenomena may prefer to skip
Sec. III in their first reading. Section IV describes then rather
thoroughly our numerical calculations (and the underlying
scattering theory of electrons through semiconductor nanos-
tructures). Finally, Sec. V contains the concluding remarks.

II. OVERVIEW OF THE MAIN RESULTS

A. The general acceleration-gauge Hamiltonian

We consider a charged nonrelativistic quantum particle
(e.g., an electron) which is exposed to driving by an externally
prescribed classical electromagnetic field A(t, x) (e.g., by a
laser pulse). The particle resides in a semiconductor nanos-
tructure environment, which modifies its physical mass m
into an effective position-dependent mass m(x). An adequate
momentum-gauge (MG) Hamiltonian describing the just
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introduced problem reads as follows [3]:

ĤMG(t ) =
(

p̂ − q

c
A(t, x̂)

)
1

2 m(x̂)

(
p̂ − q

c
A(t, x̂)

)
+ V (x̂).

(1)
Here, V (x) stands for the associated scalar potential, and the
meaning of all the other symbols is self-evident.

The purpose of the present paper is to switch from the
MG into the acceleration gauge (AG), which, in the case of
a constant mass, has been often preferred in numerous past
studies of matter-light interaction both for conceptual and
practical purposes, as already pointed out in the Introduction.
In Sec. III A below, the passage from the MG into AG is
performed in a self-contained manner within the classical
mode of description, and canonical quantization is applied
subsequently. The resulting AG Hamiltonian is then found to
be

ĤAG(t ) = p̂T · QT (t, ŷ) · Q(t, ŷ) · p̂
2 m(ŷ + F(t, ŷ))

+ V (ŷ + F(t, ŷ))

+ q2

2 m(ŷ + F(t, ŷ))c2
A2(t, ŷ + F(t, ŷ)) + Q̂M

(2)

[see Eq. (37) of Sec. III]. Here, ŷ represents the AG position
operator, p̂ the associated canonical momentum, and F(t, y)
plays the role of the Kramers-Henneberger (KH) quiver am-
plitude [1,5]. In the rather general setting presented here
(when the mass is allowed to be more or less arbitrarily po-
sition dependent, and when even the dipole approximation is
not imposed), the entity F(t, y) is obtainable by solving the
following initial value problem,

∂t F(t, y) = − q

m(y + F(t, y)) c
A(t, y + F(t, y)),

F(t → −∞, y) = 0 (3)

[see Eqs. (30) and (31) of Sec. III]. Prescription (3) needs to
be recognized as an ordinary (nonlinear) differential equation
for F(t, y), in which t is the relevant active variable, and
the spatial location y stands just for a fixed parameter. Entity
Q(t, y) appearing in (2) should be understood as an inverse
of a 3×3 Jacobian matrix G(t, y) with elements Gj j′ (t, y) =
δ j j′ + ∂ jFj′ (t, y). Finally, the as yet undetermined last term
Q̂M of (2) compensates formally for the possibly improper op-
erator ordering, and makes thus ĤAG(t ) [of Eq. (2)] the unitary
equivalent to ĤMG(t ) [of Eq. (1)]. Clearly, Q̂M is of a purely
quantum mechanical origin, and it becomes irrelevant in the
classical limit. An explicit form of Q̂M will be given below
in Sec. II B under some additional simplifying assumptions
[see Eq. (7)].

B. One-dimensional systems, and weak-field regime
under the dipole approximation

More explicit insights into the studied problem can be
obtained in the one-dimensional case, while assuming the
regime of weak-field intensities and while imposing the dipole
approximation. The MG Hamiltonian ĤMG(t ) of Eq. (1) is

simplified accordingly, into

ĤMG(t ) = p̂
1

2 m(x̂)
p̂ − q

2 c
A(t )

{
1

m(x̂)
p̂ + p̂

1

m(x̂)

}
+ V (x̂).

(4)
The corresponding AG Hamiltonian ĤAG(t ) of Eq. (2) pos-
sesses then the following appearance,

ĤAG(t ) = p̂
1

2 m(ŷ − F (t, ŷ))
p̂ + V (ŷ + F (t, ŷ)) + Q̂M (5)

[see Eq. (67) of Sec. III]. Here, the associated KH quiver
amplitude F (t, y) is given by an explicit formula

F (t, y) = − q

m(y) c

∫ t

−∞
A(τ )dτ (6)

[see Eq. (44) of Sec. III]. Moreover, the peculiar quantum
mechanical Q̂M term comes out explicitly as

Q̂M = h̄2

4

(
F ′′(t, y)

m(y)

)′
, (7)

with the prime superscript standing for the spatial derivative
∂y [see Eq. (68) of Sec. III]. Our above displayed AG Hamil-
tonian ĤAG(t ) of Eq. (5) is the unitary equivalent to ĤMG(t )
of Eq. (4) up to the leading order O(ε0) of the maximum
electric field amplitude ε0 (see Secs. III B 2, IV A, and IV B
for details). Before proceeding further, let us point out that the
mass term m(ŷ − F (t, ŷ)) of Eq. (5) contains a minus sign,
as opposed to the mass term m(ŷ + F(t, ŷ)) of Eq. (2). This
sign difference arises due to terms brought in by the Jaco-
bian matrix Q(t, ŷ) in the weak-field regime [see Sec. III B 1
below and especially Eq. (46); cf. also Eqs. (65) and (66) of
Sec. III B 2].

C. Illustrative numerical examples

The physical equivalence of the above presented Hamil-
tonian formulas (4) and (5) is tested by investigating
numerically the phenomenon of resonant tunneling of an elec-
tron through a pair of potential barriers in the presence of a
monochromatic weak intensity laser light. The employed for-
malism of complex scaled scattering theory is essentially the
same as in our previous work [2] (see also the corresponding
Supplemental Material). There is only one substantial differ-
ence, namely, in our present paper, the mass m(y) depends
explicitly upon position, and this highly nontrivial fact needs
to be properly accounted for, either via the standard MG
Hamiltonian ĤMG(t ) of Eq. (4), or through our AG Hamil-
tonian ĤAG(t ) of Eq. (5) displayed above.

Figure 1 presents the results of our first example calcula-
tion. The upper panel shows the used double-barrier potential
V (x), which is similar as in Ref. [2]. The middle panel depicts
the chosen profile of the position-dependent mass m(x). One
can see that m(x) varies with x in much the same manner as
V (x) (see Sec. IV C for explicit details). Such a choice of m(x)
is consistent with a physically motivated assumption that both
V (x) and m(x) are determined by the local composition of
the semiconductor material inside which the electron is set to
move [3,4]. Note also that the asymptotic region of x → ±∞
corresponds to a constant (spatially homogeneous) semicon-
ductor. This is why m(x → ±∞) approaches a constant value
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FIG. 1. Numerical illustration of physical equivalence between
the MG and AG Hamiltonians (4) and (5). Upper panel: The used
potential function V (x). Middle panel: The used mass function m(x).
Lower panel: The corresponding transmission probability |T (E )|2
plotted as a function of energy E of the incoming electron. More
details regarding the system parameters can be found in Sec. IV.

which still differs from the usual mass of an electron in free
space. The lower panel of Fig. 1 depicts then the obtained
transmission probability |T (E )|2 plotted as a function of the
incident energy E of the electron. Most importantly, the blue
line profile of |T (E )|2, calculated using the MG Hamiltonian
ĤMG(t ) of Eq. (4), agrees almost exactly with the dashed
red line outcome, which is based upon the AG Hamiltonian
ĤAG(t ) of Eq. (5). A tiny but visible difference between the
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FIG. 2. Another numerical illustration of physical equivalence
between the MG and AG Hamiltonians (4) and (5). The potential
V (x) is the same as in Fig. 1. Upper panel: The used mass function
m(x), varying now substantially less along x compared to the case
of Fig. 1. Lower panel: The corresponding transmission probability
|T (E )|2 plotted as a function of energy E of the incoming elec-
tron. More details regarding the system parameters can be found
in Sec. IV.

MG and AG results is most likely attributable to the weak-
field assumption inherent in ĤAG(t ). In addition, and most
importantly, the solid yellow line of Fig. 1 demonstrates that
the purely quantum mechanical contribution Q̂M [of Eq. (7)]
to ĤAG(t ) cannot be ignored, since it affects crucially the
resulting profile of |T (E )|2. More details regarding the system
parameters and the computational method are conveniently
relegated to Sec. IV.

Our second illustrative calculation is presented in Fig. 2.
We have implemented only a single modification of the system
parameters of Fig. 1, namely, the used mass function m(x)
varies now substantially less with x compared to the m(x) of
Fig. 1. Note also that the asymptotic mass value m(x → ±∞)
remains the same as in Fig. 1. As the x variation of m(x)
becomes weaker, the magnitude of the Hamiltonian term Q̂M
of Eq. (7) is scaled down accordingly, hence also the physical
fingerprints of Q̂M are expected to become less significant.
Figure 2 neatly confirms this anticipation, showing that Q̂M
can actually be neglected, almost without changing the re-
sulting outcome |T (E )|2. Additional details, including more
plots, are again relegated to Sec. IV.
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III. SELF-CONTAINED DERIVATION OF THE
ACCELERATION-GAUGE HAMILTONIAN

A. The general acceleration-gauge Hamiltonian

1. Starting point

Let us consider a charged nonrelativistic classical particle
living in three spatial dimensions. This particle is assumed to
possess a position-dependent mass m(x), and it is exposed to
an action of an external potential V (x), as well as to driving by
an externally prescribed classical electromagnetic field A(t, x)
(e.g., by a laser pulse). The just presented classical problem is
characterized by the following standard1 Lagrangian [11],

L(x, ẋ) = 1

2
m(x)ẋ2 − V (x) + q

c
A(t, x) · ẋ, (8)

where the overdot denotes the time derivative. The meaning of
all the other involved symbols should be self-evident. We do
not invoke the dipole approximation here. Proceeding towards
the Hamiltonian formalism in standard fashion [12], we define
the canonical momentum conjugate P of x, by the formula

Pj = ∂L

∂ ẋ j
= m(x)ẋ j + q

c
Aj (t, x), (9)

then also

ẋ j = 1

m(x)

(
P j − q

c
Aj (t, x)

)
. (10)

The corresponding Hamiltonian is subsequently obtained via
the Legendre transform,

HMG(t ) = ẋ jPj − L = 1

2 m(x)

(
P − q

c
A(t, x)

)2

+ V (x).

(11)

This is of course the well-known momentum-gauge (MG)
Hamiltonian [11].

2. Passage to the acceleration gauge: Coordinate transformation

Our goal is to invent now the passage from the MG into
the acceleration gauge (AG), while taking into account the
already discussed spatial dependence of the mass m(x), and
without imposing any additional simplifying assumptions (in
particular, without resorting to the dipole approximation). We
shall start our elaborations by carrying out a coordinate trans-
formation

x = y + F(t, y), (12)

in analogy to the original work of Kramers and Henneberger
[1]. Here, y represents the AG spatial coordinate, and the
entity F(t, y) (to be called the quiver amplitude in conformity
with usual practice [1,5]) stands for an as yet unspecified
function of space and time, confined only by the requirement
of invertibility of formula (12). Clearly, prescription (12) es-
tablishes a bijective correspondence x ↔ y if the Jacobian
matrix G(t, y), with elements

Gj′ j (t, y) = ∂x j

∂y j′ = δ j j′ + ∂ j′Fj (t, y), (13)

1This is standard except for including the spatially dependent mass.

is always regular at all locations y, i.e., if

det G(t, y) �= 0 (∀ t ∈ R)(∀ y ∈ R3). (14)

Condition (14) is obviously satisfied as long as all the spatial
derivatives ∂ j′Fj (t, y) are small enough in magnitude; we shall
return to this issue later on at the end of Sec. III A 4. For our
forthcoming purposes, it is convenient to define at this point
also the inverse Jacobian matrix

Q(t, y) = G−1(t, y). (15)

The corresponding matrix elements

Q j j′ (t, y) = ∂y j′

∂x j
(16)

can be worked out analytically using (13) if needed.

3. Passage to the acceleration gauge: Elaborations

The differentiation of Eq. (12) with respect to time yields

ẋ = ẏ + Ḟ(t, y) + ∂ jF(t, y)ẏ j . (17)

We have conveniently adopted here the Einstein summation
convention (one performs a summation over each pair of re-
peated indices). Correspondingly, the Lagrangian (8) can be
transformed into an equivalent appearance

L(y, ẏ) = 1
2 m(y + F(t, y))(ẏ + Ḟ(t, y)

+ ∂ jF(t, y)ẏ j )2 − V (y + F(t, y))

+ q

c
A(t, y + F(t, y)) · (ẏ + Ḟ(t, y) + ∂ jF(t, y)ẏ j ).

(18)

Proceeding towards the Hamiltonian formalism in standard
fashion [12], we define the canonical momentum conjugate
p of y, by formula

p j = ∂L

∂ ẏ j

= m(y + F(t, y))(ẏ j′ + Ḟ j′ (t, y) + ∂ j′′F
j′ (t, y)ẏ j′′ )

× (δ j j′ + ∂ jFj′ (t, y))

+ q

c
Aj′ (t, y + F(t, y))(δ j j′ + ∂ jFj′ (t, y))

= m(y + F(t, y))(ẏ j′ + Ḟ j′ (t, y)

+ ∂ j′′F
j′ (t, y)ẏ j′′ )Gj j′ (t, y)

+ q

c
Aj′ (t, y + F(t, y))Gj j′ (t, y). (19)

Note that p j refers to the jth Cartesian component of the
canonical momentum in the AG representation. On the other
hand, the previously encountered symbol Pj refers to the jth
Cartesian component of the canonical momentum in the MG
representation. Equation (19) is equivalent to

Q j j′ (t, y)p j′ = m(y + F(t, y))(ẏ j + Ḟ j (t, y) + ∂ j′F
j (t, y)ẏ j′ )

+ q

c
Aj (t, y + F(t, y)). (20)

Hence also

m−1(y + F(t, y))
{

Q j j′ (t, y)p j′ − q

c
Aj (t, y + F(t, y))

}
= ẏ j + Ḟ j (t, y) + ∂ j′F

j (t, y)ẏ j′ , (21)
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and subsequently

ẏ j = m−1(y + F(t, y))Q j
j′ (t, y)

×
{

Q j′ j′′ (t, y)p j′′ − q

c
Aj′ (t, y + F(t, y))

}
− Q j

j′ (t, y)Ḟ j′ (t, y). (22)

To simplify our subsequent notations, let us conveniently
adopt another shorthand symbol,

℘j = Q j j′ (t, y)p j′ , (23)

such that

℘= Q(t, y) · p. (24)

Recall that Q(t, y) represents the Jacobian matrix (15).
Equations (21) and (22) can be now redisplayed as follows:

ẏ j + Ḟ j (t, y) + ∂ j′F
j (t, y)ẏ j′

= m−1(y + F(t, y))
{
℘j − q

c
Aj (t, y + F(t, y))

}
, (25)

and

ẏ j = m−1(y + F(t, y))Q j
j′ (t, y)

{
℘j′ − q

c
Aj′ (t, y + F(t, y))

}
− Q j

j′ (t, y)Ḟ j′ (t, y). (26)

The sought Hamiltonian is obtained again via the standard
Legendre transform,

HAG(t ) = ẏ j p j − L

= m−1(y + F(t, y))℘·
{
℘− q

c
A(t, y + F(t, y))

}
−℘· Ḟ(t, y)

− 1

2
m−1(y + F(t, y))

{
℘− q

c
A(t, y + F(t, y))

}2

+V (y + F(t, y))

− q

c
A(t, y + F(t, y)) ·

{
℘− q

c
A(t, y + F(t, y))

}
× m−1(y + F(t, y))

= 1

2
m−1(y + F(t, y))

{
℘− q

c
A(t, y + F(t, y))

}2

+V (y + F(t, y)) −℘· Ḟ(t, y). (27)

Clearly, HAG(t ) of Eq. (27) reduces to HMG(t ) of Eq. (11)
if one sets F(t, y) = 0. Instead of (27) one may write more
concisely

HAG(t ) = ℘2

2 m(y + F(t, y))
+ V (y + F(t, y))

+ q2

2 m(y + F(t, y))c2
A2(t, y + F(t, y))

− q

c
m−1(y + F(t, y))℘· A(t, y + F(t, y))

−℘· Ḟ(t, y). (28)

4. Passage to the acceleration gauge: The AG quiver amplitude

The coordinate transformation (12) was so far left rather
arbitrary, since the quiver amplitude F(t, y) has not been
specified. We shall finalize now the definition of AG by fixing
F(t, y) in such a particular way as to erase the second line
of formula (28). In other words, we wish to erase all the
Hamiltonian terms linear in the momentum ℘, and to obtain
simply

HAG(t ) = ℘2

2 m(y + F(t, y))
+ V (y + F(t, y))

+ q2

2 m(y + F(t, y))c2
A2(t, y + F(t, y)). (29)

The just stated requirement is fulfilled if and only if F(t, y)
possesses the property

Ḟ(t, y) = − q

m(y + F(t, y))c
A(t, y + F(t, y)). (30)

Formula (30) needs to be understood as an ordinary (nonlin-
ear) differential equation for F(t, y), in which t is the relevant
active variable, and y stands just for a fixed parameter. As
the physically appropriate initial condition we shall choose
having

F(t → −∞, y) = 0, (31)

such that HAG(t ) of Eq. (29) reduces to the standard field-free
Hamiltonian corresponding to the situation before the arrival
of the laser pulse. The initial value problem (30) and (31)
is always uniquely solvable for the sought AG quiver ampli-
tude F(t, y). An explicit solution can be accomplished either
by numerical calculation, or through imposing additional as-
sumptions and approximations as we do below in Secs. III A 6
and III B. In any case, Eq. (30) represents a natural general-
ization of its well-established counterpart corresponding to a
constant mass [1,5].

Recall that F(t, y) enters the Jacobian matrix G(t, y)
through (13). Thus the Jacobian (14) depends continuously
upon the laser field profile experienced by the particle since
the arrival of the pulse until the considered time instant t . We
may thus infer that the Jacobian (14) remains nonzero and
positive at least as long as the maximum laser field amplitude
ε0 does not exceed a certain threshold value εmax

0 (which
would undoubtedly depend both upon other parameters of the
laser pulse and upon the studied system). It is not the scope of
the present work to search for any encounter of the singular
situation det G(t, y) = 0. However, it might be worth keeping
in mind that the possibility of having either det G(t, y) = 0
or det G(t, y)

.= 0 has not been a priori excluded, and that
another kind of interesting physics may arguably pop out
under such circumstances.

5. Passage to the acceleration gauge: The AG Hamiltonian

Having in hand the just discussed AG quiver amplitude
F(t, y) satisfying presumably the regularity condition (14),
we are ready to write down the final result for the sought
classical AG Hamiltonian HAG(t ). A combination of (32) and
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(24) yields a compelling expression,

HAG(t ) = pT · QT (t, y) · Q(t, y) · p
2 m(y + F(t, y))

+ V (y + F(t, y))

+ q2

2 m(y + F(t, y))c2
A2(t, y + F(t, y)). (32)

Here, Q(t, y) is the Jacobian matrix (15) with elements (16).
At the classical level of theory, the Hamiltonian HAG(t ) of
Eq. (32) is exactly equivalent to its momentum-gauge coun-
terpart HMG(t ) of Eq. (11). Note that the kinetic term of (32) is
an off-diagonal quadratic form in the momentum components.
Note also the presence of the A2 term, playing the role of an
additional light-induced potential.

6. Special case: Position-independent mass,
and dipole approximation

Substantial simplifications result in the case when the mass
m does not depend upon x and when the dipole approximation
is adopted. Namely, Eq. (30) boils down into

Ḟ(t ) = − q

m c
A(t ), (33)

hence

F(t ) = − q

m c

∫ t

−∞
A(τ )dτ. (34)

Formula (34) is recognized immediately as the conventional
AG quiver amplitude known in the literature [1,5]. Subse-
quently, the Jacobian matrix Q(t, y) of Eq. (15) reduces
to unity, simply because x = y + F(t ). Correspondingly, the
Hamiltonian (32) becomes just

HAG(t ) = p2

2 m
+ V (y + F(t )), (35)

again in full conformity with the standard literature [1,5].

7. Quantization

Canonical quantization of the studied problem runs along
standard lines both in MG and AG, modulo the operator or-
dering controversy to be encountered and addressed shortly.
The pertinent canonical commutation rules are of course
[x̂ j, P̂j′ ] = δ j j′ ih̄ 1̂ (MG), and [ŷ j, p̂ j′ ] = δ j j′ ih̄ 1̂ (AG). The
MG Hamiltonian HMG(t ) of Eq. (11) needs to be promoted
accordingly to a Hermitian operator, yet such a promotion step
is apparently ambiguous, since an ordering of the involved
operators [ p̂ − q

c A(t, x̂)] and 1
2 m(x̂) is left a priori unspec-

ified. In the present paper, we shall adhere to an already
well-established ordering prescription ( justified and used in
Refs. [3])2 by setting

ĤMG(t ) =
(

p̂ − q

c
A(t, x̂)

)
1

2 m(x̂)

(
p̂ − q

c
A(t, x̂)

)
+V (x̂).

(36)

2The first reference quoted in Ref. [3] shows that other operator
orderings lead either to divergence or to the nonuniqueness of the
Hamiltonian eigenvalues. Hence these other operator orderings lack
physical meaning.

A similar kind of operator ordering controversy persists also
in the case of the AG Hamiltonian HAG(t ) of Eq. (32). We
shall thus write for now

ĤAG(t ) = p̂T · QT (t, ŷ) · Q(t, ŷ) · p̂
2 m(ŷ + F(t, ŷ))

+ V (ŷ + F(t, ŷ))

+ q2

2 m(ŷ + F(t, ŷ))c2
A2(t, ŷ + F(t, ŷ)) + Q̂M,

(37)

where the as yet undetermined Hermitian operator Q̂M com-
pensates formally for the possibly improper operator ordering
in the first line, and arranges thereby for an unitary equiva-
lence between ĤAG(t ) [of Eq. (37)] and ĤMG(t ) [of Eq. (36)].
Taking into consideration our above-described classical trans-
formation from the MG into the AG, one may seriously
doubt whether it is possible to find any general and closed-
form expression for Q̂M. Clearly, Q̂M vanishes identically
under the dipole approximation in the case of a position-
independent mass, since the problem simplifies exactly as
above in Sec. III A 7. When the spatial dependence of the mass
comes into play and/or when the dipole approximation is not
made, one may think of two promising ways of accessing Q̂M.
(i) Via repeating the derivation pursued above in Secs. III A 1–
III A 6, but now within the quantum mechanical framework,
where all the operator noncommutativities are accounted for
explicitly in the form of an h̄ expansion: This would lead
towards developing a power series for Q̂M whose terms need
to be evaluated sequentially order by order. We do not pursue
such an approach in the present paper. (ii) Via examining
only the weak-field intensity regime within the dipole approx-
imation, where such developments are relegated to a separate
Sec. III B and lead towards a simple closed formula for Q̂M.

B. Special form of the AG Hamiltonian: Weak-field regime,
dipole approximation, and one spatial dimension

For the sake of maximum simplicity, and also as a prepa-
ration for our illustrative numerical calculations pursued in
Sec. IV, we shall hereafter restrict ourselves to studying the
particle motion in one spatial dimension only. However, all the
elaborations presented below are rather trivially generalizable
to the three-dimensional case.

1. Classical treatment followed by formal quantization

In one spatial dimension, the classical Hamiltonian formu-
las (11) and (32) boil down into

HMG(t ) = 1

2 m(x)

(
P − q

c
A(t, x)

)2

+ V (x), (38)

and

HAG(t ) = p2

2 m(y + F (t, y))(1 + F ′(t, y))2 + V (y + F (t, y))

+ q2

2 m(y + F (t, y))c2
A2(t, y + F (t, y)). (39)

For the sake of clarity, we note explicitly in this context that
G(t, y) = [1 + F ′(t, y)], where the prime superscript stands
for ∂y. Let us assume in addition a weak-field regime, meaning
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that all the terms higher than linear in the maximum electric
field strength ε0 will be hereafter neglected in the Hamilto-
nian. The A2 term disappears then from (38) and (39), giving

HMG(t ) = P2

2 m(x)
− q

m(x) c
A(t, x)P + V (x), (40)

and

HAG(t ) = p2

2 m(y + F (t, y))(1 + F ′(t, y))2 + V (y + F (t, y)).

(41)

Let us impose also the dipole approximation, such that
A(t, x)

.= A(t ). Then

HMG(t ) = P2

2 m(x)
− q

m(x) c
A(t )P + V (x). (42)

Under the dipole approximation, formula (30) boils down into

Ḟ (t, y) = − q

m(y + F (t, y))c
A(t ), (43)

or even to Ḟ (t, y) = − q
m(y)c A(t ) for weak fields. Correspond-

ingly, our AG quiver amplitude is equal to

F (t, y) = − q

c m(y)

∫ t

−∞
A(t ′)dt ′, (44)

in close resemblance to Eq. (34). Subsequently we have also

F ′(t, y) = −m′(y)

m(y)
F (t, y). (45)

If so, one may recognize that

m(y + F (t, y))(1 + F ′(t, y))2

= m(y) + m′(y)F (t, y) + 2 m(y)F ′(t, y)

= m(y) − m′(y)F (t, y) = m(y − F (t, y)), (46)

valid again in the weak-field regime where only the terms lin-
ear in F are retained. Our resulting simplified AG Hamiltonian
reads then as follows:

HAG(t ) = p2

2 m(y − F (t, y))
+ V (y + F (t, y)). (47)

Interestingly, the denominator of the kinetic term contains
m(y − F (t, y)), contrary to Eq. (32) where one finds m(y +
F(t, y)). The minus sign appears in (47) due to an effect of
Q(t, y) = [1 + F ′(t, y)]−1, as detailed above in (46).

Having in hand HMG(t ) [of Eq. (42)] and HAG(t ) [of
Eq. (47)], we are ready to carry out the formal canonical
quantization exactly as described in Sec. III A 7. For ĤMG(t )
we adopt the same operator ordering as in Eq. (36), thus

ĤMG(t ) = P̂
1

2 m(x̂)
P̂ − q

2 c
A(t )

{
P̂

1

m(x̂)
+ 1

m(x̂)
P̂

}
+ V (x̂),

(48)

of course with [x̂, P̂] = ih̄ 1̂. In the case of AG we adhere to
the attitude of Eq. (37), and set

ĤAG(t ) = p̂
1

2 m(ŷ − F (t, ŷ))
p̂ + V (ŷ + F̂ (t, ŷ)) + Q̂M,

(49)

of course with [ŷ, p̂] = ih̄ 1̂. The extra Q̂M term compensates
here again for the possibly improper operator ordering, and
arranges thereby for an unitary equivalence between ĤAG(t )
[of Eq. (49)] and ĤMG(t ) [of Eq. (48)]. An explicit form of
Q̂M cannot be accessed via the just outlined formal quantiza-
tion of the classical AG Hamiltonian. In order to find Q̂M, we
shall implement a direct quantum mechanical passage from
the MG to AG, which is elaborated below in Sec. III B 2 while
taking an enormous advantage of the two simplifying assump-
tions made above (weak-field regime, dipole approximation).

2. Direct quantum mechanical treatment

The starting point of our direct quantum mechanical treat-
ment is given by the MG Hamiltonian ĤMG(t ) of Eq. (48).
This Hamiltonian governs the quantum dynamics of the stud-
ied particle by means of the time-dependent Schrödinger
equation

ih̄ ∂t |ψt 〉 = ĤMG(t )|ψt 〉. (50)

For notational reasons, we shall conveniently rename now the
canonical pair (x̂, P̂) into (ŷ, p̂), such that

ĤMG(t ) = p̂
1

2 m(ŷ)
p̂ − q

2 c
A(t )

{
p̂

1

m(ŷ)
+ 1

m(ŷ)
p̂

}
+ V (ŷ).

(51)

Passage into AG is facilitated by the unitary transformation

|ψt 〉 = Û (t )|ϕt 〉, (52)

where we set conveniently

Û (t ) = e+ i
h̄ Ŝ(t ), (53)

and

Ŝ(t ) = q

2 c

{
1

m(ŷ)
p̂ + p̂

1

m(ŷ)

}∫ t

−∞
A(t ′)dt ′. (54)

Equations (53) and (54) are inspired by the well-established
quantum mechanical approach corresponding to the case of a
constant (position-independent) mass [5]. Note that Ŝ(t ) is a
Hermitian operator proportional to the maximum laser field
intensity ε0. An alternative appearance of Ŝ(t ) is also useful,
namely,

Ŝ(t ) = − 1
2 [F (t, ŷ) p̂ + p̂ F (t, ŷ)], (55)

of course with F (t, y) given by Eq. (44). The transformed state
vector |ϕt 〉 evolves in time according to the time-dependent
Schrödinger equation

ih̄ ∂t |ϕt 〉 = ĤAG(t )|ϕt 〉, (56)

where by definition

ĤAG(t ) = Û †(t )ĤMG(t ) Û (t ) − ih̄ Û †(t )∂t Û (t ). (57)

What remains to be done is to work out ĤAG(t ) explicitly up to
the leading order O(ε1

0 ). This is a purely technical, somewhat
tedious, but feasible task.

Clearly, one has

Û (t ) = 1̂ + i

h̄
Ŝ(t ) + O(ε2

0 ). (58)

053117-7



ŠINDELKA, BEN-ASHER, AND MOISEYEV PHYSICAL REVIEW A 103, 053117 (2021)

Any quantum mechanical operator Q̂ is thus converted by
Û (t ) into

Û †(t )Q̂Û (t ) = Q̂ + i

h̄
Q̂ Ŝ(t ) − i

h̄
Ŝ(t )Q̂ + O

(
ε2

0

)
. (59)

Moreover,

Û †(t )(−ih̄)∂t Û (t ) = ˙̂S(t ) + O
(
ε2

0

)
. (60)

Our transformed Hamiltonian ĤAG(t ) of Eq. (57) can be now
expressed as

ĤAG(t ) = Ĥt + i

h̄
Ĥt Ŝ(t ) − i

h̄
Ŝ(t )Ĥt + ˙̂S(t ) + O

(
ε2

0

)
= p̂

1

2 m(ŷ)
p̂ + i

h̄
p̂

1

2 m(ŷ)
p̂ Ŝ(t ) − i

h̄
Ŝ(t ) p̂

1

2 m(ŷ)
p̂

+V (ŷ) + i

h̄
V (ŷ)Ŝ(t ) − i

h̄
Ŝ(t )V (ŷ) + O(ε2

0 ). (61)

The (−q)
2 c A(t ){ 1

m(ŷ) p̂ + p̂ 1
m(ŷ) } part of ĤMG(t ) [Eq. (51)] has

been exactly overcompensated here by ˙̂S(t ). Straightforward
(although tedious) calculations now yield

i

h̄
V (ŷ)Ŝ(t ) − i

h̄
Ŝ(t )V (ŷ) = V ′(ŷ)F (t, ŷ), (62)

and, similarly,

i

h̄
p̂

1

2 m(ŷ)
p̂ Ŝ(t ) − i

h̄
Ŝ(t ) p̂

1

2 m(ŷ)
p̂

= p̂
(−1)

2 m(ŷ)

(
F (t, ŷ)

m′(ŷ)

m(ŷ)
+ 2 F ′(t, ŷ)

)
p̂

+ h̄2

4

(
F ′′(t, ŷ)

m(ŷ)

)′
. (63)

After plugging (62) and (63) into (61) one arrives at a simple
looking explicit expression for ĤAG(t ). Namely, one finds that

ĤAG(t ) = p̂
1

2 M(t, ŷ)
p̂ + V (ŷ) + V ′(ŷ)F (t, ŷ)

+ h̄2

4

(
F ′′(t, ŷ)

m(ŷ)

)′
+ O

(
ε2

0

)
, (64)

where by definition

M(t, ŷ) = m(ŷ) + m′(ŷ)F (t, ŷ) + 2 m(ŷ)F ′(t, ŷ). (65)

For the sake of clarity and completeness, we note explicitly
that the kinetic term of (64) has been obtained via the follow-
ing sequence of manipulations:

1

m(ŷ)

(
1̂ − F (t, ŷ)

m′(ŷ)

m(ŷ)
− 2 F ′(t, ŷ)

)
= 1

m(ŷ)
(
1̂ + F (t, ŷ) m′(ŷ)

m(ŷ) + 2 F ′(t, ŷ)
) + O

(
ε2

0

)
= 1

M(t, ŷ)
+ O

(
ε2

0

)
. (66)

The mass term (65) can be recognized as the quantity encoun-
tered already in (46). We thus write accordingly M(t, ŷ) =

m(ŷ − F (t, ŷ)). Finally, we erase the O(ε2
0 ) term of (64), and

redisplay ĤAG(t ) in its compact and compelling appearance,

ĤAG(t ) = p̂
1

2 m(ŷ − F (t, ŷ))
p̂ + V (ŷ + F (t, ŷ)) + Q̂M,

(67)
where by definition

Q̂M = h̄2

4

(
F ′′(t, ŷ)

m(ŷ)

)′
. (68)

Recall that F (t, y) is given by Eq. (44), and that the prime
superscript stands here for the spatial derivative ∂y.

Most importantly, the just obtained AG Hamiltonian
ĤAG(t ) of Eq. (67) agrees exactly with the outcome (49) of our
alternative derivation based upon classical mechanics. Yet the
extra Q̂M term is now explicitly determined by prescription
(68). (Note that Q̂M vanishes in the case of a position-
independent mass, as it should.) The above-constructed AG
Hamiltonian (67) is the unitary equivalent to its MG coun-
terpart (51) up to the leading order O(ε1

0 ) of the laser field
strength.3 The physical equivalence of the Hamiltonian pre-
scriptions ĤAG(t ) [Eqs. (67) and (68)] and ĤMG(t ) [Eq. (51)]
will be demonstrated further in Sec. IV by illustrative numer-
ical calculations.

Before proceeding to Sec. IV, we note that the quantum
mechanical treatment of the present Sec. III B 2 can be further
extended to cover even such situations when quantum fields
are involved. In such a case, our starting MG Hamiltonian
(48) would be modified, via replacing A(t ) by the appropri-
ate QED operator of the vector potential, and the standard
QED Hamiltonian of the free quantized radiation field would
be added. Subsequently, our transformation into AG would
correspond to the Bloch-Nordsieck transformation (BNT),
which represents the QED counterpart of the semiclassical AG
transformation (an insightful application of the BNT approach
to molecules in laser fields is worked out in Refs. [13]). An
appropriate implementation of the BNT in the present context
would, of course, need to account for the spatial dependence
of the electronic mass. We shall not elaborate on the BNT
explicitly in the present paper, since this would take us too
far afield. We note, however, that such an explicit formulation
of the BNT approach becomes physically relevant as soon as
our studied system (an electron moving in a semiconductor
nanostructure environment) is exposed to an inherently quan-
tum (nonclassical) state of radiation (e.g., to a number state,
or a squeezed quantum state of the photon field).

IV. NUMERICAL ILLUSTRATION: RESONANCE
TRANSMISSION PHENOMENA

As already pointed out above, the purpose of Sec. IV is to
provide a numerical example utilizing the above-derived AG

3Correspondingly, an inverse of the unitary transformation (57)
converts ĤAG(t ) back to ĤMG(t ) of Eq. (51) only up to the leading
order of the laser field strength. Of course, additional complicating
terms do pop out in the transformed Hamiltonian when one looks at
higher orders of ε0. These effects would need to be properly taken
under control via an additional unitary transformation of order O(ε2

0 )
and higher.
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Hamiltonian ĤAG(t ) given by formulas (67) and (68). We have
chosen to examine here the phenomenon of resonant4 scatter-
ing of an electron through a semiconductor nanostructure.5

Note that the same problem was, for the case of a constant
mass, thoroughly investigated in our recent contribution [2].
For the sake of comparison and clarity, we shall also include
below an analogous calculation based solely upon the MG
Hamiltonian ĤMG(t ) [of Eqs. (48) or (51)].

A. Scattering of an electron through a semiconductor
nanostructure: Momentum-gauge formulation

We prefer to introduce the studied physical problem first in
the MG representation. Let us consider an electron moving in
a semiconductor nanostructure environment. The mentioned
environment influences our electron in two distinct ways: (i) It
generates an external potential V (x), such as the one plotted in
the upper panel of Fig. 1. (ii) It changes the bare electron mass
into its effective (renormalized) position-dependent counter-
part m(x) (see the middle panel of Fig. 1 or the upper panel
of Fig. 2). In addition, we shall assume that the electron is
exposed to an external monochromatic laser light, of a given
frequency ω and of a weak-field strength ε0 (weak enough
as to allow only single-photon exchange processes to signifi-
cantly occur).

The adequate MG Hamiltonian takes the form (48), with
A(t ) = c α sin(ωt ) and α = ε0

ω
, thus

ĤMG(t )

= P̂
1

2 m(x̂)
P̂ − q

2

{
P̂

1

m(x̂)
+ 1

m(x̂)
P̂

}
α sin(ωt ) + V (x̂).

(69)

Since ĤMG(t ) of Eq. (69) is time periodic with the period
T = 2 π

ω
, we shall take advantage of the Floquet theory [14],

exactly as we did before in Ref. [2]. The corresponding Flo-
quet Hamiltonian reads as

ĤMG = P̂
1

2 m(x̂)
P̂ − q

2

{
P̂

1

m(x̂)
+ 1

m(x̂)
P̂

}
α sin(ωt )

+V (x̂) − ih̄
∂

∂t
. (70)

In the single-photon approximation (appropriate in the regime
of small enough ε0), the time coordinate t ∈ [0, T ] can be

4The term “resonant” emphasizes that scattering is controlled here
by long-living quasibound states (resonances) of the studied system.

5The used model is based upon Refs. [4], especially upon the work
of Goldzak et al. Using the single-band effective-mass approxima-
tion, we can interpret the energy difference between the conductance
bands of each semiconductor layer as the potential for the electrons
in the conductance band. Barriers are formed by semiconductor
materials with a larger band gap, and a potential well is formed by a
semiconductor material with a smaller band gap. When the potential
has a well, it may support bound states (there is actually one bound
state in our particular case). However, bound states do not influence
the scattering phenomena, since any electronic wave packet entering
the interaction region from spatial infinity is expressible solely as a
linear combination of the scattering (continuum) states.

adequately covered using just two Fourier basis functions√
ω

2π
e+i0ωt and

√
ω

2π
e+i1 ωt (see Refs. [2,14,15] for details).

The Floquet Hamiltonian (70) is converted accordingly into
the following block matrix appearance,

ĤMG =
(

P̂ 1
2 m(x̂) P̂ + V (x̂) + q

2

{
P̂ 1

m(x̂) + 1
m(x̂) P̂

}
α
2 i

− q
2

{
P̂ 1

m(x̂) + 1
m(x̂) P̂

}
α
2 i P̂ 1

2 m(x̂) P̂ + V (x̂) + h̄ω

)
.

(71)

Here, the single entries are time independent, and act in the
space of x-dependent wave functions. In the asymptotic re-
gions of x → ±∞, the electron mass is assumed to become
constant, m(x → ±∞) = m∞, and the potential V (x) falls off
to zero. Hence the Hamiltonian ĤMG of Eq. (71) reduces into

Ĥ0
MG =

(
P̂2

2 m∞
+ q

m∞
P̂ α

2 i

− q
m∞

P̂ α
2 i

P̂2

2 m∞
+ h̄ω

)
. (72)

Equation (72) is recognized as the Floquet Hamiltonian of an
electron which possesses a constant effective mass m∞ and
moves along x just under an influence of an external weak
intensity monochromatic field A(t ) = c α sin(ωt ).

An eigenvalue problem of the asymptotic Floquet Hamil-
tonian Ĥ0

MG of Eq. (72) is analytically solvable. Namely, one
has (

P̂2

2 m∞
+q
m∞

P̂ α
2 i

−q
m∞

P̂ α
2 i

P̂2

2 m∞
+ h̄ω

)
e+ikx

(
1

q
m∞

α
ω

(−ik)
2

)

= h̄2k2

2 m∞
e+ikx

(
1

q
m∞

α
ω

(−ik)
2

)
, (73)

and similarly(
P̂2

2 m∞
+q
m∞

P̂ α
2 i

−q
m∞

P̂ α
2 i

P̂2

2 m∞
+ h̄ω

)
e+ikx

( q
m∞

α
ω

(−ik)
2

1

)

=
(

h̄2k2

2 m∞
+ h̄ω

)
e+ikx

( q
m∞

α
ω

(−ik)
2

1

)
. (74)

Here, k stands for an arbitrary real parameter. Relations (73)
and (74) are valid in the weak-field regime, i.e., up to O(ε0).
The eigensolutions associated with Eqs. (73) and (74) are
interpreted physically in terms of the ubiquitous Volkov states
[16], i.e., in terms of the plane-wave states of an electron
with momentum h̄k which is exposed to an external laser

driving.6 Note also that the column vectors (1,
q

m∞
α
ω

(−ik)
2 )

T

and ( q
m∞

α
ω

(−ik)
2 , 1)

T
are unit normalized up to O(ε0).

Our interest consists in studying the transmission phe-
nomena, where an incoming electron prepared in a given

6Stated more explicitly, the Schrödinger equation ih̄ ∂t ψ (t, x) =
1

2m∞ (P̂ − q
c A(t ))

2
ψ (t, x) possesses particular solutions of the form

e− i
h̄

h̄2k2
2 m∞ t e+ikx e+ i

h̄
q

m∞c h̄k
∫ t

0 A(t ′ )dt ′ e
− i

h̄
q2

2 m∞c2

∫ t
0 A2(t ′ )dt ′

. These so-called
Volkov states make up a complete set on the space of x-dependent
wave functions. The eigensolutions displayed above in (73) and (74)
are nothing more than just the mentioned Volkov states, correspond-
ing to A(t ) = cα sin(ωt ), and translated into the Floquet language
while neglecting all the terms higher than O(ε0 ).
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asymptotic Floquet-Volkov7 state,

∣∣∣∣φMG
in

〉〉 =
√

m∞
2 π h̄2k

e+ikx

(
1

q
m∞

α
ω

(−ik)
2

)
(k > 0), (75)

is affected by an interaction

V̂MG = ĤMG − Ĥ0
MG =

⎛⎝ P̂ 1
2 m(x̂) P̂ − P̂2

2 m∞
+ V (x̂) + q

2

{
P̂ 1

m(x̂) + 1
m(x̂) P̂

}
α
2 i − q

m∞
P̂ α

2 i

− q
2

{
P̂ 1

m(x̂) + 1
m(x̂) P̂

}
α
2 i + q

m∞
P̂ α

2 i P̂ 1
2 m(x̂) P̂ − P̂2

2 m∞
+ V (x̂)

⎞⎠, (76)

and is finally found in an outgoing Floquet-Volkov state,∣∣∣∣φMG
out

〉〉 =
√

m∞
2 π h̄2k

e+ikx

(
1

q
m∞

α
ω

(−ik)
2

)
. (77)

The other outgoing Floquet-Volkov channel,∣∣∣∣φMG
out

〉〉 =
√

m∞
2 π h̄2K

e+iKx

( q
m∞

α
ω

(−iK )
2

1

)
,

h̄2K2

2 m∞
= h̄2k2

2 m∞
− h̄ω, (78)

is closed in the studied range of the electron impact energies,
and can thus be ignored. Formulas (75) and (77) contain the

usual energy normalization prefactor
√

m∞
2 π h̄2k

, and similarly

(78) contains a factor
√

m∞
2 π h̄2K

(see the Supplemental Material

of Ref. [2] for more information). The studied transmission
process is completely characterized by the corresponding
transmission coefficients, and these are determined by the
Lippmann-Schwinger formula

TMG(E ) = 1 − 2 π i
〈〈
φMG

out

∣∣∣∣V̂MG

+ V̂MG
1

E − ĤMG + i0+
V̂MG

∣∣∣∣φMG
in

〉〉
(79)

(see again Ref. [2] and its Supplemental Material for the
underlying background). In Eq. (79), E = h̄2k2

2 m∞
represents of

course the (quasi)energy of the incoming electron state (75).
While the Lippmann-Schwinger formula (79) is physically

appropriate for the scattering problem under our consid-
eration, its practical application may become numerically
challenging. For this reason, we follow Ref. [2] and refine
slightly the formalism of the present Sec. IV A, by switching
into an equivalent non-Hermitian mode of description. In the
current context, the most convenient mathematical language
(suitable for performing efficiently practical computations)
seems to be the non-Hermitian scattering theory based upon
the exterior complex scaling (ECS) [15]. The ECS technique
replaces the physical real valued coordinate x by an equivalent
contour f (x) in the complex x plane, such that

f (x) =
⎧⎨⎩−x0 + (x + x0)e+iθ , x � −x0,

x, −x0 � x � +x0,

+x0 + (x − x0)e+iθ , x � +x0.

(80)

7We shall hereafter use the double-bracket notation ||φin/out〉〉 in or-
der to emphasize that the relevant state vectors belong in an extended
space of functions depending upon the coordinates (x, t ).

Here, x0 > 0 stands for a cutoff parameter, whose value is
chosen to be large enough so as to ensure that the interac-
tion V̂MG vanishes for |x| � x0. The symbol θ stands for the
ubiquitous complex scaling angle [15]. An implementation
of the ECS leaves both V (x) and m(x) unchanged, since
these entities vary with x only inside the interaction region of
−x0 � x � +x0. On the other hand, the momentum operator

is changed into P̂f = ( df (x)
dx )

−1
P̂. Thus

P̂f =
{

e−iθ P̂, |x| > x0,

P̂, |x| < x0.
(81)

We relegate the reader to Ref. [15] for more details.
The ECS changes our Floquet Hamiltonian (71) into

ĤNH
MG=

(
P̂f

1
2 m(x̂) P̂f +V (x̂) + q

2

{
P̂f

1
m(x̂) + 1

m(x̂) P̂f
}

α
2 i

− q
2

{
P̂f

1
m(x̂)+ 1

m(x̂) P̂f
}

α
2 i P̂f

1
2 m(x̂) P̂f + V (x̂) + h̄ω

)
,

(82)

where the superscript NH stands for non-Hermitian. On the
other hand, the interaction term (76) remains unaltered, since
it possesses nonzero values only in the interaction region of
|x| < x0. The Lippmann-Schwinger formula (79) is accord-
ingly converted into

TMG(E ) = 1 − 2 π i
〈〈
φMG

out

∣∣∣∣V̂MG

+ V̂MG
1

E − ĤNH
MG

V̂MG

∣∣∣∣φMG
in

〉〉
. (83)

For the sake of completeness and clarity, we note explic-
itly in this context that no singularity is encountered in
(E − ĤNH

MG)−1, since all the (resonance and continuum) eigen-
values of the non-Hermitian Hamiltonian ĤNH

MG possess a
negative imaginary part. Moreover, ECS does not alter the
wave functions ||φMG

in,out〉〉 in the interaction region, thus these
in/out states are left without modification in (83). Formulas
(83), (82), and (76) lend themselves well to practical numer-
ical calculations of TMG(E ). Computational details will be
given in Sec. IV C below.

B. Scattering of an electron through a semiconductor
nanostructure: Acceleration-gauge formulation

In the case of the acceleration gauge, our starting Flo-
quet Hamiltonian is obtained using the previously derived
formulas (67), (44), and (68) of Sec. III. Since A(t ) =
c α sin(ωt )e−ζ |t ||ζ→+0, we have

F (t, y) = q

m(y)

α

ω
cos(ωt ). (84)
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Subsequently, one gets

ĤAG = p̂
1

2 m(ŷ − F (t, ŷ))
p̂ + V (ŷ + F (t, ŷ)) + Q̂M − ih̄

∂

∂t

= p̂
1

2 m(ŷ)
p̂ + p̂

m′(ŷ)

2 m3(ŷ)
p̂

q α

ω
cos(ωt ) + V (ŷ) + V ′(ŷ)

× q

m(ŷ)

α

ω
cos(ωt ) + Q̂M − ih̄

∂

∂t
, (85)

where now

Q̂M = q̂m cos(ωt ), q̂m = h̄2

4

(
[m−1(ŷ)]

′′

m(ŷ)

)′
q α

ω
. (86)

The second line of (85) neglects again all the terms of order
higher than O(ε0), consistent with what is done in Sec. IV A.

Within the single-photon approximation, the above Hamil-
tonian ĤAG of Eq. (85) can be converted into the following
block matrix appearance:

ĤNH
AG =

(
p̂ f

1
2 m(ŷ) p̂ f + V (ŷ) p̂ f

m′(ŷ)
2 m3(ŷ) p̂ f

q α

ω
1
2 + V ′(ŷ) q

m(ŷ)
α
ω

1
2 + q̂m 1

2

p̂ f
m′(ŷ)

2 m3(ŷ) p̂ f
q α

ω
1
2 + V ′(ŷ) q

m(ŷ)
α
ω

1
2 + q̂m 1

2 p̂ f
1

2 m(ŷ) p̂ f + V (ŷ) + h̄ω

)
. (87)

We have already tacitly included here the ECS, similarly as in
Sec. IV A. Accordingly, one has

p̂ f =
{

e−iθ p̂, |x| > x0,

p̂, |x| < x0.
(88)

Single entries of the matrix (87) are time independent, and
act in the space of y-dependent wave functions. Our AG
Floquet Hamiltonian ĤNH

AG of Eq. (87) becomes dramatically
simplified for y → ±∞, where the electron mass is assumed
to become constant and the potential falls off to zero. Indeed,
one encounters just a diagonal matrix,

Ĥ0,NH
AG =

( p̂2
f

2 m∞
0

0
p̂2

f

2 m∞
+ h̄ω

)
. (89)

Stated once again, the asymptotic AG Floquet Hamiltonian
Ĥ0,NH

AG of Eq. (89) is diagonal, and thus substantially simpler
than its MG counterpart Ĥ0,NH

MG [obtainable by changing P̂
into P̂f in Eq. (72)], meaning that the subsequent formulation
of scattering theory is correspondingly more straightforward
in AG compared to MG, due to the fact that an eigenvalue
problem of Ĥ0,NH

AG is resolvable trivially.
Our interest consists in studying the transmission phe-

nomena, where an incoming electron prepared in a given
asymptotic Floquet state,

∣∣∣∣φAG
in

〉〉 =
√

m∞
2 π h̄2k

e+ikx

(
1
0

)
(k > 0) (90)

(and carrying momentum h̄k), is affected by an interaction

V̂AG = ĤAG − Ĥ0
AG = ĤNH

AG − Ĥ0,NH
AG =

(
p̂ 1

2 m(ŷ) p̂ − p̂2

2 m∞
+ V (ŷ) p̂ m′(ŷ)

2 m3(ŷ) p̂ q α

ω
1
2 + V ′(ŷ) q

m(ŷ)
α
ω

1
2 + q̂m 1

2

p̂ m′(ŷ)
2 m3(ŷ) p̂ q α

ω
1
2 + V ′(ŷ) q

m(ŷ)
α
ω

1
2 + q̂m 1

2 p̂ 1
2 m(ŷ) p̂ − p̂2

2 m∞
+ V (ŷ)

)
, (91)

and is finally found in an outgoing Floquet state,∣∣∣∣φAG
out

〉〉 =
√

m∞
2 π h̄2k

e+ikx

(
1
0

)
. (92)

The other outgoing Floquet channel,∣∣∣∣φAG
out

〉〉 =
√

m∞
2 π h̄2K

e+iKx

(
0
1

)
,

h̄2K2

2 m∞
= h̄2k2

2 m∞
− h̄ω,

(93)
is closed in the studied range of electron impact energies,
and can thus be ignored as we did already in Sec. IV A. The
studied transmission process is completely characterized by
the corresponding transmission coefficients, which are deter-
mined by the Lippmann-Schwinger formula

TAG(E ) = 1 − 2 π i
〈〈
φAG

out

∣∣∣∣V̂AG + V̂AG
1

E − ĤNH
AG

V̂AG

∣∣∣∣φAG
in

〉〉
.

(94)
Recall that E = h̄2k2

2 m∞
represents here of course the

(quasi)energy of the incoming electron state (90). No singu-
larity is encountered in (E − ĤNH

AG )−1, since all the (resonance
and continuum) eigenvalues of the non-Hermitian Hamilto-

nian ĤNH
AG possess a negative imaginary part. Moreover, ECS

does not affect the wave functions ||φAG
in,out〉〉 in the interaction

region, and the situation is again similar as in Sec. IV A.
Formulas (94), (87), and (91) lend themselves well to practical
numerical calculations of TAG(E ). Computational details will
be given in Sec. IV C.

C. Numerical calculations and results

Our numerical calculations begin with solving the
eigenvalue problems of the full Floquet Hamiltonians
ĤNH

MG [Eq. (71)] and ĤNH
AG [Eq. (87)]. For this purpose we

represent ĤNH
MG and ĤNH

AG as matrices, using the sinc basis set

Sn(x) = 1√
�

sinc

[
π

(
x

�
− n

)]
=

√
�

2

∫ + 1
�

− 1
�

e+iπ (x−n�)vdv.

(95)
Here, � > 0 is a fixed numerical parameter, and −nmax � n �
+nmax with nmax being some cutoff value. Clearly, one has

Sn(x) →
√

�δ(x − n�) (� → +0). (96)
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Hence Sn(x) can be viewed as a smoothened Dirac delta func-
tion centered at x = n �. The usual orthonormality relations
apply,

x〈Sn|Sn′ 〉x =
∫ +∞

−∞
Sn(x)Sn′ (x)dx = δnn′ . (97)

Let Q̂ be any operator acting in the space of x-dependent
functions. Its matrix representation over the above-discussed
sinc basis set can be, to a good approximation, constructed as
follows:

x〈Sn|Q̂|Sn′ 〉x =
∫ +∞

−∞
Sn(x)

(
Q̂ Sn′

)
(x)dx

.=
√

�

∫ +∞

−∞
δ(x − n�)

(
Q̂ Sn′

)
(x)dx

=
√

�
(
Q̂ Sn′

)
(n�). (98)

We have taken advantage here of the above property (96). In
particular, we have

x〈Sn|P̂f |Sn′ 〉x =
{

e−iθ
x〈Sn|P̂|Sn′ 〉x, |n|� > x0,

x〈Sn|P̂|Sn′ 〉x, |n|� � x0.
(99)

Similarly of course for the case of y〈Sn| p̂ f |Sn′ 〉y. The just
presented computational approach links the used sinc basis
set to the discrete variable representation (DVR) formalism,
and this point is elaborated explicitly in Ref. [17].

Prescriptions (98) and (99) enable us to build up the matrix
representations of ĤNH

MG and ĤNH
AG in a very efficient manner,

since no numerical integration is involved. Subsequent numer-
ical diagonalization of the just mentioned matrices provides
the spectral representations of ĤNH

MG and ĤNH
AG. The associated

resolvents (E − ĤNH
MG)−1 and (E − ĤNH

AG )−1 are then also im-
mediately accessible in this way.

Having in hand the resolvents (E − ĤNH
MG)−1 and

(E − ĤNH
AG )−1, we are ready to tackle the transmission co-

efficients TMG(E ) [Eq. (83)] and TAG(E ) [Eq. (94)]. The
interaction matrices V̂MG and V̂AG are again represented in the
sinc basis set, exactly as already described above. A similar
approach is of course implemented also in the case of the
pertinent incoming/outgoing states. One has

x〈Sn||φin/out〉〉 =
√

�||φin/out〉〉
∣∣
x=n�

. (100)

The sought transmission coefficients TMG(E ) [Eq. (83)] and
TAG(E ) [Eq. (94)] can be then evaluated straightforwardly for
any value of the incoming electronic energy E .

In all our calculations, we have used atomic units
(c = 137.036 a.u.). The potential function takes the form

V (x) = (0.025 x2 − 0.8)e−0.005x2
(101)

(see the upper panel of Fig. 1 in Sec. II). Almost the same kind
of potential has been employed in our previous work [2].8 The
ECS parameters have been chosen to be x0 = 150 a.u. and θ =
0.5. Parameter � of the sinc basis set was set to 1, and nmax =
200. Tests revealed that such numerical specifications are fully
sufficient to provide satisfactory convergence for TMG(E ) and
TAG(E ) along the entire studied energy range.

8Equation (101) sets V (x) = v(x/
√

2), where v(x) is the potential
of Ref. [2].

0.62 0.6205 0.621 0.6215 0.622
E (a.u.)

0

0.2

0.4

0.6

0.8

1

|T
(E

)|
2

MG
AG

FIG. 3. Numerical illustration of the physical equivalence be-
tween the MG and AG Hamiltonians for the case when the electron
mass is spatially independent. The transmission probability |T (E )|2
is plotted here as a function of energy E of the incoming electron.
One can see immediately that |TMG(E )|2 = |TAG(E )|2. We also point
out that the just shown transmission dip profile arises due to the
formation of an exceptional point [2].

As an additional check of convergence of our numerical re-
sults, we have also run analogous Floquet-based calculations
of TMG(E ) and TAG(E ) reaching beyond the single-photon
approximation. Namely, we have allowed for multiphoton
dressing (by up to three photons). The obtained numerical
outcomes (corresponding both to Figs. 1 and 2 from Sec. II C,
and to Fig. 3 shown below) always turned out to be completely
identical to their single-photon counterparts.

As our preliminary test calculation, we choose to investi-
gate first a similar system as in Ref. [2]. This means that the
electron mass is for now spatially independent, m(x) = 0.05
a.u. Recall that the computations of Ref. [2] have been done
within the AG. The purpose of the just discussed preliminary
calculation is thus to explicitly check an equivalence between
the AG and MG modes of description. The pertinent laser
field parameters are ω = 0.918 930 602 139 6 a.u. and ε0 =
8.625 863 370 106 809×10−5 a.u., such that the so-called ex-
ceptional point is formed [2].9 Our obtained results are plotted
in Fig. 3. One can verify immediately that the agreement
between our AG and MG calculations is excellent.

Our subsequent numerical illustrations are intended to ex-
plore the main topic of the present paper, namely, the effects
of spatially dependent electron mass. The corresponding cal-
culations have already been previewed in Sec. II C (see again
Figs. 1 and 2). We shall thus only supplement here additional
comments, and also details regarding the pertinent system
parameters. Namely, the middle panel of Fig. 1 depicts the
mass function m(x) = 0.05V (x) + 0.05 a.u., and similarly
the upper panel of Fig. 2 shows the mass function m(x) =
0.005V (x) + 0.05 a.u..10 The laser field parameters are as

9It is not the purpose of our present paper to discuss the exceptional
points and their impact on transmission phenomena. The reader is
relegated to Ref. [2] for the relevant information.

10We recall for clarity that such a choice of m(x) is consistent
with a physically motivated assumption that both V (x) and m(x)
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FIG. 4. The spatial profile of the extra quantum potential term q̂m of Eq. (86). Left panel: The system parameters of Fig. 1. Right panel:
The system parameters of Fig. 2. One may observe that q̂m is by more than three orders of magnitude smaller on the right panel compared to
the left panel. Also, the profile of q̂m is more smooth on the right panel.

follows: ε0 = 5×10−4 a.u. (both for Figs. 1 and 2), ω =
1.3584 a.u. (Fig. 1), and ω = 0.9391 a.u. (Fig. 2). In both ar-
rangements (both for Figs. 1 and 2), the associated value of h̄ω

is equal to the excitation energy between the (single) bound
state and the lowest-lying resonance state supported by V (x)
and m(x). In fact, the just given laser parameters are rather
close to the exceptional point condition of Ref. [2], both for
Figs. 1 and 2. It comes thus as no surprise that the calculated
transmission profiles exhibit a dip. A more important insight
(at least in the context of the present paper) consists in the
fact that the calculated transmission probabilities |TMG(E )|2
and |TAG(E )|2 mutually agree both in Figs. 1 and 2, as long
as the extra AG quantum term Q̂M of Eqs. (68) or (86) is
accounted for. An inclusion of Q̂M turns out to be crucial in
Fig. 1, whereas in Fig. 2 one may neglect Q̂M to a reason-
able approximation (this is not unexpected, since the spatial
dependence of m(x) is ten times less pronounced here than in
the arrangement of Fig. 1). A more explicit insight into the
nature of Q̂M is provided by Fig. 4.

Even after including Q̂M, there remains a tiny yet de-
tectable difference between the MG and AG results, both in
Figs. 1 and 2. This difference is most likely attributed to
the weak-field approximation contained inherently in the AG
Hamiltonian ĤAG(t ) of Eq. (67).

V. CONCLUDING REMARKS

In summary, we have established, in a thorough and
systematic fashion, the concept of AG representation for a
laser-driven nonrelativistic particle in the highly nontrivial
and intriguing case of a position-dependent mass. Namely,
in Sec. III A we have derived the classical AG Hamilto-
nian HAG(t ) under the most general conditions, even without
imposing the dipole approximation. It was shown that the
resulting HAG(t ) [given by Eq. (32)] possesses an unexpected
structure arising solely just due to the spatial dependence of
the mass. The construction of HAG(t ) relies upon the general-
ized quiver amplitude F(t, y), which is defined as a unique

are determined by the local composition of the semiconductor ma-
terial inside which the electron is set to move. Note also that the
asymptotic region of x → ±∞ corresponds to a constant (spatially
homogeneous) semiconductor. This is why m(x → ±∞) approaches
a constant value of 0.05 a.u. which still differs from the usual mass
of an electron in free space.

solution of an initial value problem (30) and (31). Subse-
quently, we have dealt with the canonical quantization of the
problem. Since an explicit construction of the AG Hamilto-
nian operator ĤAG(t ) does not seem to be easily tractable in its
full generality, we have decided to restrict ourselves just to the
regime of a weak laser intensity. The adequate weak-field AG
Hamiltonian ĤAG(t ) was then derived in Sec. III B [Eq. (67)],
where also its purely quantum mechanical component Q̂M
was explicitly written down [Eq. (68)]. Our theoretical find-
ings have been illustrated numerically in Sec. IV, on a
physically relevant phenomenon of resonance transmission of
a monochromatically laser-driven electron through a model
semiconductor nanostructure. Analogous MG calculations
have been performed for the sake of comparison and refer-
ence. We have verified numerically the physical equivalence
between the MG and the derived AG representation for our
studied system. Importantly, we have demonstrated that the
extra quantum mechanical contribution Q̂M [of Eq. (68)] to
ĤAG(t ) [Eq. (67)] often affects crucially the resulting profile
of the electron transmission probability, which is a valuable
physical insight per se.

We hope that our work can motivate further studies of the
laser-induced dynamics of charged particles whose effective
mass is spatially dependent. Note that the formalism pre-
sented here should be generalizable rather straightforwardly
to a system of N mutually interacting particles (electrons).11

Additional research may be aimed at the following direc-
tions: (a) finding the quantum mechanical AG Hamiltonian
ĤAG(t ) appropriate in the moderate or strong field regimes,
which can be possibly accomplished by employing the semi-
classical h̄-expansion technique mentioned at the end of
Sec. III A; (b) looking for a physical interpretation and/or
fingerprints of the AG quantum term Q̂M [of Eq. (68)];
and (c) working out an adequate Hamiltonian in the length
gauge.
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