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We theoretically investigate the elliptical high-order harmonic generation from the H+
2 molecule driven by

the orthogonally polarized two-color laser field by numerically solving the two-dimensional time-dependent
Schrödinger equation. The results show that the odd-order harmonics in the x component and the even-order
harmonics in the y component can be generated with the specific alignment angle θ = 0◦ for the different
intensity ratios of the laser fields. The harmonic intensity distribution and ellipticity distribution at the different
intensity ratios of the laser fields and the alignment angles differ significantly from each other. The result also
shows that the ellipticity-tunable high-order harmonics can be generated through adjusting the intensity ratio of
the laser fields and the alignment angles. Further analyses show that the amplitude ratio and the phase difference
of the x and y components of the harmonics are the origin of the ellipticity of the harmonics in general. The
two-center interference effect can also affect the ellipticity of the harmonics. The results show that the ellipticity
of the harmonics can be used as a potential tool to probe the position of the minimum. The results we obtained
can be useful for the optimization of elliptically polarized XUV radiation generation.
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I. INTRODUCTION

High-order harmonic generation (HHG) is currently a hot
research topic in strong field physics due to its extremely
potential applications. The HHG can provide an effective way
to generate the coherent attosecond pulse [1] and can be used
to probe the dynamic processes of multielectrons [2,3]. It is
also an ideal light source to obtain XUV bands and x rays [4].
The HHG as a nonlinear process can be successfully described
by the semiclassical three-step model [5]. First, the electron
is ionized into the continuum in the laser field through the
tunneling. Then, the electron continues to be accelerated in the
laser field. Finally, the electron recombines with the parent ion
and emits the high-energy photon which is called the HHG.
The typical harmonic spectrum has an obvious characteristic:
it decreases rapidly in low order, then exhibits a plateau, and
ends up with a sharp cutoff. The cutoff energy is expressed as
Ecutoff = Ip + 3.17Up, where Up = E0

2

4ω0
2 (E0 is the amplitude

of the laser field and ω0 is the frequency of the laser field) is
the ponderomotive energy and Ip is the ionization energy.

The influence of the intensity ratio of the two-color laser
field on the HHG has been extensively investigated. The in-
teraction between the HHG from current-carrying orbitals can
be affected by adjusting the relative intensity ratio of the laser
fields [6]. By changing the intensity ratio of the laser fields,
the cutoff energy of the harmonic spectrum can be affected
[7,8] and the harmonic intensity will increase as the intensity
ratio increases [9].
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In recent years, the elliptical HHG is of interest to the
optics community. The investigations of the ellipticity of the
HHG driven by linearly [10,11], circularly [12,13], elliptically
[14], and orthogonally [15–17] polarized laser pulses have
been a hot issue in experiment and theory. The dependence
of the ellipticity can be attributed to the different HHG route,
excited state, harmonic intensity, and harmonic phase [10,18–
23]. Not only the crossing angle between the laser fields [9,24]
but the alignment angle also has a significant effect on the
ellipticity. For example, Habibović et al. [16] investigated
the ellipticity from the N2 molecule as a function of the
molecular orientation and found that the harmonic ellipticity
changes rapidly for those orientations for which the total ion-
ization rate exhibits minima by analyzing the quantum orbits.
Mairesse et al. [25] investigated the ellipticity of HHG from
the N2 molecule for different alignment angles θ driven by a
linearly polarized laser field. The results demonstrated that the
maximum ellipticity occurs around θ = 50◦–60◦ and the ellip-
ticity has a larger value near the cutoff at low laser intensity.
Li et al. [26] found that the ellipticity of the harmonics from
the H+

2 molecule driven by the bichromatic counter-rotating
circularly polarized (BCCP) laser field can be controlled by
changing the molecular alignment angle. The results demon-
strated that there is a critical angle at which the ellipticity of
each harmonic is equal. Dong et al. [27] investigated the HHG
from the H+

2 molecule driven by a linearly polarized laser field
and found that the orientation angle has a great influence on
the ellipticity of low-order harmonics (LOHs) and the change
in ellipticity is significant for different harmonic orders.

In addition, the molecular two-center interference effect
also makes a significant contribution to the ellipticity of
the harmonics. An important characteristic of the harmonic
spectrum affected by the two-center interference effect is the
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minimum, which was put forward by Lein et al. [28,29]
in theory. The minimum occurs due to the two-center in-
terference of the molecules, and the interference of the
contributions from two different nuclei in the molecule can
result in the suppression of the harmonics [30–34]. In ad-
dition, Das et al. [35] chose an appropriate driving-field
intensity to avoid the effects of two-center interference and
also found that the harmonics are suppressed when the angle
of the molecular axis with respect to the main polarization
axis of the laser field is 0, π /2, π , 3π /2 for the O2 molecule
driven by an orthogonally polarized two-color (OTC) laser
field. Son et al. [19] investigated the HHG from the H+

2
molecule driven by a linearly polarized laser field by ab initio
calculations and demonstrated that the molecular two-center
interference effects can produce the high ellipticity. Kim et al.
[36] demonstrated that the ellipticity of the harmonics around
the interference minima region can reach the maximum from
the H+

2 and the H2 molecules driven by a linearly polarized
laser field. Zwan et al. [37] observed the significant ellipticity
of the harmonics around the interference minimum, and it was
attributed to the Coulomb effects.

In this paper, we investigate the ellipticity of the harmonics
from the aligned H+

2 molecule driven by the OTC laser pulse
through numerically solving the two-dimensional (2D) time-
dependent Schrödinger equation (TDSE). Our results show
that the odd-order harmonics in the x component and the
even-order harmonics in the y component can be generated
by the OTC laser field with the alignment angle θ = 0◦.
The ellipticity-tunable high-order harmonics can be generated
through adjusting the intensity ratio of the laser fields and
the alignment angles. The phase difference of the x and y
components of the harmonics with θ = −54◦ is investigated
to explain the physical mechanism of the ellipticity. The
harmonic intensity distribution can also be used to illustrate
the ellipticity distribution of the harmonics. The harmonic
spectrum generated with and without interference effects is
investigated, which is used to demonstrate the dependence of
the ellipticity.

II. THEORETICAL METHODS

We investigate the HHG from the H+
2 molecule by nu-

merically solving the 2D TDSE. The 2D TDSE in dipole
approximation for the H+

2 molecule can be given by

∂ψ (x, y, t )

∂t
=

[
Px

2 + Py
2

2
+ VC (x, y)

+ xEx(t ) + yEy(t )

]
ψ (x, y, t ), (1)

where �P = Pxêx + Pyêy is the momentum operator, êx and êy

are the unit vectors in the x and y directions, respectively,

VC (x, y) = − 1√(
x − R

2 cos θ
)2 + (

y − R
2 sin θ

)2 + a2

− 1√(
x + R

2 cos θ
)2 + (

y + R
2 sin θ

)2 + a2
(2)

is the soft-core Coulomb potential of diatomic molecular ion,
where θ is the alignment angle between the molecular axis
and the x axis, R = 2.0 a.u. is the equilibrium internuclear
distance, and a = 0.735 is the soft-core parameter, which
corresponds to the ionization potential Ip = 1.09 a.u. of the
H+

2 molecule [26].
The external electric field is an OTC laser field, which

consists of a fundamental field Ex(t ) and a second-harmonic
field Ey(t ). It is expressed as

E (t ) = �Ex(t )+ �Ey(t )

= E0 f (t )[êx sin (ω0t ) + γ êy sin (2ω0t )], (3)

where f (t ) is a trapezoidal envelope of the laser pulse with
a total duration of three optical cycles and linear ramps of
one cycle [38], E0 is the amplitude of the laser field, ω0 is
the frequency of the fundamental field, and γ is the laser
intensity ratio, which can reflect the relative amplitude of the
two laser fields. We use the split operator method to solve the
TDSE. The time step is 0.05 a.u. and the spatial integration
grid size is 409.6 a.u. The mask function has been adopted for
suppressing the reflection from boundaries [39].

The dipole acceleration can be given by the Ehrenfest the-
orem

dx(t ) = 〈ψ (x, y, t )| − ∂V (x, y)

∂x
+ Ex(t )|ψ (x, y, t )〉,

dy(t ) = 〈ψ (x, y, t )| − ∂V (x, y)

∂y
+ Ey(t )|ψ (x, y, t )〉.

(4)

By simulating the modulus squared of the Fourier transfor-
mation of dipole acceleration, the HHG spectrum can be
expressed as

Fx(ω) =
∣∣∣∣ 1

T − t0

∫ T

t0

dx(t )e−iωt dt

∣∣∣∣
2

,

Fy(ω) =
∣∣∣∣ 1

T − t0

∫ T

t0

dy(t )e−iωt dt

∣∣∣∣
2

,

(5)

where t0 is the initial moment and T is the final moment. The
ellipticity of the harmonics can be obtained from

ε = (|a+| − |a−|)
(|a+| + |a−|) , (6)

where a± = 1√
2
(ax ± iay), with ax and ay being the x and

y components of the dipole acceleration in the frequency
domain, respectively [23]. The ε = 0, 0 < ε < 1, and ε = 1
correspond to the linearly, elliptically, and circularly polarized
harmonics, respectively. In addition, according to Eq. (6), we
can obtain another expression of the ellipticity by complex
derivation. It can be expressed as

ε =
√

1 + r2 − √
1 + r4 + 2r2 cos 2δ

1 + r2 + √
1 + r4 + 2r2 cos 2δ

. (7)

It is consistent with the expression of the ellipticity of Eq. (3)
in Ref. [19]. Where r = |ay|/|ax|, δ = φy −φx is the phase
difference of the x and y components of the harmonics.
φx,y(ω) = arg[ax,y(ω)] and ax,y(ω) = ∫ ∞

−∞ dx,y(t )e−iωt dt [19].
The expressions of Eq. (6) and Eq. (7) are consistent, which
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FIG. 1. (a) Electric field of the OTC laser pulse for four different
intensity ratios γ = 0.7, 1.0, 1.3, 1.6, where Ex (t ) represents the fun-
damental field and Ey(t ) represents the second-harmonic field. The
harmonic spectrum generated by the OTC laser field for four inten-
sity ratios (b) γ = 0.7, (c) γ = 1.0, (d) γ = 1.3, and (e) γ = 1.6
with θ = 0◦. The red solid and black dotted lines correspond to the x
and y components of the generated harmonic spectrum, respectively.
The insets show the detailed harmonic spectrum from 20th to 40th
order.

have been widely used for the investigation of the ellipticity
of the HHG, such as in Refs. [10,19,23,26,27].

III. RESULTS AND DISCUSSIONS

Figure 1 presents the electric field of the OTC laser pulse
and the x and y components of the harmonic spectrum driven
by the OTC laser pulse with the alignment angle θ = 0◦ for
four intensity ratios γ = 0.7, 1.0, 1.3, 1.6, respectively. The
laser intensity I0 = 4 × 1014 W/cm2 (E0 = 0.10676 a.u.) and
the laser frequency ω0 = 0.043 a.u. (λ = 1064 nm). The in-
sets in the upper right corner of Figs. 1(b)–1(e) show the
detailed harmonic spectrum from 20th to 40th order.

Figure 1(a) shows the fundamental field Ex(t ) along x
direction and the second-harmonic field Ey(t ) along y direc-
tion for four different intensity ratios γ = 0.7, 1.0, 1.3, 1.6.
The intensity of the laser field along x direction remains un-
changed and the intensity of the laser field along y direction
gradually increases with the increase of the intensity ratio of
the laser fields.

Figures 1(b)–1(e) present the harmonic spectra with
γ = 0.7, 1.0, 1.3, 1.6, which show that the harmonic intensi-
ties increase gradually and the cutoff positions are extended
with the increase of the intensity ratio of the laser fields. It

indicates that the harmonic intensity can be controlled by the
intensity ratio of the two laser fields. There is a cross point of
the x and y components of the harmonics, which moves to the
higher order of the harmonics with the increase of the intensity
ratio of the laser fields. The intensity in the y component of
the harmonics is higher than that in the x component of the
harmonics below the cross point. However, a reversed result
is observed above the cross point. The minimum of the x
component of the harmonics before the cross point can be
found, which moves to the higher order of the harmonics
with the increase of the intensity ratios. The intensity in the y
component of the harmonics before the cross point is stronger
than that in the x component of the harmonics, which leads
to the disappearance of the minimum of the total harmonic
spectrum (we do not show the total harmonics in this paper).
In Ref. [36], Kim et al. investigated the harmonics of the H+

2
and the H2 molecules driven by a linearly polarized laser field
and found that the minimum disappears if the y component of
the harmonics plays a dominant role. Our result is consistent
with that illustrated in Ref. [36]. We also find that the odd-
order harmonics in the x component are produced and the
even-order harmonics in the y component are produced with
θ = 0◦, which can be seen clearly in the insets in Figs. 1(b)–
1(e). The insets in Figs. 1(b)–1(e) also show that varying the
intensity ratio of the laser fields can change the harmonic
intensity, but it does not change the mechanism of the parity
of the x and y components of the harmonics with the specific
alignment angle θ = 0◦.

To illustrate the physical mechanism of the odd- and even-
order harmonics in the insets in Figs. 1(b)–1(e), we investigate
the harmonics driven by the linearly polarized laser field along
x direction (at frequency ω0 field) and along y direction (at
frequency 2ω0 field) (we do not show the harmonic spectrum
here). We find that only the odd-order harmonics are generated
at both frequency ω0 and 2ω0 fields. This means that the
even-order harmonics at frequency ω0 field are the odd-order
harmonics at frequency 2ω0 field.

The emission mechanism can be explained by the quantum
transition. For frequency ω0 field, according to the conser-
vation of angular momentum, if m left-handed photons are
absorbed, m ± 1 right-handed photons must be absorbed and
thus the radiated photon is 2m ± 1, m = 0, 1, 2, 3, . . . (the
harmonics driven by the single-color contribution of fre-
quency ω0 field), which means that an odd multiple of photons
are radiated, resulting in the odd-order harmonic generation.
For frequency 2ω0 field, the 4m ± 2, m = 0, 1, 2, 3, . . . order
harmonics can be generated (the harmonics driven by the
single-color contribution of frequency 2ω0 field). But, from
Figs. 1(b)–1(e), we find that the 4m ± 4, m = 0, 1, 2, 3, . . .

order harmonics along y direction can also be generated driven
by the OTC laser field (we think that the harmonics are
generated by frequency mixing ω0 and 2ω0 field). According
to the selection rules, � = n1ω1 + n2ω2, n1 + n2 is an odd
integer. n1 represents the number of photons absorbed from ω1

field and n2 represents the number of photons absorbed from
ω2 field (ω1=ω0, ω2=2ω0). In the following, we will use the
notation (n1, n2) to represent the number of photons absorbed.

For example, for 20th, 28th, 32th, and 40th order harmon-
ics, (6,7), (10,9), (10,11), and (14,13) pairs can contribute to
the generation of the harmonics, respectively. Of course, it
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FIG. 2. Ellipticity distribution (a1)–(a4) and intensity distribution (b1)–(b4) of the HHG versus harmonic orders and alignment angles with
different intensity ratios: (a1),(b1) γ = 0.7; (a2),(b2) γ = 1.0; (a3),(b3) γ = 1.3; (a4),(b4) γ = 1.6.

is possible that different (n1, n2) pairs can contribute to the
emission of the given harmonics. Thus other pairs are also
very likely to contribute to the total emission for 20th, 28th,
32th, and 40th order harmonics. For 24th and 36th order har-
monics, (10,7), (6,9), etc. and (14,11), (10,13), etc. are likely
to contribute to the generation of the harmonics, respectively.
There is a more detailed analysis in Refs. [24,40–43].

Figures 2(a1)–2(a4) show the ellipticity distribution of
the HHG versus harmonic orders and alignment angles for
four different intensity ratios. For γ = 0.7, Fig. 2(a1) shows
that the large ellipticities of the harmonics are generated
around θ = −54◦ from 21st to 39th order and around θ = 18◦

from 21st to 27th order. For γ = 1.0, Fig. 2(a2) shows
that the large ellipticities of the harmonics are generated
around θ = −54◦ and θ = 36◦ from 21st to 27th order, and
around θ = ±72◦ above 27th order. For γ = 1.3, 1.6, Figs.
2(a3)–2(a4) show that the large ellipticities of the harmon-
ics are generated around θ = ±54◦ from 21st to 27th order,
and around θ = ±72◦ above 27th order, where 21st and
27th order harmonics are close to the ionization threshold
(n = Ip/ω0 = 1.095/0.043 ≈ 25).

Figures 2(a1)–2(a4) show that the ellipticity is relatively
small around θ = 0◦ compared to that of other alignment
angles. The ellipticity gradually increases as the harmonic
order increases around θ = 0◦ for the cases of four intensity
ratios. The ellipticity of the odd- and even-order harmonics
are comparable around θ = 72◦ from 31st to 40th order for
γ = 1.6. This means that the ellipticity-tunable high-order
harmonics can be generated through adjusting the intensity
ratio of the laser fields and the alignment angles, which facili-
tates the synthesis of attosecond pulse with high degree of the
ellipticity [9].

To illustrate the physical mechanism of the elliptic-
ity distribution of the harmonics, Figs. 2(b1)–2(b4) show
the harmonic intensity distribution versus harmonic orders
and alignment angles for four different intensity ratios
γ = 0.7, 1.0, 1.3, 1.6, respectively. It is illustrated that the po-
sitions of the maximal ellipticity indicate the positions of the
harmonic intensity minima [44]. From Figs. 2(b1)–2(b4), we

can find that the harmonic intensity minimum occurs around
θ = ±54◦ (γ = 0.7), θ = ±72◦ (γ = 1.0, 1.3,1.6), which are
in good agreement with the angles of the large ellipticity
distribution as shown in Figs. 2(a1)–2(a4). We can also see
that the harmonic intensity around θ = 0◦ is relatively strong
compared to that of the other alignment angles and gradually
decreases as the harmonic order increases, which is consistent
with the ellipticity distribution as shown in Figs. 2(a1)–2(a4).

In order to further illustrate the physical mechanism of the
ellipticity of the HHG, we show the ellipticity of the odd-
and even-order harmonics with θ = 0◦ and θ = −54◦ for the
different intensity ratios, as shown in Fig. 3.

From Fig. 3(a), for θ = 0◦, one can see that the ellipticity
of the even-order harmonics are extremely small, and the
ellipticity of the odd-order harmonics decreases first and then
increases with the increase of the harmonic order from 21th to
39th order. With the increase of the intensity ratio of the laser
fields, the ellipticity of the high-order harmonics becomes
smaller from 29th to 39th order. In Ref. [6], Wang et al.
investigated the ellipticity of the harmonics from polyatomic
molecules driven by the BCCP laser field and found that, as
the intensity of the second harmonic gets larger, the absolute
values of the ellipticity get smaller. Our result is the same as
that described in Ref. [6]. It also shows the small ellipticity
near 23rd order for γ = 0.7, 1.6 and 25th and 27th orders
for γ = 1.0 and γ = 1.3. The 23rd, 25th, and 27th orders
are near to the ionization threshold. In Ref. [27], Dong et al.
investigated the ellipticity of the LOHs driven by a linearly
polarized laser field and found that the harmonics which are
near to the ionization threshold show the small ellipticity. Our
result is similar to that illustrated in Ref. [27].

However, the ellipticity of the odd-order harmonics with
θ = 0◦ can be obtained as shown in Fig. 3(a), but the odd-
order harmonics along y direction are not generated as shown
in Figs. 1(b)–1(e). It is a specific case for θ = 0◦ to illustrate
the ellipticity. In order to obtain a general conclusion, we
choose θ = −54◦ to investigate the ellipticity further.

For θ = −54◦, we show the ellipticity of the odd-
and even-order harmonics, respectively, as shown in
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FIG. 3. (a) Ellipticity of the odd- and even-order harmonics with
θ = 0◦. (b1),(b2) The ellipticity of the odd- and even-order harmon-
ics with θ = −54◦. (c1),(c2) The phase difference of the x and y
components of the odd- and even-order harmonics with θ = −54◦

driven by the OTC laser field for different intensity ratios.

Figs. 3(b1) and 3(b2). We can find that the odd- and even-
order harmonics can all generate the higher ellipticity and
the ellipticity first reaches a maximum and then decreases,
which is different from the ellipticity of the odd- and even-
order harmonics with θ = 0◦. The orders corresponding to the
maximum values are all near to the ionization threshold. From
Fig. 3(b2), we can see that the ellipticity of the even-order har-
monics with γ = 0.7 is the largest and it is the smallest with
γ = 1.6. For θ = −54◦, the larger ellipticity can be obtained
and both the odd- and even-order harmonics can be generated
along x and y direction [here we do not show the harmonic
spectrum with γ = 0.7, 1.0, 1.3, and the harmonic spectrum
with γ = 1.6 is shown in Fig. 5(c)], which can illustrate the
physical mechanism of the ellipticity in general.

In order to illustrate the ellipticity distribution of the har-
monics, we investigate the phase difference of the x and y
components of the harmonics [19]. In Figs. 3(c1) and 3(c2),
we show the phase difference of the x and y components of the
odd- and even-order harmonics with θ = −54◦, respectively.
From the expression of the ellipticity of Eq. (7), we can see
that the ellipticity has a strong dependence on the amplitude
ratio and the phase difference of the x and y components of the
harmonics. We can consider the following three cases from
Eq. (7).

Case (1): if the phase difference of the x and y components
of the harmonics is δ = 0 or ±π , then ε = 0 and the harmon-
ics are completely linearly polarized.

Case (2): if the phase difference of the x and y components
of the harmonics is ±π/2 and the x and y components of

the harmonics have the same amplitude, then ε = 1 and the
harmonics are circularly polarized.

Case (3): if the amplitude of the x and y components of
the harmonics is different or the phase difference of the x and
y components of the harmonics is not 0, ±π , or ±π/2, then
0 < ε < 1 and the harmonics are elliptically polarized.

Thus, to achieve the high ellipticity, the following two
cases should be satisfied [19]: (i) the amplitudes of the x and
y components of the harmonics are comparable and (ii) their
phase difference is around ±π/2. If the phase difference is
around 0 or ±π , the ellipticity is small.

From Fig. 3(c2), we can see that the phase difference of
the even-order harmonics with θ = −54◦ is closest to π/2
for γ = 0.7 and farthest away from π/2 for γ = 1.6, which
correspond to the largest and the smallest ellipticity as shown
in Fig. 3(b2).

We take γ = 0.7 as an example to illustrate the ellipticity.
For the odd-order harmonics, Fig. 3(c1) shows that the phase
difference with γ = 0.7 is the closest to π/2 first and then
becomes the farthest away from π/2, which corresponds to
the fact that the ellipticity first increases and then decreases, as
shown in Fig. 3(b1). For the even-order harmonics, Fig. 3(c2)
shows that the phase difference with γ = 0.7 is closer to π/2
from 20th to 26th order, and becomes farther away from π/2
from 26th to 30th, and then becomes closer to π/2 again
for 30th to 40th order, which corresponds to the fact that
the ellipticity of the even-order harmonics with γ = 0.7 first
increases, then decreases, and then increases again, as shown
in Fig. 3(b2). Other situations are consistent with this analysis.

Figure 4 shows the angular distribution of the ellipticity for
25th and 30th order harmonics with γ = 0.7, 1.0, 1.3, 1.6, re-
spectively. Figures 4(a1)–4(a4) show that the maximum ellip-
ticity occurs around θ = 36◦,−54◦ (γ = 0.7), θ = 46◦,−54◦

(γ = 1.0), and θ = ±54◦ (γ = 1.3, 1.6) for 25th order
harmonic. Figures 4(b1)–4(b4) show that the maximum el-
lipticity occurs around θ = ±72◦ (γ = 0.7, 1.0, 1.3, 1.6) for
30th order harmonic. The angles of the maximum ellipticity
distribution are centrosymmetric for each case. It can be seen
that the polarization directions of the odd- and even-order
harmonics are different. In Ref. [9], Zhai et al. investigated
the influence of the crossing angle between the two laser fields
on the ellipticity driven by cross-linearly polarized two-color
field experimentally and the result showed that the odd- and
even-order harmonics have different polarization directions.
The results in our paper are consistent with that illustrated in
Ref. [9].

The pointing angles of the ellipticity distribution of the
same order are almost consistent for different intensity ratios,
which means that the angular distribution of the ellipticity
is insensitive to the intensity ratio at particular harmonic or-
der. This is because the below-threshold harmonic generation
mechanism is multiphoton ionization, due to the fact that 25th
and 30th order harmonics are close to the ionization threshold;
it is not sensitive to the changing of the intensity ratio of the
laser fields.

In addition, we also investigate the angular distribution of
the ellipticity of 13rd, 18th, 33rd, 38th, 43rd, 48th, 53rd, and
58th harmonics and we find that the difference in the pointing
angle of the ellipticity angle distribution becomes obvious as
the harmonic orders get farther and farther away from the
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FIG. 4. Angular distribution of the ellipticity of the HHG for (a1)–(a4) 25th order and (b1)–(b4) 30th order with (a1),(b1) γ = 0.7, (a2),(b2)
γ = 1.0, (a3),(b3) γ = 1.3, and (a4),(b4) γ = 1.6, respectively.

ionization threshold (we do not show the angular distribution
of the ellipticity of these harmonic orders here).

To get a deeper insight of the ellipticity, we use the
two-center interference effect on the harmonic spectrum to
investigate the physical mechanism of the ellipticity of the
harmonics. According to the previous work [30,33,34], the
contributions of the harmonic generation from two nuclei can
be separately investigated. The harmonic spectrum can be
written as

|G(ω)|2 = |G1(ω)|2 + |G2(ω)|2 + 2 Re [G1(ω)G2
∗(ω)],

(8)

where Gj (ω) = ∫
eiωt 〈ψ (t )|∇Vj (r)|ψ (t )〉dt , j = 1, 2.

|Gj (ω)|2 can be regarded as the harmonic spectrum generated
from nucleus j without considering another nucleus. It is
clear that |G(ω)|2 is the total harmonic spectrum with the
interference effect and |G1(ω)|2 + |G2(ω)|2 is the harmonic
spectrum without the interference effect; 2 Re[G1(ω)G2

∗(ω)]
is the interference term from two nuclei.

Figure 5 presents the harmonic spectrum with and
without the interference effect for four alignment angles
θ = 0◦, 72◦,−54◦,−72◦ with γ = 1.6, where Fx(ω) and
Fy(ω) represent the x and y components of the harmonics with
the interference effect, respectively, and Fx

′(ω) and Fy
′(ω) rep-

resent that without the interference effect, respectively. From
Fig. 4 we can see that the ellipticities are small for 25th and
30th order harmonics with θ=0◦, which can act as a contrast
angle, the ellipticity is larger for 25th order harmonic with
θ = −54◦, and the ellipticity is larger for 30th order harmonic
with θ = ±72◦.

We can find that the odd-order harmonics in the x com-
ponent are generated and the even-order harmonics in the y
component are generated with the interference effect for θ=0◦,
as shown in Fig. 5(a). The odd-order harmonics in the x com-
ponent are generated and the even-order harmonics and the
weak odd-order harmonics in the y component are generated
with the interference effect for θ = 72◦, as shown in Fig. 5(b).

The odd- and even- order harmonics in the x and y component
are generated with the interference effect for θ = −54◦, as
shown in Fig. 5(c). The odd- and even-order harmonics in the
x component are generated and the even-order harmonics in
the y component are generated with the interference effect for
θ = −72◦, as shown in Fig. 5(d). This means that the parity
of the HHG spectrum depends on the molecular alignment
angle. Our results that the parity of the HHG depends on
the molecular alignment angle for the H+

2 molecule driven by
the OTC laser field are consistent with the results of the CO
molecule for different orientation angles driven by a linearly
polarized laser field [45].

For θ = 0◦, the harmonic intensity in the x component
with the interference effect is weaker than that without the
interference effect; however, a reversed result can be obtained
for the harmonics in the y component, as shown in Fig. 5(a).
For θ = 72◦, the harmonic intensities in the x and y com-
ponents with the interference effect are all weaker than that
without the interference effect, as shown in Fig. 5(b). For
θ = −54◦,−72◦, the harmonic intensity in the y component
with the interference effect is weaker than that without the
interference effect, whereas the harmonic intensity in the x
component with the interference effect and without the inter-
ference effect are comparable, as shown in Figs. 5(c) and 5(d).

From Fig. 5(a), we can find that the harmonic intensi-
ties for the x and y components with the interference effect
for 25th order harmonic with θ = 0◦ are 1.14 × 10−9 and
5.76 × 10−9, respectively, which differ by about 0.7 orders of
magnitude. For 30th order harmonic, the harmonic intensities
for the x and y components with the interference effect are
3.9 × 10−11 and 7.83 × 10−8, respectively, which differ by
about 3.3 orders of magnitude. Similarly, in Fig. 5(b), we
can find that the harmonic intensities for the x and y com-
ponents with the interference effect for 25th order harmonic
with θ = 72◦ are 6.6 × 10−9 and 2.69 × 10−9, respectively,
which differ by about 0.39 orders of magnitude. For 30th order
harmonic, the harmonic intensities for the x and y components
with the interference effect are 3.5 × 10−9 and 1.29 × 10−8,
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FIG. 5. Harmonic spectrum generated by the OTC laser field for four alignment angles: (a) θ = 0◦, (b) θ = 72◦, (c) θ = −54◦, and
(d) θ = −72◦ with γ = 1.6, respectively. Fx (ω) and Fy(ω) represent the x and y components of the harmonics with the interference effect,
respectively. Fx

′(ω) and Fy
′(ω) represent that without the interference effect, respectively. (e) The phase difference of 25th and 30th order

harmonics for θ = 0◦, 72◦, −54◦, −72◦ with γ = 1.6.

respectively, which differ by about 0.56 orders of magnitude.
From Fig. 5(c), it can be found that the harmonic intensi-
ties for the x and y components with the interference effect
for 25th order harmonic with θ = −54◦ are 9.9 × 10−9 and
6.01 × 10−9, respectively, which differ by about 0.22 orders
of magnitude. For 30th order harmonic, the harmonic inten-
sities for the x and y components with the interference effect
are 1.462 × 10−8 and 1.96 × 10−8, respectively, which differ
by about 0.127 orders of magnitude. From Fig. 5(d), it can
be found that the harmonic intensities for the x and y com-

ponents with the interference effect for 25th order harmonic
with θ = −72◦ are 1.408 × 10−8 and 2.09 × 10−9, respec-
tively, which differ by about 0.83 orders of magnitude. For
30th order harmonic, the harmonic intensities for the x and y
components with the interference effect are 7.29 × 10−9 and
1.179 × 10−8, respectively, which differ by about 0.21 orders
of magnitude.

Obviously, the harmonic amplitude difference of the x and
y components for 25th order harmonic with θ = −54◦ and
that for 30th order harmonic with θ = ±72◦ are smaller than
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that for 25th and 30th order harmonics with θ = 0◦, which
results in the larger ellipticity for 25th order harmonic with
θ = −54◦ and 30th order harmonic with ±72◦ than that of
25th and 30th order harmonics with θ = 0◦, which are consis-
tent with that shown in Fig. 4(a4) and Fig. 4(b4), respectively.

In Fig. 5(e), we give the comparison of the phase
difference for 25th and 30th order harmonics with
θ = 0◦, 72◦,−54◦,−72◦ to further illustrate the ellipticity.
We can find that the phase difference with θ = −54◦,±72◦

is closer to π/2 compared with that with θ = 0◦ for 25th
order harmonic. Thus the ellipticity with θ = −54◦,±72◦

is larger than that with θ = 0◦ for 25th order. The phase
difference with θ = ±72◦ is closer to π/2 compared with
that with θ = 0◦ for 30th order harmonic. Thus the ellipticity
with θ = ±72◦ is larger than that with θ = 0◦ for 30th order
harmonic, which are consistent with that described above.
Even if the phase difference with θ = 0◦ is closer to π/2 than
that with θ = −54◦ for 30th order harmonic, the amplitude
difference for the x and y components of the harmonics with
θ = 0◦ is much larger than that with θ = −54◦; thus the
ellipticity with θ = −54◦ is larger than that with θ = 0◦ for
30th order harmonic.

The phase differences with θ = −54◦,−72◦ for 25th order
harmonic are comparable; however, the amplitude difference
for the x and y components of the harmonics with θ = −54◦ is
smaller than that with θ = −72◦, which results in the smaller
ellipticity with θ = −72◦ compared with that with θ = −54◦.
The phase differences with θ = −54◦,−72◦ for 25th order
harmonic are closer to π/2 than that with θ = 72◦, which
results in the larger ellipticity with θ = −54◦,−72◦ compared
with that with θ = 72◦. Similarly, for 30th order harmonic,
the phase difference with θ = −54◦ is farther away from π/2
than that of θ = ±72◦, which results in the smaller ellipticity
with θ = −54◦ compared with that with θ = ±72◦, which are
consistent with the results shown in Figs. 4(a4) and 4(b4).

In Figs. 5(a)–5(d), we give the x and y components of
the harmonics without the interference effect to illustrate the
dependence of the ellipticity on the interference effect. The
influence of the interference effect on the ellipticity can be re-
flected by the amplitude difference of the x and y components
of the harmonics.

From Fig. 5(a), we can find that the harmonic intensities
for the x and y components without the interference effect
for 25th order harmonic with θ = 0◦ are 8.27 × 10−10 and
1.12 × 10−8, respectively, which differ by about 1.13 orders
of magnitude. For 30th order harmonic, the harmonic intensi-
ties in the x and y components without the interference effect
are 5.21 × 10−9 and 4.17 × 10−8, respectively, which differ
by about 0.9 orders of magnitude. In Fig. 5(b), we can find that
the harmonic intensities for the x and y components without
the interference effect for 25th order harmonic with θ = 72◦

are 9.02 × 10−9 and 1.29 × 10−8, respectively, which differ
by about 0.15 orders of magnitude. For 30th order harmonic,
the harmonic intensities in the x and y components without

the interference effect are 4.34 × 10−9 and 7.7 × 10−8, re-
spectively, which differ by about 1.24 orders of magnitude.
In Fig. 5(c), we can find that the harmonic intensities for the x
and y components without the interference effect for 25th or-
der harmonic with θ = −54◦ are 8.4 × 10−9 and 2.88 × 10−9,
respectively, which differ by about 0.46 orders of magni-
tude. For 30th order harmonic, the harmonic intensities in
the x and y components without the interference effect are
1.25 × 10−8 and 5.72 × 10−8, respectively, which differ by
about 0.66 orders of magnitude. In Fig. 5(d), we can find that
the harmonic intensities for the x and y components without
the interference effect for 25th order harmonic with θ = −72◦

are 1.28 × 10−8 and 1.72 × 10−9, respectively, which differ
by about 0.87 orders of magnitude. For 30th order harmonic,
the harmonic intensities in the x and y components without the
interference effect are 5.99 × 10−9 and 7.23 × 10−8, respec-
tively, which differ by about 1.08 orders of magnitude.

Obviously, the amplitude ratio in the x and y components
of the harmonics without the interference effect are different
from that with the interference effect. These mean that the
two-center interference effect can affect the amplitude differ-
ence of the x and y components of the harmonics and further
affect the ellipticity of the harmonics.

IV. CONCLUSIONS

In conclusion, we investigated the ellipticity of the
HHG for the H+

2 molecule at different intensity ratios
γ = 0.7, 1.0, 1.3, 1.6 driven by the OTC laser field through
numerically solving the 2D TDSE. We find that the odd-order
harmonics in the x component and the even-order harmon-
ics in the y component can be generated with the specific
alignment angle θ = 0◦ and the physical mechanism can be
illustrated by the quantum transition. The ellipticity can be
controlled by adjusting the intensity ratio of the laser fields
and alignment angles. The phase difference of the x and y
components of the harmonics with θ = −54◦ is investigated
to illustrate the general physical mechanism of the ellipticity.
The results show that the ellipticity is larger around ±π/2
than that around 0 or ±π . Subsequently, we show that the
ellipticity of the harmonics varies with the harmonic orders
and the alignment angles. And the intensity ratio has little ef-
fect on the angular distribution of the ellipticity for particular
harmonic order. We further present the harmonic spectrum
with and without the interference effect. The results show
that the two-center interference effect can affect the amplitude
difference of the x and y components of the harmonics and
further affect the ellipticity of the harmonics.
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