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Comparative study of classical theoretical descriptions of the ionization
of atoms induced by few-cycle laser pulses
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We have investigated the performance of classical models in the description of the single and double ionization
of argon induced by 4-fs, 750-nm linearly polarized laser pulses by comparing the calculated quantities with
existing experimental data, primarily the results of the systematic measurements of Kübel at al. [Phys. Rev. A
93, 053422 (2016)], in the intensity range (1–10) × 1014 Wcm−2. The comparison involved different one- and
two-electron models based on the classical ensemble approximation. The analysis covered single- and double-
ionization probabilities and their ratios, longitudinal momentum distributions of the Ar+ and Ar2+ recoiled ions,
and the carrier-envelope-phase-dependent asymmetry of the yield of the Ar+ and Ar2+ ions.
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I. INTRODUCTION

In the past two decades the development of laser technol-
ogy has led to routine use of laser pulses as short as a few
optical cycles for study of light-matter interactions. Particu-
larly, the application of few-cycles pulses made it possible
to explore the electron dynamics in the photoionization pro-
cesses in unprecedented detail. Obviously, for such pulses
the electron emission is practically confined to one optical
cycle, which allows us to trace the process with sub-fs time
resolution [1]. This property, besides its great fundamental
importance, simplifies the theoretical treatment of the pho-
toionization, particularly considering the double (multiple)
electron emission. In a certain range of the laser intensity the
latter dominantly proceeds via the rescattering mechanism:
The first ionized electron in the next half optical cycle is
driven back by the laser field, and collides with the parent
ion inelastically, leading to emission of a further electron. For
a long laser pulse multiple rescattering may occur, which im-
pedes the theoretical interpretation of the experimental results.
Using few-cycle laser pulses in an experiment, the contribu-
tion of the multiple rescattering can be excluded.

For a linearly polarized long laser pulse the contributions of
the laser-matter interaction effects belonging to the opposite
directions of the densely oscillating electric field are balanced.
For photoionization this leads to symmetric electron emission.
For a few-cycle pulse this is generally not the case; the emis-
sion is asymmetric [2]. The asymmetry depends on the phase
of the carrier wave with respect to the pulse envelope, called
carrier-envelope phase (CEP).

The first demonstration of production of intense, few-
cycle laser pulses with a stable CEP [3] has initiated a
wave of investigations to explore the CEP-dependent aspect
of the photoionization [4–21,34,35] (for a review see, e.g.,
Refs. [22,23]). The measurement of the CEP-dependent quan-
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tities represents a challenge, the experiments in this field are
of great complexity. An important development in the ex-
perimental technique was the combination of the control of
CEP with the cold target recoil ion momentum spectroscopy
(COLTRIMS) [4]. Using the latter method, the momentum of
all the reaction products can be determined (for a review see,
e.g., Ref. [24]).

By means of COLTRIMS valuable information has been
obtained about the role of the electron-electron correlation
in the photoionization induced by few-cycles laser pulses
[4,9,11,12,15–17]. These experiments mostly focused on the
phenomenon of the nonsequential double ionization (NSDI,
for a review see, e.g., Ref. [25]). NSDI proceeds via the rescat-
tering mechanism discussed above. At lower laser intensities
the probability of NSDI is higher by orders of magnitude
than that expected assuming independent ionization of the
two electrons [sequential double ionization (SDI)]. This is
an unprecedented manifestation of the electron correlation
in atomic physics, which explains the great interest towards
NSDI.

The measurements differential with respect to CEP pro-
vided data for a stringent test of the performance and validity
of the photoionization theories. A considerable amount of
theoretical works, applying quantum mechanical, classi-
cal, and semiclassical models have been dealing with the
CEP-dependent properties of the photoemission. The quan-
tum mechanical approaches included the solution of the
time-dependent Schrödinger equation [6–8,13,19], models us-
ing the strong-field approximation [5,14], and a two-step
treatment of the recollison mechanism, called quantitative
rescattering theory [10]. The classical models are based on
the solution of the Newton’s equation of motion [34,35,43],
while in the semiclassical approaches the tunneling ioniza-
tion step of the full process is treated quantum mechanically
[5,6,11,12,17,18,26–28].

This work was motivated by the comprehensive exper-
imental study of the multiple ionization of argon induced
by CEP-tagged single-cycle linearly polarized infrared laser
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pulses carried out by Kübel et al. [17]. By performing kine-
matically complete measurements in a broad range of the
laser intensity, the goal of the authors of this study was to
provide benchmark data for a rigorous test of the theoretical
models. They compared the obtained highly differential data
with results of semiclassical calculations. The applied one-
dimensional, single-active electron model is based on solution
of coupled rate equations that govern the time evolution of
the occupation probabilities of the Ar, Ar+, and Ar2+ ground
states, as well as the lowest excited Ar+∗ state. The transition
rates between the ionic states are determined by an extended
version [29] of the Ammosov-Delone-Krainov (ADK) the-
ory [30]. The authors considered only the excitation channel
in the rescattering process, in which the scattering angle β

was a free parameter of the model. A reasonable agreement
between most of the experimental data and the model was
achieved by multiplying the measured intensity by a factor
of 2.5. This discrepancy was resolved by a comprehensive
theoretical analysis of the measurements of Kübel et al. [17]
carried out by Chen et al. [18] using a three-dimensional, two-
active-electron semiclassical model. In this model the primary
tunneling ionization was also treated by the ADK theory. The
only approximation of the model was the choice of the initial
phase-space coordinates of the two electrons following the
tunneling.

Here we compare the systematic measuring data reported
in Ref. [17] together with a few previously measured data
[9,11] with the results of classical and semiclassical mechan-
ical calculations that we carried out in different models in
an intensity range (1–10) × 1014 Wcm−2. The comparison
involves quantities as single- and double-ionization probabil-
ities, the longitudinal momentum distributions of the recoiled
Ar+ and Ar2+ ions, and the asymmetry parameter accounting
for the CEP effects.

II. THEORY

For the classical description of the laser-induced ionization
we used different versions of the classical ensemble approxi-
mation (CEA) model. CEA is based on the classical trajectory
Monte Carlo (CTMC) method proposed originally by Abrines
and Percival [31] for the description of ion-atom collisions.
In the method the classical mechanical equations of motion
of the particles are solved. We applied the three-dimensional,
nonrelativistic, three-body version of the theory.

Due to the important role of the electron correlation effects
in the regarded processes, reasonable results are expected
from models that include the electron-electron interaction. In
the classical treatment of the multielectron atom one is faced
with the difficulty due to its instability. Classically the energy
exchange between the electrons is not limited, after a time
unphysical autoionization occurs: even in the absence of the
external field the energy of one of the electrons becomes lower
than the ground-state binding energy, while the other electron
gains enough energy to be ionized. To prevent this, several
methods have been proposed (for a review see, e.g., Ref. [32]).
We made the calculations in two models in which the au-
toionization is prevented by suitably chosen atomic potentials,
namely by a soft-Coulomb potential and by a Heisenberg-core
potential. The former is referred to as CEA-SC. The latter

model is considered as a semiclassical one due to the strong
quantum mechanical effect exerted by the Heisenberg poten-
tial throughout the time propagation, therefore it is called
SCEA-H.

In the above models the electron correlation effects were
expressed by considering two active electrons. For a com-
parison we made also calculations in an uncorrelated CEA
model using the single-active-electron approximation. In the
latter calculations single- and double-ionization probabilities
were determined in the framework of the independent par-
ticle model (IPM), therefore we refer to this approach as
CEA-IPM.

The quantum mechanical (QM) treatment of the regarded
processes was beyond the scope of the present work, although
a QM effect, namely the tunneling ionization was taken into
account in the applied semiclassical model (referred as SCEA
model). At the same time, it was interesting to compare the
obtained results at least with the predictions of an uncorrelated
QM theory. For this purpose we chose the ADK theory, and
applied IPM to derive single- and double-ionization probabil-
ities.

We note that in the reported simulations we did not include
the focal volume averaging. However, we discuss its expected
effect on the calculated quantities.

A. CEA-SC model

In the model two 3p electrons of the argon atom with total
binding energy of −1.5946 a.u. (sum of the first and second
ionization energy) were chosen as active electrons orbiting
around an atomic core of charge Zcore = 2. The atom is stabi-
lized by replacing the Coulomb potential for the electron-core
(e-c) and the electron-electron (e-e) interaction with a soft
potential [33] defined as

Vi j = ZiZ j√
r2

i j + c2
αβ

. (1)

Here Zi and Zj are the charges of the ith and jth particle,
and ri j is the distance between them. The cαβ parameter is
different for the e-c and e-e interaction. We note that the
soft-core Coulomb potential has been widely applied in the
theoretical works dealing with the laser-induced ionization of
atoms [34–50]. For argon cec = 1.5 and cee = 0.05 have been
proved to be the best values [34,35,41–43,45,46].

With the potential (1) the Newton’s equations of motion for
the three particles (the atomic core and the two electrons) of
masses mi interacting with the laser pulse

mi
d2ri

d t2
=

3∑
j( �=i)=1

−∇ri j [Vi j (ri j )] + ZiE(t ) (2)

take the following form:

mi
d2ri

d t2
=

3∑
j( �=i)=1

ZiZ j

r′
i j

3 ri j + ZiE(t ) (3)

with

r′
i j =

√
r2

i j + c2
αβ.
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The laser pulse with wavelength of 750 nm was assumed
to be of Gaussian shape with full width of half-maximum
(FWHM) of 4 fs (intensity). Accordingly, the electric field
E(t ) was taken as

E(t ) = E0{exp[−(t/τ )2]}1/2 cos(ωt + φ) k̂. (4)

Here ω is the frequency of the laser light, τ is obtained from
the relationship FWHM = 2 τ

√
ln 2, and E0 is the amplitude

of the electric field. E0 in atomic units is related to the laser
intensity I expressed in W/cm2 by E0 = 0.533 × 10−8

√
I . k̂

is a unit vector along the z axis defining the direction of the
polarization. At the beginning and end of the pulse the electric
field decreased to 0.3% of its maximum value.

B. SCEA-H model

In SCEA-H the two active electrons of argon are consid-
ered in the same way as in the CEA-SC. The autoionization
of the atom in this case is prevented by a Heisenberg-core
potential proposed originally by Kirschbaum and Wilets [51]
to stabilize the classically described multielectron atoms and
molecules. This potential has been widely applied in investi-
gations of atomic collisions [32] and laser-atom (-molecule)
interactions [52–60]. Since it is a momentum-dependent po-
tential, the time evolution of the system can be determined by
the canonical equations:

dri

dt
= ∂H

∂pi
,

dpi

dt
= −∂H

∂ri
. (5)

Here ri and pi are the position and momentum of the particles.
The Hamiltonian H is expressed as

H =
3∑

i=1

p2
i

2mi
+ 1

|r1c − r2c|

+
∑
i=1,2

[
− 2

ric
+ VH(ric, pic)

]
−

3∑
i=1

ZiriE(t ), (6)

where ric and pic (i = 1, 2) are the relative position and mo-
mentum of the two electrons with respect to the atomic core.
VH(r, p) is the Heisenberg-core potential:

VH(r, p) = ξ 2

4αr2
exp{α[1 − (r p/ξ )4]}. (7)

Following Refs. [57–59], we made our calculations with
α = 2 and ξ = 1.225. An important property of this potential
is that at a given value of α the value of ξ can be chosen
in a way that the minimum of the one-electron Hamiltonian
agrees with the second ionization energy (−1.0154 a.u. for
argon). For the above parameter values the minimum energy is
slightly smaller (−1.065 a.u. [58]). The reason for the choice
of the less optimal parameters is that at the exact energy match
the two-electron orbits are prohibited energetically.

C. CEA-IPM model

In this one-electron model the Newton’s equations of mo-
tion (2) are solved for two particles moving in the electric
field of the laser pulse: a single active electron chosen as a
3p electron of argon and the atomic core. The core in this

case, unlike for CEA-SC and SCEA-H, interacts with the
electron via a realistic screened Coulomb potential based on
Hartree-Fock calculations [61]:

V (r) = −{Z − (Ne − 1)[1 − 	(r, η, ζ )]}/r, (8)

where Z is the nuclear charge, Ne is the number of the elec-
trons in the atom (ion), and

	(r, η, ζ ) = {(η/ζ )[exp(ζ r) − 1] + 1}−1.

η and ζ are parameters that depend on Ne and Z .
The Monte Carlo calculations solving the Newton’s equa-

tions for a large number of laser-atom interaction events result
in one-electron ionization probability pi (the ratio of events
leading to ionization to the total number of trials). For a mul-
tielectron atom the independent-particle model (IPM) can be
applied to determine n-fold ionization probability Pin . For an
atom having N electrons in the considered shell Pin is obtained
by the following binomial expression:

Pin =
(

N

n

)
pn

i (1 − pi )
(N−n). (9)

In the present work we had to take into consideration the
strong dependence of pi on the binding energy of the elec-
tron in the investigated range of the laser intensity. After the
ionization of the first electron the probability of the ionization
of the second, the third, etc. electron is greatly reduced due to
the increased n-fold ionization energies. Therefore, we used
a more realistic form of the above expression. We took into
account the dependence of pi on the ionization energy, and
in (9) we neglected the terms corresponding to higher than
the second ionization energy. In this way the single-ionization
probability, denoted by Psi, is expressed as

Psi =
(

N

1

)
p(1)

i

(
1 − p(2)

i

)
. (10)

The double-ionization probability, denoted by Pdi, is given by

Pdi =
(

N

2

)
p(1)

i p(2)
i . (11)

In the above equations p(1)
i and p(2)

i are the one-electron ion-
ization probabilities obtained by calculations carried out with
the first and second ionization energy. In these calculations the
parameters in Eq. (8) were as follows. For p(1)

i (ionization of
Ar0) Ne = 18, η = 3.50, and ζ = 0.957. For p(2)

i (ionization
of Ar+) Ne = 17, η = 3.74, and ζ = 1.17.

D. ADK theory

We considered a modified version of the theory, which was
proposed to extend its validity to laser intensities higher than
the tunneling regime [29]. This was done by multiplying the
tunneling ionization rate WTI of the original theory [30] by an
empirical factor:

W (F ) = WTI(F ) exp[−α(Z2
c /Ip)(F/κ3)]. (12)

Here F = |eE (t )| is the electric field strength, Ip is the ion-
ization energy, and κ = √

2Ip. α and Zc are parameters that
depend on the atomic number and ionic state of the atom.
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WTI(F ) is expressed as

WTI(F ) = C2
l

2|m||m|!
(2l + 1)(l + |m|)!

2(l − |m|)!
1

κ2Zc/κ−1

×
(

2κ3

F

)2Zc/κ−|m|−1

exp(−2κ3/3F ), (13)

where l and m are the angular momentum quantum numbers
of the electron in the considered shell of the atom. Cl is a
parameter of the theory determined by atomic structure calcu-
lations.

According to Ref. [29] one-electron ionization probability
can be calculated as

pi = 1 − exp

{
−

∫ ∞

−∞
W [F (t )] dt

}
. (14)

In the ADK model we determined single- and double-
ionization probabilities for argon in the same way, as for
CEA-IPM, applying Eqs. (10) and (11). For this purpose
we calculated the p(1)

i and p(2)
i probabilities for the first and

second ionization energy using Eq. (14). In these calculations
the parameters in Eqs. (12) and (13) were as follow. For Ar0:
Cl = 2.44 [62], Ip1 = 0.579, Zc = 1, and α = 9. For Ar+:
Cl = 2.44, Ip2 = 1.0154, Zc = 2, and α = 8. Only the 3p
electrons of argon were considered, the corresponding W (F )
ionization rates were averaged over the magnetic quantum
number m.

E. SCEA model

In this hybrid quantum-classical two-electron model the
first step of the ionization process is the tunneling of one of the
electrons through the barrier formed by the atomic core po-
tential and the electric potential of the laser pulse. To include
the tunneling in the model, we followed the time development
of the pulse from the beginning in small steps, 
ti. At each
step we calculated the probability of tunneling at time ti using
the modified ADK theory: 
pi = 2W [F (ti)]
ti (the factor 2
accounts for the two electrons). If 
pi was smaller than ξ

chosen randomly in the interval [0, 1], then the next time step
was considered. This procedure was continued until 
pi > ξ ,
i.e., until the occurrence of tunneling. One can show that such
a procedure alone (i.e., without the two-electron dynamics)
leads to a total tunneling ionization probability pi given by
Eq. (14).

After tunneling the initial phase-space coordinates of the
liberated electron and those of the remaining electron were
calculated (see the next Sec. II F), and the time propagation of
the system was determined by solving the Newton’s equations
(2). Here we did not apply the Zcore = 2 approximation for
the electron-core interaction, but used the screened Coulomb
potential expressed by Eq. (8).

F. Choice of the initial phase-space electron coordinates

In CEA-SC and SCEA-H for the choice of the initial posi-
tion and momentum coordinates of the electrons we applied a
similar trial and error method as that proposed by Cohen [32].
In the first step of our procedure we treat the two electrons
independently. We choose the magnitude of their position
and momentum randomly in a given interval with uniform
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FIG. 1. One-electron initial position and momentum distribu-
tions in argon. (a) and (c) refer to the position before and after
equilibration, respectively; (b) and (d) show the corresponding mo-
mentum distributions. The closed and open circles represent the
method applied in the present work and that followed in Ref. [34],
respectively.

distribution. To minimize the calculation time we optimized
the length of the intervals. For CEA-SC we used the interval
[0, 4.7 a.u.] for the position, and [0, 1.7 a.u.] for the mo-
mentum. For SCEA-H the corresponding intervals were [0,
3 a.u.] and [0, 2 a.u.]. We determine the angular coordinates
of the electrons also randomly following the prescription the
one-electron CTMC (see, e.g., Ref. [63]). Then we determine
the total energy of the two electrons including their interac-
tion. The sampling was accepted if the difference between the
calculated energy and the binding energy of the two electrons
was within 1%.

The equations of motion were solved using a fifth-order
Runge-Kutta method. The integration of the equations was
started well before the pulse to ensure the equilibration of the
distribution of the phase space coordinates of the two elec-
trons. The equilibrium was reached allowing the electrons to
circulate around the nucleus 20 times. After the pulse in case
of a double-ionization event the integration was continued
until the energies of the electrons reached their asymptotical
values.

We note that there is no unambiguous procedure for the de-
termination of the initial position and momentum coordinates
of the electrons. In the literature several different methods can
be found. For example, in Ref. [34] first the classically al-
lowed position coordinates for the total binding energy of the
two electrons are determined, then the available kinetic energy
is randomly distributed between the electrons in the momen-
tum space. At the same time, one expects that as a result
of the equilibration the different methods converge more or
less to the same distributions of the phase space coordinates.
This is illustrated in Fig. 1 where the results of calculations
obtained by the present method and that used in Ref. [34] are
compared. For the position the two methods lead to the same
distributions both before and after the equilibration. For the
momentum there is a difference between the two approaches
initially, which, however, disappears after the equilibration.
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For CEA-IPM we applied the well-established prescrip-
tion the one-electron CTMC [63] for the determination of
the phase-space electron coordinates in the case of non-
Coulombic electron-core interaction.

For SCEA at the time moment t0 of the tunneling the exit
coordinate of the electron z0 was obtained from the root η0 of
the equation (in a.u.)

− 1

4η
− 1

8η2
− F (t0)η

8
= − Ip1

4
(Ip1 > 0) (15)

as z0 = −sign[eE (t0)]η0/2. The above equation was deduced
from the form of the Schrödinger equation written for a hy-
drogenlike atom in a static outer electric field, and expressed
in parabolic coordinates [64–66]. For F (t0) > 0.149 a.u. η0 is
complex, which means an upper limit of 7.8 × 1014 Wcm−2

laser intensity for the present SCEA calculations. We note
that this limit means a restriction only in the below-the-barrier
intensity regime, by a suitable choice of the initial conditions
the application of SCEA can be extended for higher intensities
[67].

The x and y component of the tunneled electron were
chosen as x0 = y0 = 0. Its longitudinal velocity component
vz0 was set to be zero, the transverse velocity v⊥ was chosen
randomly according to the distribution ρ(v⊥) = c v⊥ω(v⊥).
Here ω(v⊥) = exp[−v2

⊥κ/F (t0)] is the transverse velocity
distribution derived by the adiabatic treatment of the tunneling
ionization [68]. The normalization∫ 2π

0

∫ ∞

0
ρ(v⊥)dv⊥dϕ = 1

results in c = κ/πF (t0). The vx and vy components were
calculated as vx0 = v⊥ cos ϕ and vy0 = v⊥ sin ϕ, where ϕ was
chosen randomly in the interval [0, 2π ].

The initial phase-space coordinates of the other electron
bound with the second ionization energy in the atom were
determined according to the microcanonical distribution [63]
in the same way as for the CEA-IPM calculations.

III. RESULTS AND DISCUSSION

A. Ionization probabilities

The results of the calculations obtained for the single-
and double-ionization probabilities (averaged over CEP) are
shown in Figs. 2 and 3 as a function of the laser intensity.
For CEA-SC, SCEA-H, and SCEA the plotted probabilities
are those obtained directly from the calculations, i.e., values
that belong to electron emission from a two-electron model
atom. For the one-electron CEA-IPM and ADK models the
corresponding quantities were obtained by Eqs. (10) and (11)
with N = 2. Although no experimental data exist for the ion-
ization probability, the comparison of the predictions of the
different models provides important information concerning
their performance in the description of the ionization, partic-
ularly with respect to the modified ADK theory [29]. Since
in the latter model the original ADK theory was corrected
to reproduce the results obtained by the solution of the time-
dependent one-electron Schrödinger equation, in this way as
a quantum mechanical description it can be considered as a
standard in the comparisons with other theories, at least for
single ionization.
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FIG. 2. Calculated single-ionization probabilities. The ADK,
CEA-IPM, CEA-SC, SCEA-H, and SCEA models are represented
by black thick, black thin, dotted red, dashed blue, and gray lines.

According to the figure, for the single ionization CEA-
IPM, SCEA-H, and SCEA are in a reasonable agreement with
ADK. The better agreement seen for CEA-IPM and SCEA
can be explained by the more realistic screened electron-core
potential applied in these models as compared to the Zcore = 2
approximation in SCEA-H. CEA-SC completely fails to re-
produce the strongly decreasing tendency of the ionization
probability with decreasing laser intensity, it predicts almost a
constant value.

For double ionization CEA-SC shows a decreasing ten-
dency, but in the low-intensity range it overestimates ADK by
many orders of magnitude. CEA-IPM, SCEA-H, and SCEA
follow well the tendency of ADK, but strongly deviate from it
in absolute value. SCEA-H shows a knee shape with an inflex-
ion point around 6 × 1014 Wcm−2, indicating the increasing
contribution of NSDI with decreasing intensity. SCEA also
shows the knee shape, but in this case the inflexion point
occurs at lower intensity, at around 4 × 1014 Wcm−2, and
above this point the order-of-magnitude deviation from CEA-
IPM suggests still a large contribution of NSDI. From the
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FIG. 3. The same as Fig. 2 but for double ionization.
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FIG. 4. Double-to-single ionization probability ratios. The cir-
cles denote the data measured by Kübel et al. [17]. The ADK,
CEA-IPM, CEA-SC, SCEA-H, and SCEA models are represented
by the black thick, black thin, dotted red, dashed blue, and gray line,
respectively. The dashed-dotted gray line shows the semiclassical
results of Chen et al. [18] after multiplication by a factor of 5.

difference between the results obtained by the two-electron
models (CEA-H and SCEA) and the one-electron models
(CEA-IPM and ADK) one may conclude that at the lowest
considered laser intensity the probability of NSDI exceeds
that of SDI by three orders of magnitude.

Figure 4 shows the double-to-single ionization probabil-
ity ratios as a function of the laser intensity. In this case
experimental data, namely the measured ratios of the yields
of the Ar2+ and Ar+ ions [17] exist for the comparison with
the predictions of the models. We note that for the CEA-SC,
SCEA-H, and SCEA models the ratios for Ar were obtained
from the primary probability ratios (i.e., the ratios of the
probabilities in Figs. 2 and 3) by multiplying them by a factor
of 5, considering that five times more electrons are available
for the second ionization in the outer 3p shell of Ar than for
the two-electron atom. The same factor can be obtained in
IPM by calculating the ratios of ratios using Eqs. (10) and
(11) with N = 2 for the two-electron atom and N = 6 for Ar,
respectively.

The experimental data show the characteristic knee shape.
This structure is seen also for the SCEA-H and SCEA models,
it is even more expressed here than in Fig. 3. All the other
models fail to reproduce the structure. The SCEA-H results
are higher than the measured data by almost a constant factor
of about 1.8 along the overlapping intensity range of the the-
ory and experiment. A similar intensity dependence is seen for
SCEA below 4 × 1014 Wcm−2, but this model overestimates
the data by a factor of about 3. With increasing intensity,
however, the deviation between SCEA and experiment steeply
increases. We note that Chen et al. [18] calculated this quantity
applying the same semiclassical model as the present SCEA.
Their results underestimated the measured ratios by a factor
of 1.8, i.e., there is a discrepancy of factor of 5.4 between
the two calculations. Assuming that the authors of Ref. [18]
did not take into account the number of electrons available in
the 3p shell of Ar for the second ionization, we multiplied

their ratios by 5. According to Fig. 4, the corrected ratios
agree well with the present SCEA results, the small difference
between them is probably due to the Zcore = 2 approximation
applied in Ref. [18], as well as that in the latter work the
ADK transition probability was calculated less realistically,
using Eq. (20) of Ref. [68] (only with m = 0) instead of using
Eqs. (12) and (13) of the extended ADK theory. We note a
further computational difference difference between the two
calculations, namely that in Ref. [18] regularized coordinates
[69] were employed for the treatment of the Coulomb sin-
gularity to provide a faster and more stable numerical time
propagation.

Chen et al. [18] presented also SCEA results in which the
focal volume effect on the double-to-single ionization proba-
bility ratio has been taken into account. In the present work we
did not consider this effect, primarily because no detailed data
have been published for the focusing geometry of the laser
beams used in the experiment. However, we could estimate the
focal volume effect from the SCEA results obtained by Chen
et al. with and without including the effect. In the intensity
range (1.4–3) × 1014 Wcm−2 the effect resulted in a decrease
of the ratios at an average by a factor of 1.7. Considering
the very similar intensity dependence of SCEA and SCEA-H,
for the latter we may apply the same correction factor. This
leads to an agreement between SCEA-H and the experiment
within 10%. As a result of the correction, the present SCEA
still overestimates the measured data by a factor of 1.8. At
the same time, above 4 × 1014 Wcm−2 the increasing volume
effect (see Fig. 1 in Ref. [18]) compensates the steep increase
found in the SCEA results, therefore its inclusion into the
model expectedly results in an improvement in the descrip-
tion of the observed shape of the intensity dependence. The
order-of-magnitude discrepancy between CEA-SC and the
measured data, however, still remains after the focal volume
correction.

B. Recoil ion momentum distributions

For the ionization induced by a linearly polarized laser
pulse one can estimate the maximum momentum transferred
to the electron by the electric field along the direction of
the polarization vector by neglecting the interaction of the
ionized electron with the Coulomb field of the atom. A simple
calculation results in 2

√
Up (in atomic units), where Up is

the ponderomotive energy [25]. Accordingly, the spread of
the longitudinal momentum distribution of the singly charged
recoil ions produced in the photoionization is approximately
limited by the values ±2

√
Up [44]. For doubly charged

ions the corresponding limits are ±4
√

Up. This means that
the measured longitudinal recoil ion momentum distribution
strongly depends on the laser intensity, and thereby its mea-
surement represents a sensitive test of the theory. Kübel et al.
[17] in analyzing their experimental data determined the mo-
mentum distributions of the Ar+ and Ar2+ ions applying the
semiclassical model mentioned in Sec. I. They obtained good
agreement with the measured distributions only when the ex-
perimental intensities were multiplied by 2.5.

In Fig. 5 the (CEP-averaged) results of the present
calculations are compared with the measured longitudinal
momentum distribution for the Ar+ ions at a selected laser

053113-6



COMPARATIVE STUDY OF CLASSICAL THEORETICAL … PHYSICAL REVIEW A 103, 053113 (2021)

pz (a.u.)

-3 -2 -1 0 1 2 3

P
ro

ba
bi

lit
y 

de
ns

ity

0.0

0.1

0.2

0.3

0.4

0.5
experiment [17] 
CEA-IPM 
CEA-SC 
SCEA-H 
SCEA 
ADK 

FIG. 5. The longitudinal momentum distribution for the Ar+ ions
at laser intensity of 5.4 × 1014 Wcm−2. The black thick line denotes
the measured distribution [17]. The CEA-IPM, CEA-SC, SCEA-H,
and SCEA models are represented by the black thin, dotted red,
dashed blue, and gray solid line, respectively. The dashed-dotted
black line shows the ADK results. The arrows indicate the approxi-
mate theoretical maximum longitudinal momenta, ±2

√
Up.

intensity of 5.4 × 1014 Wcm−2 (the original experimental
intensity). Each distribution is normalized to unit area. The
momentum spread observed in the experiment is well repro-
duced by the present models, i.e., our calculations do not
support the finding of Kübel et al. that the measured dis-
tribution belongs to a significantly increased laser intensity.
At the same time, large differences can be observed between
the predictions of the models. CEA-IPM and SCEA largely
overestimate the width of the measured distribution. CEA-SC
and particularly SCEA-H provide a reasonable description for
momenta |pz| > 1, but both models show a peak inversion
around pz = 0, in disagreement with the experiment. Peak
inversion was found also for SCEA. The best agreement with
the measured data is seen for ADK.

We note that ADK, in the form as it is expressed by
Eqs. (12)–(14), is suitable only for calculation of transition
rates and probabilities, not for momentum distributions. For
the latter purpose we carried out a Monte Carlo simulation
in which the probability of the tunneling ionization at a time
moment ti was determined by Eqs. (12)–(13), and the longi-
tudinal momentum of the liberated electron at the end of the
pulse (t f ) was obtained using the strong-field approximation
(SFA), i.e., neglecting the interaction between the electron and
atomic core:

pz(t f ) = pz(ti) +
∫ t f

ti

eE (t ) dt . (16)

Here the electric field E (t ) is given by Eq. (4). We note
that using cos2-shaped envelope function in (4) instead of
Gaussian, the above integral is analytic, and leads practically
to the same result as the Gaussian envelope. Equation (16)
was solved with the widely applied approximation, pz(ti ) = 0.
We searched for the reason of the unexpected peak inversion
found for CEA-SC, SCEA-H, and SCEA. It turned out that
it is a few-cycle property of the classical descriptions: With
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FIG. 6. The longitudinal momentum distribution for the Ar+ ions
calculated in the SCEA-H model with pulse duration of 4 fs (solid
line), 20 fs (dashed line), and 40 fs (dashed-dotted line) at laser
intensity of 5.4 × 1014 Wcm−2.

increasing pulse duration the shape of the peak inversion
disappears, the distribution approaches that obtained by ADK.
This is demonstrated in Fig. 6, which shows the results of
SEA-H calculations made with pulse durations of 4, 20, and
40 fs.

The spread of the longitudinal momentum distribution of
the Ar2+ ions obtained in all our models is also in accordance
with the experiment as well as the general theoretical expec-
tation (see Fig. 7), i.e., our results confirm the correctness of
the experimental laser intensity also in this case. As far as the
performance of the models is concerned, an excellent agree-
ment with the measured distribution is obtained by CEA-IPM
and SCEA. SCEA-H also provided a reasonable description
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FIG. 7. The longitudinal momentum distribution for the Ar2+

ions at laser intensity of 5.4 × 1014 Wcm−2. The black thick line
denotes the measured distribution [17]. The CEA-IPM, CEA-SC,
SCEA-H, and SCEA models are represented by the black thin, dotted
red, dashed blue, and gray line, respectively. The arrows indicate the
approximate theoretical maximum longitudinal momenta, ±4

√
Up.
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FIG. 8. CEP dependence of the asymmetry parameter obtained
by the SCEA-H model for the single (closed circles) and double
(open circles) ionization at laser intensity of 2.25 × 1014 Wcm−2.
The lines are fits of the function (18) to the calculated values.

for |pz| > 1, but it predicts too narrow distribution at smaller
momentum values. CEA-SC completely fails to reproduce the
measured distribution.

The way of calculation of the momentum of the Ar2+ ions
in CEA-IPM needs some explanation. In this model two sepa-
rate series of calculations are made using the first and second
ionization energy. In the evaluation of the obtained results
pairs of ionization events belonging to the two ionization en-
ergies are created randomly. From the momenta of the ionized
electrons the momentum of the Ar2+ ions is determined using
the momentum conservation law.

C. CEP-dependent asymmetry

The asymmetry arising in the ionization of atoms induced
by linearly polarized few-cycle laser pulses is characterized by
the asymmetry parameter. At laser intensity I and CEP angle
φ it is defined as

A(I, φ) = N+(I, φ) − N−(I, φ)

N+(I, φ) + N−(I, φ)
. (17)

Here N+(I, φ) and N−(I, φ) are the number of the ions re-
coiled with positive and negative momentum along the laser
polarization, respectively. The dependence of A(I, φ) on φ is
a sinusoidal function:

A(I, φ) = A0(I ) sin[φ + φ0(I )]. (18)

This function is fitted to the measured and calculated asymme-
try parameters, and the obtained A0(I ) amplitudes and φ0(I )
phases are used for the comparison between the experiment
and theory. An example of the fitting made for the results of
SCEA-H calculations at laser intensity of 2.25 × 1014 Wcm−2

is shown in Fig. 8.
In Fig. 9 we compare the A0(I ) amplitudes for the yield

the Ar+ ion obtained by the considered models with results
of experiments. SCEA-H and CEA-IPM correctly reproduce
the slightly increasing tendency of A0(I ) with decreasing laser
intensity seen in the measured data of Kübel et al. [17],
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CEA-SC 
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FIG. 9. The A0(I ) amplitude deduced from the CEP-dependent
yield of the Ar+ ion according Eqs. (17)–(18). The circles and
crosses denote the low- and high-intensity data measured by Kübel
et al. [17], respectively. The triangle is an experimental result ob-
tained by Bergues et al. [11]. The black, the dotted red, the dashed
blue, and the gray line represent the CEA-IPM, CEA-SC, SCEA-H,
and SCEA models, respectively.

although they overestimate the latter data by a factor of 2–3.
SCEA predicts a similar, but stronger intensity dependence,
approaching the measured data at larger intensities. At lower
intensities, the value measured by Bergues et al. [11] at
3 × 1014 Wcm−2 agrees well with SCEA, and supports also
SCEA-H and CEA-IPM. CEA-SC is in complete disagree-
ment with the experiments.

Figure 10 shows a comparison for the Ar2+ ion. Here only
SCEA-H and SCEA agree at least qualitatively with the exper-
iments: The A0 amplitude predicted by these models steeply
increases with decreasing intensity in accordance with the ob-
servation by Kübel et al. [17]. SCEA-H shows a minimum at
4.5 × 1014 Wcm−2. It seems that the measured data also have
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FIG. 10. The same as Fig. 9, but for the Ar2+ ion. Note a fur-
ther experimental value (A0 = 0.5) shown by a square at I = 1.6 ×
1014 Wcm−2, measured by Johnson et al. [9].
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a minimum at somewhat higher intensity. At this intensity
SCEA also predicts a very narrow, resonancelike minimum.
This feature is not seen in the experiment; in this intensity
range SCEA-H provides a better qualitative description of the
measured data than SCEA. In the low-intensity range both
SCEA-H and SCEA overestimate the experiment by a factor
of up to two. However, there are deviations of similar magni-
tude between the different experiments: The value measured
by Bergues et al. [11] at 3 × 1014 Wcm−2 is three times higher
than that obtained by Kübel et al. At the same time, the A0

value measured by Johnson et al. [9] at 1.6 × 1014 Wcm−2

agrees well with the measurements of Kübel et al.
We note that the SCEA calculations of Chen et al. [18] re-

sulted in also a large asymmetry parameter at small intensities,
however, their model predicts a less steep decrease of A0(I )
with decreasing intensity than the present SCEA model: The
value presented by the authors at the highest considered in-
tensity (5 × 1014 Wcm−2) is larger by a factor of 2.7 than that
obtained in the present work. This large difference between
the predictions of the two models is surprising, considering
the good agreement found for the double-to-single ionization
probability ratio. As we pointed out in Sec. III A, there are
some differences between the ingredients of the two models.
The effects due to the differences may be canceled or washed
out for CEP-averaged relative quantities. For CEP-dependent
quantities, however, the differences between the models may
be strongly manifested.

We call attention to the increasing deviation between CEA-
IPM and SCEA-H with increasing laser intensity for both the
Ar+ and Ar2+ ion. This is an unexpected result, considering
that the single- and double-ionization probabilities, as well
as the Ar2+-to-Ar+ yield ratios predicted by the two models
converge to each other with increasing intensity (see Figs. 2,
3, and 4). SCEA-H differs from CEA-IPM mostly in that the
former includes the electron-electron interaction. The latter,
however, has a small effect on the ionization process at high
intensities. This means that the difference between the two
models in description of the CEP-dependent asymmetry can
probably be attributed to the different potentials applied for
the electron-core interaction: a realistic screened Coulomb
potential in CEA-IPM, and Coulomb potential with Zcore = 2
together with the Heisenberg-core potential in SCEA-H. This
observed sensitivity on the atomic potential has great signif-
icance: By measurement of the CEP-dependent asymmetry
parameters of an atomic system using few-cycle laser pulses
one may obtain valuable information about the potential.

Since in the experiments the CEP is only determined
up to an unknown offset value, we could not compare the
calculated φ0(I ) values with the corresponding measured
quantities unambiguously. Instead, we considered the well-
defined Ar2+-to-Ar+ relative phase, 
φ0(I ) = φ0(I, Ar2+) −
φ0(I, Ar+). The calculated and measured 
φ0(I ) values are
plotted in Fig. 11. Here again SCEA-H and SCEA provide
a reasonable description of the measured data, although the
experiment does not show the abrupt increase of the calculated
values at 4 × 1014 Wcm−2. Above this intensity both models
predict a resonancelike dependence of the relative phase but
with largely differing widths.

For the CEP-dependent asymmetry the focal volume ef-
fect can be estimated also from the SCEA calculations of
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FIG. 11. The relative phase between the CEP dependence of the
Ar2+ and Ar+ ion yield. The circles denote the data measured by
Kübel et al. [17]. The triangle shows the experimental result of
Bergues et al. [11]. The black, the dotted red, the dashed blue, and
the gray line represent the CEA-IPM, CEA-SC, SCEA-H, and SCEA
models, respectively.

Chen et al. [18]. For the double ionization in the intensity
range (1–5) × 1014 Wcm−2 the inclusion of the effect into
the model resulted in an increase of the A0(I ) amplitude by a
factor up to 1.5. This means that the consideration of the focal
volume effect would only slightly change the performance of
the present models in the description of the measured data
shown in Fig. 10. Particularly, the predictions of SCEA-H and
SCEA would deviate more from the data of Ref. [17], while
they would support better the value measured in Ref. [11].

From the work in Ref. [18] information concerning the
focal volume effect can be obtained also for φ0(I ) in case of
double ionization. However, we cannot use this information,
because in those calculations the absolute phase was consid-
ered, while our analysis is based on the calculation of the
relative phase between the double and single ionization.

Finally we note that the details of the correlated two-
electron emission induced by few-cycle laser pulses have
been investigated in several works [11,12,18,34,35,43] by
tracing the classically calculated electron trajectories. Such
an analysis was beyond the scope of the present work. To
get an idea about the possible double-ionization mechanisms
in this model, we followed the time evolution of the two-
electron trajectories of several randomly chosen ionization
events at laser intensity of 3 × 1014 Wcm−2. We found ex-
amples for both the recollision-impact-ionization (RII) and
the recollision-induced-excitation-with-subsequent ionization
(RESI) (see Figs. 12 and 13). For RESI the second ionization
step was delayed with respect to the first one dominantly by
half optical cycle; in a few cases the delay was one optical
cycle. According to the figures, in the first ionization step
the electron driven back by the field towards the atom is
not completely free, rather it is in a highly excited Rydberg
state. On its way back to the atom its energy is mostly a
small negative value, and it does not move very far away
from the atom. This picture of rescattering generally holds for
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FIG. 12. A double-ionization event proceeding through the
recollision-impact-ionization (RII) mechanism obtained in the
SCEA-H model at laser intensity of 3 × 1014 Wcm−2. In (a) the blue
and the dashed red line denote the one-electron energies, the gray
line denotes the electric force of the laser light in arbitrary units.
(b) shows the same event zooming into a shorter time interval. Here
the dashed-dotted black line denotes the electron-electron distance,
the electron energies are plotted in arbitrary units. The gray arrows
show the positions of the positive and negative maxima of the electric
force.

all double-ionization events, and it is more correct to call it
quasirescattering.

IV. CONCLUSIONS

We have investigated the performance of classical models
in the description of the single and double ionization of argon
induced by few-cycle laser pulses by comparing the calcu-
lated quantities with existing experimental data in a broad
range of the laser intensity. The main tendencies of the mea-
sured quantities, particularly the double-to-single ionization
probability ratios and the amplitudes of the CEP-dependent
asymmetry of the yield of the Ar+ and Ar2+ ions were well
reproduced by the model using the Heisenberg-core potential
for the stabilization of the two-electron atom (SCEA-H), as
well as by the semiclassical model based on the ADK theory
(SCEA). The orders-of-magnitude deviations found between
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FIG. 13. The same as Fig. 12 but for a double-ionization
event proceeding through the recollision-induced-excitation-with-
subsequent ionization (RESI) mechanism.

the predictions of the different models for the ionization prob-
abilities demonstrated the importance of these quantities in the
assessment of the models. To draw firm conclusions from such
a comparison the measurement of the ionization probabilities,
i.e., the number of the ionization events per pulse shot and per
atom would be highly desirable.

Our analysis made for the CEP-dependent asymmetry
of the yield of the Ar+ and Ar2+ ions revealed an un-
expected large sensitivity on the atomic potential applied
in the models at high laser intensities. From this point
of view valuable information is expected from the exten-
sion of the systematic experiments to laser intensities up to
1015 Wcm−2.

Finally we note that in the present calculations we did
not include the focal volume effect, primarily because no
detailed data are available for the focusing properties of
the laser beams used in the experiments. Furthermore, such
calculations would need much computational efforts, par-
ticularly considering the spatial dependence of CEP, which
is more complex for a focused few-cycle pulse than for a
monochromatic beam [21]. However, we could estimate the
focal volume effect from the results of the semiclassical cal-
culations made by Chen et al. [18] with and without taking
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into account the effect. From this point of view we analyzed
the double-to-single ionization probability ratio, and the CEP-
dependent asymmetry parameter for the double ionization. We
found that the performance of the considered models for these
quantities would not change drastically by the focal-volume
averaging.
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