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Laser-detected magnetic resonance induced by radio-frequency two-photon processes
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We have theoretically and experimentally investigated the laser-detected magnetic resonance induced by
radio-frequency two-photon processes in Fg = 4 of D1 line of cesium atoms. The effective Hamiltonian for
the interaction between the two radio-frequency magnetic fields and sublevels at the ground state of Fg = 4 is
derived. By appropriately selecting the frequencies of the two radio-frequency fields, the Raman two-photon
process and the cascade two-photon process can occur, which induce the magnetic resonance detected through
laser transmission spectra. The theoretical calculation results fit well with the experimental data. Our results
maybe apply for measuring the high bandwidth radio-frequency magnetic fields in space and studying the
magnetic-induction tomography.
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I. INTRODUCTION

With the development of natural science, the technol-
ogy based on nonlinear optics theory has been developed
rapidly. In the optical domain, technologies such as three-
dimensional fluorescence imaging [1,2], optical data storage
[3,4], two-photon excitation microscopy [5], and lithographic
microfabrication [6] and some photopolymerization based on
the multiphoton processes theory have been implemented.
Numerous studies on the multiphoton processes are usually
carried out in the interaction of light and nonlinear me-
dia, and direct excitation of the two-photon effect with a
strong laser is a common method [7,8]. In the microwave do-
main, the numerous investigations of multiphoton processes
is studied in the interaction of microwave electromagnetic
fields and superconducting quantum circuits (SQCs), when
microwave technology and cavity quantum electrodynamics
(cavity QED) theory continue to deepen. Many extremely
important applications, such as quantum manipulation [9,10],
two-mode squeezing [11] and microwave degenerate paramet-
ric down-conversion [12], have been derived from the study
of multiphoton processes of the microwave SQCs based on
Josephson junctions. In the radio-frequency domain, never-
theless, the research on multiphoton processes in magnetic
resonance transitions [13] is not particularly large, especially
in studying the theory of atomic magnetic resonance in a weak
offset field. In Ref. [14], Nettels et al. produced a multiphoton
process in an experiment studying the magnetic resonance
of cesium atoms trapped in a crystalline He matrix, and the
atoms produced nonlinear Zeeman splitting effect in the static
magnetic field used in the experiment. In their experiment,
multiphoton transitions satisfying �m = N were observed,
and applied the multiphoton transition effect to suppress sys-
tematic effects in the experiment of the search for permanent
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electric-dipole moments (EDMs). However, in the case of
magnetic resonance in a weak field whose Zeeman splitting
ω0 of the magnetic field is linear, there are not many studies
on the multiphoton process induced by the radio-frequency
magnetic field. Therefore, our research focuses on the multi-
photon process in weak-field resonance. The difference from
Nettels et al. [14] is that the offset magnetic field produces
a linear Zeeman split, and the atoms are excited by two-
photon process [15] to satisfy the �m = ±1 transitions. We
propose a method for measuring radio-frequency magnetic
field using the laser-detected magnetic resonance induced by
radio-frequency two-photon processes in which the linearly
polarized laser field resonates with the transition from Fg =
4 to Fe = 3 of D1 line of cesium atoms. The use of two
orthogonal radio-frequency magnetic fields to interact with
atoms is to excite the multiphoton process [16,17]. When the
frequency ωRF of the transverse radio-frequency field BRF and
the frequency ωm of the longitudinal radio-frequency field Bm

satisfy the condition ω0 + �ω = ωm − ωRF, the Raman two-
photon process induces magnetic resonance. The shift �ω is
the AC Zeeman effect [18], which will be discussed in detail
in the text. In the case of satisfying ω0 + �ω = ωm + ωRF,
the cascade two-photon process induces magnetic resonance,
as shown in Fig. 1. If the radio-frequency field BRF is turned
off, the spectral lines disappear. In our experiment, if only a
transverse radio-frequency field is used to excite the magnetic
resonance system, the center frequency is the Larmor preces-
sion frequency ω0.

The precision measurement of the radio-frequency mag-
netic field is extremely important and valuable [19–25].
Nowadays, among the various devices for measuring radio-
frequency magnetic fields, superconducting quantum inter-
ference device (SQUID) magnetometers [26,27], and atomic
magnetometers based on magnetic resonance are of great
interest and extensive research. Compared with the SQUID
magnetometers, the atomic magnetometer has the advan-
tages of not requiring low-temperature cooling, facilitating
miniaturization and integration [28]. The alkali-metal atomic
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FIG. 1. (a) The Raman two-photon process. (b) The cascade two-
photon process. Atomic sublevel with energy spacing ω0. The radio-
frequency magnetic field Bm with frequency ωm and radio-frequency
magnetic field BRF with frequency ωRF act on the atomic transition
|F, M〉 ↔ |F, M + 1〉.

magnetometer based on weak-field resonance generally used
to measure a low-frequency magnetic field or a static mag-
netic field, and the sensitivity decreases as the frequency
increases [29,30]. However, Savukov et al. [31] have used
the improved circular-polarized light-pumped K-atom mag-
netometer to measure the radio-frequency magnetic field by
tuning the Zeeman resonance of alkali-metal atoms to the
rf frequency and partially suppressing spin-exchange colli-
sions in the alkali-metal vapor. This is an amazing way to
measure the radio-frequency magnetic field with an atomic
magnetometer, but it is not easy to find the accurate Larmor
frequency quickly in the process of changing the static mag-
netic field. In our model, the sublevel splitting generated by
the offset magnetic field is kept constant, i.e., the Larmor
precession frequency is unchanged, and the frequency of the
known radio-frequency magnetic field is tuned. When the sum
or difference of the frequency of the known radio-frequency
magnetic field and the frequency of the unknown radio-
frequency magnetic field matches the two-photon resonance
condition, the measurement of the unknown radio frequency
magnetic field can be realized. It will be more accurate and
easier to measure the unknown radio-frequency magnetic field
compared with tuning the offset field.

To clearly clarify the physical picture of the magnetic reso-
nance excited by the radio-frequency two-photon process, we
adopt a simpler pump-probe structure of linearly polarized
light in this paper. The magnetic resonance excited by the
two-photon process is the ground-state magnetic resonance of
the sublevel and there is no direct relationship with the pump
geometry of the optical pump. The pump geometry of the
pump light mainly affects the polarization form of atoms. For
example, low-power circularly polarized light pump induce
orientation polarization and alignment polarization of atoms
(under the condition of low optical power limit, it can be con-
sidered that there is only orientation polarization) [32], while
low-power linearly polarized light pumps only cause atoms to
produce alignment polarization [33]. The magnetic resonance
signal is excited by the cascade two-photon process or Raman

FIG. 2. (a) Parametrization of the theoretical model geometry,
in which the radio frequency field Bm and the offset field B0 are
along the propagation direction of the linearly polarized light ε and
radio frequency field BRF on a plane perpendicular to the direction of
light propagation. (b) The quantization axis set along the polarization
direction of linearly polarized light. (c) The quantization axis set
along the light propagation direction.

two-photon process generated by a transverse radio-frequency
magnetic field BRF and a longitudinal radio-frequency mag-
netic field Bm. We start (in Sec. II) from the establishment of
the geometry and obtain the evolution equation of the atomic
alignment of the magnetic resonance spectra through theoret-
ical calculations. The theoretical analytical solutions of the
magnetic resonance spectra are obtained. A detailed analysis
by solving the steady-state solution of the evolution equations
is performed. In Sec. III, we introduce the experimental setup
and fit, analyze, and explain the magnetic resonance spectra
excited by the cascaded two-photon process or Raman two-
photon process, respectively. Finally, a summary for this paper
is given in Sec. IV.

II. THEORY

A. Theoretical model and calculation

The atomic magnetic resonance in a weak field consists
of three processes that are extremely important, which are
polarization creation [34–38], atom-field interaction [39–42],
and optical detection of magnetic resonance [43–46]. In our
system model, as shown in Fig. 2(a), the linearly polarized
light which resonances with the magnetic sublevels of the
ground state Fg = 4 and the excited state Fe = 3 of the D1-line
of alkali-metal cesium atoms causes alignment polarization
of the atoms at the ground state. In the process of atom-field
interaction, generally, magnetic resonance is excited by only
a radio-frequency field [28,47]. When the frequency of the
radio-frequency magnetic field matches the splitting of ad-
jacent magnetic sublevels produced by the offset field, the
magnetic resonance process occurs. The frequency of the
radio-frequency magnetic field is the Larmor precession fre-
quency ωL = gF μB|B0| = γF |B0|, where gF , μB, and γF are
the Landé factor, the Bohr magneton and the gyromagnetic
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ratio, respectively. The difference between our system and
traditional magnetic resonance is that the magnetic resonance
is excited by the two-photon process instead of the single-
photon excitation process. In our system, the offset field
B0 causes the magnetic sublevels to produce linear Zeeman
splitting. The Raman two-photon process or the cascade two-
photon process is excited by the transverse radio-frequency
magnetic field BRF and the longitudinal radio-frequency mag-
netic field Bm, which are perpendicular to each other. The
oscillating frequencies ωRF and ωm of the two radio-frequency
magnetic fields are far from resonance with the sublevel split-
ting ω0. When the equivalent Larmor precession frequency
produced by the two-photon process matches the splitting
of two adjacent sublevels produced by the offset field B0,
the two-photon magnetic resonance is excited. In the op-
tical detection process, the magnetic resonance induced by
the magnetic-field affects the optical properties of the atoms.
Generally, the information of the alignment-polarized atomic
medium is obtained by measuring the transmission spectrum
[48] and the Faraday rotation [49,50]. Meanwhile, the non-
linear magneto-optical rotation approach considered in works
such as Refs. [51] and [52] are also very interesting. Since our
research focuses on the influence of the two-photon process
on the profile and linewidth of the atomic absorption spectrum
and the influence on the resonance position, we choose to de-
tect the transmission absorption spectrum in this experiment.
According to the above three processes, we use two-photon
processes of two radio-frequency fields to excite weak-field
resonance.

To calculate the magnetic resonance signal, physical quan-
tities are put into the rotating frame x′y′z′ by rotating the
coordinate axis. As shown in Fig. 2(c), the quantization axis
is the direction of the offset field B0. It is assumed that the
frequency of the atomic magnetic moment precession is much
larger than the relaxation coefficient of the atomic magnetic
moment. In this frame, Bz′ = (B0 + Bm cos ωmt )ez′ , Bx′ =
BRF cos θ cos ωRFt ex′ and By′ = BRF sin θ cos ωRFt ey′ . Ac-
cording to HB = −μ · Btot = gF μB(F−1B−1 + F0B0 + F1B1)

and B± = ∓
√

1
2 (Bx′ ∓ iBy′ ), B0 = Bz′ , where Fi is the angular-

momentum component in the covariant spherical basis
representation and B j is the magnetic field component in the
contravariant spherical basis representation, the Hamiltonian
of the interaction of the magnetic field with the ground state
atomic system is specifically denoted

HBtot = ω0F0 + �mF0 cos ωmt

+ 1√
2
�RFF−1eiθ cos ωRFt

− 1√
2
�RFF1e−iθ cos ωRFt, (1)

where ω0 = gF μBB0, �m = gF μBBm, and �RF = gF μBBRF.
Considering the conditions ωm, |ω0 − ωRF | � �RF and en-
suring that the frequency of the two radio-frequency fields are
highly detuned from the frequency difference between two ad-
jacent magnetic sublevels, we derive the effective Hamiltonian
of HBtot . According to James’ effective Hamiltonian theory
[53,54] Heff = −iH (t )

∫ t dt ′H (t ′), the effective Hamiltonian

of HBtot is

Heff
Btot

≈ �ωF0 − 1√
2
�eiθ F−1ei(ωm+ωRF−ω0 )t

+ 1√
2
�e−iθ F1e−i(ωm+ωRF−ω0 )t

− 1√
2
�eiθ F−1ei(ωm−ωRF−ω0 )t

+ 1√
2
�e−iθ F1e−i(ωm−ωRF−ω0 )t . (2)

The detailed derivation of Eq. (2) is given in Appendix A.
Assuming (ωm ± ωRF) − ω0 = δ j, ( j = S, D), where indica-
tor D indicates the difference-frequency process and indicator
S indicates the sum-frequency process, the effective Hamilto-
nian of the sum(or difference)-frequency process is

Heff
j = �ωF0 − 1√

2
�eiθ F−1eiδ j t + 1√

2
�e−iθ F1e−iδ j t , (3)

where

�ω = �2
RF

8

(
1

ω0 − ωRF
+ 1

ω0 + ωRF

)
(4)

is to make slight shifts of the frequency of the magnetic
sublevels, and

� = �RF�m

4ωm
(5)

is the Rabi frequency of the equivalent radio-frequency mag-
netic fields. According to the effective Hamiltonian (3), we
can find that the first term of the effective Hamiltonian is
�ω, which being the sublevel shift produced by the radio-
frequency magnetic field called the AC Zeeman shift [18]. The
AC Zeeman shift �ω is only determined by the horizontal
radio-frequency field BRF and ω0, and is independent of the
radio-frequency field Bm in the z direction, because the two
equivalent magnetic sublevel shifts generated by Bm are equal
in magnitude and opposite to each other, resulting in mutual
cancellation. Therefore, the equivalent Larmor frequency of
the system is (ω0 + �ω). Only when condition ω0 + �ω =
ωm − ωRF or ω0 + �ω = ωm + ωRF is present can an atom
absorb or emit two radio-frequency photons to produce a
two-photon process. As shown in Fig. 1, under condition ω0 +
�ω = ωm − ωRF, the atom will absorb a π radio-frequency
photon, and then release a σ radio-frequency photon to form
a Raman two-photon process. In the case of condition ω0 +
�ω = ωm + ωRF, the atom will simultaneously absorb a π

radio-frequency photon and a σ radio-frequency photon to
form a cascade two-photon process. It is worth noting that
although the atom absorbs two photons, it satisfies the �m =
±1 transition. The atomic transition strength � is proportional
to the ratio of the product of the Rabi frequencies of two radio-
frequency magnetic fields and inversely proportional to ωm.

The effective Hamiltonian of the Raman two-photon pro-
cess and the cascade two-photon process in the rotating frame
is

H̃
eff
j = � jF0 − 1√

2
�eiθ F−1 + 1√

2
�e−iθ F1, (6)

053112-3



XU-XING GENG et al. PHYSICAL REVIEW A 103, 053112 (2021)

where � j = �ω − δ j . From Eq. (6), we find that the form of
the effective Hamiltonian is the same as that of the traditional
magnetic resonance based on atomic alignment [43]. The
master equation for the evolution of the density matrix of the
system is

d

dt
ρ = − i

h̄

[
H̃ eff

j , ρ
] + Lρ, (7)

where Lρ represents the relaxation process of the system.
The density-matrix element ρ is expanded into a form ρ =∑F

k=0

∑k
q=−k m(F ′F )k,qT (F ′F )k,q of atomic multipole mo-

ments through a set of complete irreducible tensor bases
[55–57], and then brought into the master equation to obtain
a matrix equation of atomic second-order multipole moment
evolution with time

dm2,q

dt
=

∑
q′

H (2)
qq′ m2,q′ + Lm2,q, q = −2,−1, 0, 1, 2. (8)

Here H (2)
qq′ is the Hamiltonian of the system in the atomic

multipole moment bases, and the specific form of the H (2)
qq′

matrix is

H (2)
qq′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2i� j i�̃∗ 0 0 0

i�̃ −i� j i
√

3
2 �̃∗ 0 0

0 i
√

3
2 �̃ 0 i

√
3
2 �̃∗ 0

0 0 i
√

3
2 �̃ i� j i�̃∗

0 0 0 i�̃ 2i� j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(9)
where �̃ = �eiθ and �̃∗ = �e−iθ . The second term Lm2,q

represents the evolution of the relaxation of atomic mul-
tipole moments. The atomic magnetic moment relaxation
process Lm2,q is mainly composed of three types of relax-
ation processes: the optical pump relaxation process LLρ,
the ground-state spin-exchange collision relaxation process
Lseρ, and the transit relaxation process Ltransitρ. A detailed
derivation is given in Appendix B. In the x′y′z′ frame, its
specific form can be expressed as

Lm2,q =

⎛
⎜⎜⎜⎝

−�22m2,2

−�21m2,1

−�20m2,0 + �00m0,0

−�21m2,−1

−�22m2,−2

⎞
⎟⎟⎟⎠, (10)

where �20 = γ + 31
64γse + 271

1134�L, �21 = γ + 31
64γse +

323
1512�L, �22 = γ + 31

64γse + 26
189�L, and �00 = − 7

324

√
77�L.

The coefficient �20 is the longitudinal alignment relaxation
rate, coefficients �21 and �22 are the transverse alignment
relaxation rates, and coefficient �00 is the monopole moment
relaxation rate. �2q(q = 0, 1, 2) is composed of the optical
pump relaxation rate �L [57], the ground-state spin-exchange
collision relaxation rate γse [39], and the transit relaxation
rate γ [58]. The monopole moment m0,0 is related to the
total population of ground-state atoms, which is used as an
injection of the alignment. According to Appendix C, we
find that the polarization of the atomic ensemble is related
to the relaxation processes and rf excitation. Among the
relaxation processes that affect the polarization of atoms, the

influence of the optical pump on the ensemble is dominant,
i.e., alignment polarization is produced.

We assume that the pump light intensity is weak
enough(|�0| 
 �). In the frame x′y′z′, the absorption coef-
ficient [40,43,58,59] is

α=α0

9

(
14m0,0 +

√
77

2
m2,0

)
, (11)

where the coefficient α0 = 4πω0N/h̄c is just a constant. The
detailed derivation is in Appendix B. The change of alignment
m2,0 is related to the variation of the Rabi frequencies �m and
�RF, the oscillation frequencies ωm and ωRF, and the detuning
� j . Therefore, the component of the absorption coefficient α

of the pump-probe light mainly depends on alignment m2,0.
The laser transmission spectrum is usually used in the ex-
periments to analyze the evolution of the atomic multipole
moment. For the convenience of description, the laser trans-
mission spectrum signal is defined as

Pj (� j,�m,�RF, ωm, ωRF) = C0m2,0, (12)

where C0 is a constant associated with the optical power and
amplifier gain factors [48,60].

B. Results and theoretical analysis

The magnetic resonance DC signal of Raman two-photon
process or cascade two-photon process of laser transmission
spectrum is

Pdc
j = C0m0,0

�00

�20

{
1 − 3�21�

2(
�2

j + x1
)
�20

+ 3[4x2�21 + �22(�21�22 + �2)]�2

4
(
�2

j + x1
)(

�2
j + x2

)
�20

}
, (13)

with

x1 = �2
21 +

(
3�21

�20
+ 2�21

�22 − 2�21

)
�2

+ 3
[
�20(2�21 + �22) − 3�2

21

]
�2

20

(
�2

22 − 4�2
21

) �4 (14)

and

x2 = �2
22

4
− �22

�22 − 2�21
�2

− 3
[
�20(2�21 + �22) − 3�2

21

]
�2

20

(
�2

22 − 4�2
21

) �4. (15)

In the case of satisfying �20 ≈ �22 ≈ �21 [43] and � 

�21, the transmission spectrum Pdc

j is further reduced to

Pdc
j ≈ C0

�00

�21

(
1

3
− �2

�2
j + �2

21

)
. (16)

According to Eq. (13), the transmission spectrum signal
Pdc

j of the magnetic resonance generated by the two-photon
excitation is composed of three terms. The first term is that
the constant term has no effect on the information carried by
the transmission spectrum. It simply means that the interac-
tion of the laser with the atom causes the atomic system to
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establish a new dynamic equilibrium to reach a steady state,
i.e., the atom is repolarized. Considering the fitting between
experiment and theory, all fitting curves ignore this item. The
second term is the linear absorption term, which is the quasi-
Lorentz absorption line type. The process for sum-frequency
excited magnetic resonance can be interpreted as a cascade
two-photon absorption process [61]. The process of magnetic
resonance for difference-frequency excitation can be inter-
preted as a Raman two-photon process [62]. The linewidth and
height of the absorption peak become larger as � increases.
In the limiting case of low rf and optical field strength, the
transmission spectrum Pdc

j can be simplified to Eq. (16). The
amplitude of the transmission spectrum is not only related to
the Rabi frequency � but also related to the ratio of the relax-
ation coefficients of the monopole moment and the alignment
of the atoms. The second term of Eq. (16) is the standard
Lorentz line type with linewidth �21. The linewidth �21 is
also the linewidth limit of this system. According to Eq. (13),
the conditions for achieving a narrow linewidth transmission
spectrum are sufficient low rf power and optical power. How-
ever, sufficiently low rf power and optical power will result
in extremely small signal amplitudes. From an experimental
point of view, narrowing the linewidth comes at the expense
of the signal-to-noise ratio. The third term of Pdc

j in Eq. (13)
is the higher-order effect of the alignment, which can be
understood as a modification of the second term, which is a
type of multiplication of two Lorentz functions.

Figure 3(a) shows the magnetic resonance transmission
spectra excited by Raman two-photon processes without
changing ω0, �RF , and �m. As the frequencies of the two
radio frequency fields increase, the peaks of the spectral lines
decrease monotonically. This phenomenon can be explained
by Eq. (5). The equivalent Rabi frequency � is inversely
proportional to the frequency ωm of the longitudinal radio
frequency field. A smaller equivalent Rabi frequency results
in a weaker coupling between the field and the atom, so the
peak value is reduced. The same phenomenon can be seen
in the magnetic resonance spectrum excited by the cascade
two-photon process in Fig. 3(b). Figure 4(a) shows the theo-
retically calculated magnetic resonance transmission spectra
excited by Raman two-photon processes. The frequency ωm

of the longitudinal radio frequency field Bm and the frequency
ωRF of the transverse radio frequency field BRF do not strictly
match the split frequency ω0 of the offset field B0. This is
caused by the AC Zeeman shift. Similarly, there is still an
energy-level shift in the magnetic resonance excited by the
cascade two-photon process in Fig. 4(b). We verify the theo-
retical model through experiments in subsequent work.

III. EXPERIMENT

A. Experimental setup

The experimental setup is illustrated in Fig. 5. To detect
the magnetic resonance signals generated by the two-photon
processes, we placed a cesium atomic cell with a diameter of
25 mm and a length of 30 mm in a large solenoid in the mag-
netic shielding cylinder. To reduce the linewidth of the atom
to the order of ten hertz, we have coated a layer of paraffin on
the inner wall of the gas cell to reduce the dissipation caused
by the collision of the atom with the wall of the cell. The

FIG. 3. The theoretically calculated transmission spectra signal
Pdc

j of magnetic resonance without changing ω0, �RF, and �m.
(a) The magnetic resonance excited by the Raman two-photon pro-
cess. (b) The magnetic resonance excited by the cascade two-photon
process.

offset magnetic field B0 is generated by a large solenoid driven
by a precision current source (Keysight B2912A), which is a
uniform magnetic field in the range of 0 to 5 × 104nT . The
magnetic shielding cylinder is composed of a four-layer μ-
metal cylinder. In the central region of the magnetic shielding
cylinder, even if the magnetic field reaches 5 × 104 nT, the
fluctuation of the magnetic field is less than 2 nT, whose
fluctuation is composed of the noise of the precision current
source and the inhomogeneity of the residual magnetism in
space. We use a Toptica DL pro laser as the light source with
a spot diameter of 2.5 mm. The Toptica DigiLock 110 was
used to lock the laser to the Fg = 4 → Fe = 3 transition of
the D1 line of the alkali-metal cesium atom. The power of
the laser can be tuned using a half-wave plate and PBS. To
ensure the polarization purity of linearly polarized light, a
Glan Taylor linear polarizer is placed in front of the mag-
netic shielding cylinder. The two radio-frequency fields BRF

and Bm, which are perpendicular to each other, are generated
using Helmholtz coils with a diameter of 100 mm. The two
perpendicular coils are respectively driven by two different
arbitrary waveform generators. When the frequency of the
Raman two-photon process (or cascade two-photon process)
generated by two orthogonal radio-frequency magnetic fields
matches the magnetic resonance conditions, the resonance
signal can be detected by the probe light. The transmitted laser
signal is received by a photodetector (Newport optical receiver
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FIG. 4. The theoretically calculated transmission spectra sig-
nal Pdc

j of magnetic resonance with the parameter ω0 = 100 kHz.
(a) The magnetic resonance excited by the Raman two-photon pro-
cess. (b) The magnetic resonance excited by the cascade two-photon
process.

2031) and converted into electrical signals for transmission to
a digital oscilloscope (Tektronix TDS2014C). Next, we show
and analyze the transmission spectra displayed by a digital
oscilloscope.

B. Fitting and analysis of magnetic resonance spectra
excited by Raman two-photon process

Analytical solution of the magnetic resonance excited by
two-photon process is valid under the conditions of weak
laser power and weak equivalent Rabi frequency �. Weak
pump-probe laser conditions ensure that we consider the ra-
tionality of atomic monopole moment and atomic alignment
without considering other high-order atomic polarization mo-
ments such as hexadecapole moment and hexacontatetrapole

FIG. 5. Schematic of the experimental setup: tunable diode laser
with digital control (DL pro), digital laser locking module (Dig-
iLock 110), saturated absorption spectroscopy (SAS), half-wave
plate (HWP), polarizing beam splitter (PBS), Glan-Taylor linear
polarizer (GTP), cesium atomic cell, Helmholtz coils (not shown
in the picture), low-noise solenoid coil, four-layer alloy cylinder
shield, photodetector (PD), arbitrary waveform generators (AWG,
not shown in the picture), precision current source (PCS), and os-
cilloscope. The coordinate frame shown in the figure is consistent
with the laboratory frame in the theoretical model. Details of all
installations can be found in the text.

moment. As shown in Fig. 6(a), the results predicted by
the theoretical model are well verified by the experimental
data fitting. The magnetic resonance curve is measured at
the center frequency by scanning longitudinal rf fields Bm

is about 172.428 kHz. The experimental data are fit with
the same physical parameters. The relaxation rate is mainly
composed of the optical pump relaxation process LLρ, the
spin-exchange collision relaxation process Lseρ in the ground
state Fg = 4, and the transit relaxation process Ltransitρ. The
frequency ωRF of the transverse radio-frequency magnetic
field BRF is 20 kHz, and the frequency ωm of the longi-
tudinal radio-frequency magnetic field Bm is 172.428 kHz.
If the radio-frequency field BRF is turned off, the spectral
lines disappear. In our experiment, if only a transverse radio-
frequency field is used to excite the magnetic resonance
system, the center frequency is the Larmor precession fre-
quency ω0 = 152.426 kHz. The equivalent Larmor precession
frequency produced by Raman two-photon process is about
152.428 kHz. We find that the magnetic resonance signal
excited by Raman two-photon process is different from the
magnetic resonance signal excited by a transverse radio-
frequency field. The former will produce a frequency shift �ω

(which is about 2 Hz), but the latter will not. Equation (13)
shows that the position of the resonance peak is at �D = 0.
The detuning �D contains the Zeeman shift item �ω. Only
when the Raman process is satisfied, ω0 + �D = ωm − ωRF,
will the system resonate. For a traditional magnetic resonance
process excited by a transverse radio-frequency magnetic
field, as long as the frequency of the radio-frequency field
is equal to the Larmor precession frequency, the system will
resonate. In Fig. 6(b), the frequency of the transverse radio-
frequency magnetic field BRF is set to 172.426 kHz, and the
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(a)

(b)

FIG. 6. Resonance spectra of Raman two-photon process, which
are plotted as fractional transmission of the pump beam. The solid
line (black) is the lineshape of the theoretical analytical solution fit-
ting given by Eqs. (13) with three differently independent relaxation
coefficients γ ≈ 20 Hz, γse ≈ 20 Hz, and �L ≈ 33 Hz. The Rabi
frequency �RF of the transverse radio-frequency magnetic field is
about 1.2 kHz. The blue solid dots with error bars represent the mea-
sured experimental data. The optical power is about 10 μW . (a) The
frequency ωm of longitudinal radio-frequency magnetic field is about
172.428 kHz. The frequency ωRF of the transverse radio-frequency
magnetic field is 20 kHz. (b) The frequency ωm of longitudinal
radio-frequency magnetic field is about 20.008 kHz. The frequency
ωRF of the transverse radio-frequency magnetic field is 172.426 kHz.

frequency of the longitudinal radio frequency magnetic field
Bm is about 20.008 kHz. The AC Zeeman shift �ω caused by
the transverse radio-frequency magnetic field is about −8 Hz.
This phenomenon can be explained by Eq. (4). It determines
the shift of the system energy level, and the magnitude of
�ω is restricted by the Rabi frequency �RF and oscillation
frequency ωRF of the transverse radio-frequency field BRF.
The energy-level shift calculated according to the definition
of AC Zeeman shift �ω is 2.4 and −8.4 Hz, respectively.

FIG. 7. The magnetic resonance transmission spectra of Raman
two-photon process, which is plotted as fractional transmission of
the pump beam. The frequency ωm of longitudinal radio-frequency
magnetic field is about 20.007 kHz. The frequency ωRF of the trans-
verse radio-frequency magnetic field is 172.426 kHz. The optical
powers of blue and black solid dots with error bars are 10 and 20 μW ,
respectively.

The theoretical calculation is basically consistent with the
experimental measurement. This phenomenon of energy-level
shift can reflect the physical characteristics of the amplitude
and frequency of the transverse radio-frequency field BRF.

Figure 7 shows the magnetic resonance spectra excited by
different optical powers. The peak value and linewidth of the
transmission spectrum increase as the optical power increases.
Since the absorption of photons by atoms is proportional to the
Rabi frequency of the coupling of light and atoms, the peak
of the transmission spectrum increases with the increase of
optical power. The reason for the increase in linewidth is due
to the phenomenon of optical power broadening. According to
the linewidth formula (14), in the case of weak Rabi frequency
�, the linewidth is mainly decided by the contribution of the
first term �21. The transverse alignment relaxation rate �21

is mainly composed of the optical pump relaxation rate and
the atomic spin-exchange collision relaxation rate in the
ground state. When the optical power gradually increases, the
relaxation rate of the optical pump also increases. Therefore,
the linewidth will increase as the optical power increases. It
can be found from Fig. 8 that the peak of the transmission
spectra of magnetic resonance increases with the increase of
the equivalent Rabi frequency � generated by the Raman
two-photon process. In the experiment, we change the Rabi
frequency � of the Raman two-photon process by changing
the Rabi frequency �RF of the transverse radio frequency
magnetic field. Considering the case of small �, Eq. (13)
shows that the peak of the transmission spectrum is pro-
portional to the square of the Rabi frequency �. As shown
in Fig. 9, in the case of low optical power and small Rabi
frequency �, the linewidth of magnetic resonance increases
monotonically with the continuous increase of �. This phe-
nomenon can be explained by Eq. (14). When the equivalent
Rabi frequency � produced by the Raman two-photon is very
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FIG. 8. The amplitudes of the magnetic resonance transmission
spectra of Raman two-photon process for different �, which is
plotted as fractional transmission of the pump beam. The blue solid
dots with error bars are experimental data and the black solid line is
theoretical fit, respectively.

small, the dominant effect on the linewidth is the relaxation
�21. However, as the Rabi frequency continues to increase,
the second (�2) and third (�4) terms in Eq. (14) gradually
take effect, thereby increasing the linewidth. Whether it is the
influence of optical power or Rabi frequency � on linewidth
broadening, both belong to power broadening.

C. Fitting and analysis of magnetic resonance spectra
excited by cascade two-photon process

The method of analyzing the magnetic resonance signal
excited by the cascade two-photon process is the same as
that of the magnetic resonance signal excited by Raman

FIG. 9. The full width at half maximum (FWHM) of magnetic
resonance transmission spectra of Raman two-photon process for
different �. The blue solid dots with error bars are experimental data
and the black solid line is a theoretical fit.

(a)

(b)

FIG. 10. Resonance spectra of cascade two-photon process,
which are plotted as fractional transmission of the pump beam.
The solid line (black) is the lineshape of the theoretical analytical
solution fitting given by Eqs. (13) with three differently independent
relaxation coefficients γ ≈ 20 Hz, γse ≈ 20 Hz, and �L ≈ 33 Hz.
The Rabi frequency �RF of the transverse radio-frequency magnetic
field is about 1.2 kHz. The blue solid dots with error bars represent
the measured experimental data. The optical power is about 10 μW .
(a) The frequency ωm of longitudinal radio-frequency magnetic
field is about 132.429 kHz. The frequency ωRF of transverse radio-
frequency magnetic field is about 20 kHz. (b) The frequency ωm of
longitudinal radio-frequency magnetic field is about 20.01 kHz. The
frequency ωRF of the transverse radio-frequency magnetic field is
132.426 kHz.

two-photon process. It is still satisfying the conditions of
the weak pump-probe laser, so as to ensure that all the
approximate conditions we do are valid. The experimental
measurement results are basically consistent with the theo-
retical prediction results as shown in Fig. 10(a). By scanning
the longitudinal radio-frequency magnetic field Bm, the center
frequencies of magnetic resonance curve are 132.429 kHz.
The frequency of the transverse radio-frequency magnetic
field BRF is 20 kHz, and the frequency of the longitudinal
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radio-frequency magnetic field Bm is 132.429 kHz, which
always keeps the two radio-frequency magnetic fields and
the atom away from resonance conditions. The AC Zeeman
shift is about 3 Hz. In Fig. 10(b), the frequency of the trans-
verse radio-frequency magnetic field is 132.426 kHz, and the
frequency of the longitudinal radio-frequency magnetic field
is about 20.01 kHz. The AC Zeeman shift generated by the
transverse radio-frequency magnetic field is about 10 Hz. All
experimental data are fit with the same set of parameters. The
optical pump relaxation process LLρ, the ground-state spin-
exchange collision relaxation process Lseρ, and the transit
relaxation process Ltransitρ are dominant. The relaxation rates
of atomic multipole moments are the same as those in the case
of Raman two-photon process. During the experiment, when
a transverse radio frequency magnetic field is used to excite
the magnetic resonance, the center frequency of the magnetic
resonance is equal to the Larmor precession frequency ω0 =
152.426 kHz. However, the equivalent center frequency of the
magnetic resonance signal excited with cascade two-photon
process is about 152.429 kHz in Fig. 10(a). This shows that
not only the magnetic resonance signal excited by Raman
two-photon process will cause the energy-level shift, but the
magnetic resonance excited by cascade two-photon process
will also cause an energy-level shift. The reason is similar
to that of Raman two-photon process. Figure 11 shows the
magnetic resonance transmission spectrum of the cascade
two-photon excitation at different optical powers. Similar to
the magnetic resonance transmission spectrum excited by the
Raman two-photon process, the linewidth of the magnetic
resonance transmission spectrum excited by the cascade two-
photon process also exhibits power broadening phenomenon.

Based on the above analysis, we can perform precise mea-
surement of the radio-frequency magnetic field through the
magnetic resonance signal excited by two-photon process.
Without changing the offset field, the frequency and Rabi
frequency of a radio-frequency magnetic field can be tuned
to measure another radio frequency magnetic field orthogonal
to it. When the frequency of the unknown radio frequency
magnetic field is lower than the linear split interval of offset
magnetic field, the unknown radio frequency field is measured
by the magnetic resonance spectrum excited by cascade two-
photon process. When the frequency of the unknown radio
frequency magnetic field is greater than the Larmor precession
frequency generated by the offset magnetic field, the magnetic
resonance spectrum excited by Raman two-photon process
is used to measure the unknown radio frequency field. This
theory can also be applied to the field of magnetic induction
tomography (MIT) [21].

IV. CONCLUSION

We present a general theory of magnetic resonance spec-
trum excited by two-photon processes generated by two
orthogonal radio-frequency magnetic fields. The steady-state
solutions of the analytic form of atomic multipole moments
are given and a detailed analysis was made. In the experi-
ment, the pump-probe method of the linearly polarized light
is used to detect the magnetic resonance spectrum. A detailed
analysis is made based on the experimental results. According
to theoretical values and experimental data, there is a dif-

ference between the magnetic resonance spectra excited by
the two-photon processes and the magnetic resonance spec-
tra excited by only a radio-frequency magnetic field. The
center frequency of the magnetic resonance spectra excited
by only a transverse radio-frequency magnetic field is the
Larmor precession frequency. However, the magnetic reso-
nance signal excited by the two-photon processes will have
an energy-level shift. The magnitude of the energy-level shift
is related to the Rabi frequency �RF, the frequency ωRF

of the transverse radio-frequency field BRF, and the atomic
splitting frequency ω0 but has nothing to do with the longi-
tudinal radio frequency field Bm, which satisfies the relation

�ω = �2
RF
8 ( 1

ω0−ωRF
+ 1

ω0+ωRF
). The equivalent Rabi frequency

� generated by the two-photon processes and atom coupling
satisfies the relation � = �RF�m

4ωm
. When the frequency ωRF of

the transverse radio frequency field BRF and the frequency ωm

of the longitudinal radio-frequency field Bm satisfy the con-
dition ω0 + �ω = ωm − ωRF, the Raman two-photon process
induces magnetic resonance. In the case of satisfying ω0 +
�ω = ωm + ωRF, the cascade two-photon process induces
magnetic resonance. In the case of weak �m, the linewidth
and peak value of the magnetic resonance spectrum increase
with the increase of �m. Finally, according to the charac-
teristics of the magnetic resonance signal, the laser-detected
magnetic resonance induced by radio-frequency two-photon
processes may be well suited to measure the high bandwidth
radio-frequency magnetic field in space [31] and apply to the
domain of the magnetic induction tomography [20,63].
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN OF THE SYSTEM

The Hamiltonian of the system can be expressed as

HBtot = H0 + Hint, (A1)

with

H0 = ω0F0, (A2)

and

Hint =�mF0 cos ωmt + 1√
2
�RF(F−1eiθ − F1e−iθ ) cos ωRFt,

(A3)

where H0 is the hyperfine Zeeman splittings generated by the
offset magnetic field B0. Hint is the interaction term of two
orthogonal radio-frequency magnetic fields Bm and BRF with
atoms. The frequency ωm of the radio-frequency magnetic
field Bm and the frequency ωRF of the radio-frequency mag-
netic field BRF are far from resonance with the frequency ω0.
The effective Hamiltonian theory [53] is generally used to deal
with the Hamiltonian satisfied large detuning conditions. This
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method is consistent with the method of time averaging of the
Hamiltonian [64]. Introduce transformation U = e−i

∫ t
0 dt ′H0 to

rotate the Hamiltonian HBtot of the system to the interaction
representation, i.e.,

HI = �mF0 cos ωmt + 1√
2
�RFF−1eiθ e−iω0t cos ωRFt − 1√

2
�RFF1e−iθ eiω0t cos ωRFt . (A4)

According to the effective Hamiltonian theory [54]: Heff = −iH (t )
∫ t dt ′H (t ′), the interaction Hamiltonian HI is perturbed

to second-order approximation. Therefore, the detailed form of the effective Hamiltonian is given by

H eff
Btot

=
[

�2
RF

8(ω0 + ωRF)
+ �2

RF

8(ω0 − ωRF)

]
(F−1F1 − F1F−1) + �2

m

4ωm
F0F0(e−i2ωmt − ei2ωmt )

+
[

�2
RF

8(ω0 − ωRF)
+ �2

RF

8(ω0 − ωRF)

]
(F−1F−1ei2θ e−i2ω0t − F1F1e−i2θ ei2ω0t )

+ �2
RF

8(ω0 + ωRF)
(F−1F1ei2ωRFt − F1F−1e−i2ωRFt ) + �2

RF

8(ω0 − ωRF)
(F−1F1e−i2ωRFt − F1F−1ei2ωRFt )

+ �2
RF

8(ω0 + ωRF)
[F−1F−1ei2θ e−i2(ω0+ωRF )t − F1F1e−i2θ ei2(ω0+ωRF )t ]

+ �2
RF

8(ω0 − ωRF)
[F−1F−1ei2θ e−i2(ω0−ωRF )t − F1F1e−i2θ ei2(ω0−ωRF )t ]

+ �m�RF

4
√

2(ω0 + ωRF)
[F0F−1eiθ e−i(ω0+ωm+ωRF )t + F0F1e−iθ ei(ω0+ωm+ωRF )t ]

+ �m�RF

4
√

2ωm

[F−1F0eiθ e−i(ω0+ωm+ωRF )t + F1F0e−iθ ei(ω0+ωm+ωRF )t ]

+ �m�RF

4
√

2(ω0 + ωRF)
[F0F−1eiθ e−i(ω0−ωm+ωRF )t + F0F1e−iθ ei(ω0−ωm+ωRF )t ]

− �m�RF

4
√

2ωm

[F−1F0eiθ e−i(ω0−ωm+ωRF )t + F1F0e−iθ ei(ω0−ωm+ωRF )t ]

+ �m�RF

4
√

2(ω0 − ωRF)
[F0F−1eiθ e−i(ω0−ωm−ωRF )t + F0F1e−iθ ei(ω0−ωm−ωRF )t ]

− �m�RF

4
√

2ωm

[F−1F0eiθ e−i(ω0−ωm−ωRF )t + F1F0e−iθ ei(ω0−ωm−ωRF )t ]

+ �m�RF

4
√

2(ω0 − ωRF)
[F0F−1eiθ e−i(ω0+ωm−ωRF )t + F0F1e−iθ ei(ω0+ωm−ωRF )t ]

+ �m�RF

4
√

2ωm

[F−1F0eiθ e−i(ω0+ωm−ωRF )t + F1F0e−iθ ei(ω0+ωm−ωRF )t ]. (A5)

The Raman two-photon process and the cascade two-
photon process are selected from the effective Hamiltonian
H eff

Btot
, i.e., select the terms satisfying the relationship ωm −

ωRF − ω0 = δD ≈ 0 and ωm + ωRF − ω0 = δS ≈ 0, respec-
tively. Covariant spherical components of F satisfy the
following commutation relations [55]:

[Fμ, Fν] = −
√

2C1λ
1μ1νFλ, [F 2, Fμ] = 0, (A6)

where μ, ν, λ = ±1, 0, and C1λ
1μ1ν are Clebsch–Gordan coeffi-

cients. Therefore, the Hamiltonian of the Raman two-photon
process is

H eff
D =

[
�2

RF

8(ω0 − ωRF)
+ �2

RF

8(ω0 + ωRF)

]
F0

+ �m�RF

4
√

2ωm

(F1e−iθ e−iδDt − F−1eiθ eiδDt ). (A7)

Similarly, the Hamiltonian of the cascade two-photon pro-
cess is

H eff
S =

[
�2

RF

8(ω0 − ωRF)
+ �2

RF

8(ω0 + ωRF)

]
F0

+ �m�RF

4
√

2ωm

(F1e−iθ e−iδSt − F−1eiθ eiδSt ). (A8)

APPENDIX B: DERIVATION OF EQS. (8), (10), AND (11)

The relaxation process of the system mainly considers the
relaxation process of the depopulation of the laser and the
repopulation of spontaneous radiation, the relaxation process
of the ground-state atomic spin-exchange collision, and the
relaxation process of the atoms leaving the laser beam and
other atoms injected into the laser beam. In the laboratory
frame, the time-dependent evolution of the relaxation process
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can be completely described by the master equation of the
density operator as

dρ

dt
= −i[HL, ρ] + Lspρ + Lspinρ + Ltransitρ, (B1)

where

HL = �∗
0�0 + �0�

†
0, (B2)

Lspρ = �

(
2Je + 1

2Jg + 1

) 1∑
q=−1

D[�q]ρ. (B3)

Here HL is the Hamiltonian of the linearly polarized laser
interacting with atoms, which the laser resonates with the
ground state Fg = 4 to the excited state Fe = 3. Rabi fre-
quency �0 := −〈Jg‖d‖Je〉E is the Rabi frequency of the
interaction between atoms and laser and 〈Jg‖d‖Je〉 is the re-
duced electric-dipole matrix element. The coefficient � is the
spontaneous emission coefficient of the atom. The operator
Lspρ represents the spontaneous emission relaxation process.
The symbols Jg and Je are the angular-momentum quan-
tum numbers. The operator D[�q]ρ ≡ �qρ�†

q − 1
2�†

q�qρ −
1
2ρ�†

q�q is the Lindblad superoperator, with q = 0,±1 for
the spherical components. The operator �q is the lowering
operator in the hyperfine structure and its specific form is

�q =
∑

FgmgFeme

(−)Fe+Jg+1+I
√

SFgFeC
1q
FgmgFeme

|Fgmg〉〈Feme|,

(B4)

with

SF gFe := (2Fe + 1)(2Jg + 1)

{
Jg Je 1
Fe Fg I

}2

. (B5)
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FIG. 11. The magnetic resonance transmission spectra of cas-
cade two-photon process, which is plotted as fractional transmission
of the pump beam. The optical powers of blue and black solid dots
with error bars are 10 and 20 μW , respectively. The frequency ωm

of longitudinal radio-frequency magnetic field is about 20.009 kHz.
The frequency ωRF of the transverse radio-frequency magnetic field
is 132.426 kHz.

Here

C1q
FgmgFeme

= (−)Fe−1+mg
√

2Fg + 1

(
Fe 1 Fg

me q −mg

)
,

which vanishes unless the sublevels satisfy mg = me + q, and
SFgFe is the hyperfine transition-strength factor [65]. The sym-
bols (:::) and {:::} are the Wigner 3- j symbol and Wigner
6- j symbol, respectively. Considering that the spontaneous
emission relaxation is much greater than the pumping rate
of the laser, i.e., � � �0, the excited state is adiabatically
eliminated. The master equation enters the ground-state sub-
space of Fg = 4. The depopulation process of laser and the
repopulation process of spontaneous radiation are equivalent
to three new types of relaxation channels, i.e.,

LLρg = �L

∑
q=0,±1

D[�′
q]ρg, (B6)

with

�′
q =

∑
mF

V
FgmF +q

FemF
V FemF

FgmF
|FgmF + q〉〈FgmF |, (B7)

where the equivalent relaxation coefficient �L = 64�0
2

9�
is the

equivalent relaxation coefficient and the operator D[�′
q]ρg is

the relaxation Lindblad superoperator. These three types of
relaxation channels are σ− transition type, π transition type,
and σ+ transition type, and the corresponding index q takes
−1, 0, 1, respectively.

The transition coefficient V F ′m′
F

FmF
is given by

V F ′m′
F

FmF
= (−)mF +J+I

√
(2F + 1)(2F ′ + 1)(2J + 1)

×
(

F ′ 1 F
m′

F q −mF

){
J J ′ 1
F ′ F I

}
. (B8)

Simultaneously, the relationship of nondiagonal element
ρFemF ,FgmF between the excited state and the ground state is
given by

ρFemF ,FgmF =
8iV FemF

FgmF
�0ρFgmF ,FgmF

3�
, (B9)

where such nondiagonal elements are related to detection
absorption. Next, we derive the absorption formula of the sys-
tem. The detection absorption coefficient is given by [58,66]

α = α0

∑
mF

∣∣V FemF
FgmF

〈Jg ‖d‖Je〉
∣∣2

V FemF
FgmF

�0
Im(ρFemF ,FgmF ), (B10)

where the coefficient α0 = 4πω0N/h̄c is just a number. The
frequency ω0 is the transition frequency without magnetic
field, N is the atomic density, h̄ is Planck constant, and c is
the velocity of light in a vacuum. According to Eqs. (B9) and
(B10), the absorption coefficient α is expanded using state
multipole as

α=α0

9

(
14mlab

0,0 −
√

77mlab
2,0

)
, (B11)

where the symbols mlab
0,0 and mlab

2,0 are monopole moment and
alignment in the laboratory frame, respectively.

The operator Lspinρ is the spin-exchange collision relax-
ation in the ground state of Fg = 4. It can be expressed
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as Lspinρ = γseôse, where γse is the spin-exchange collision
relaxation coefficient. The relaxation coefficient γse ∝ nCs,
where nCs is the cesium-saturated atomic-vapor density [67].
The operator ôse is the spin-exchange collision relaxation op-
erator [39,68]

ôse = − 3
4ρ + Ŝ · ρŜ + 〈Ŝ〉({Ŝ, ρ} − 2iŜ × ρŜ). (B12)

Here the symbol {., .} denotes the anticommutator. The
third term is the nonlinear effect of collision. In our system,
our experimental condition is room temperature, so the par-
ticle number density is relatively low. The nonlinear effect
caused by spin-exchange collision is not very obvious. There-
fore, it is reasonable to ignore the nonlinear term of Eq. (B12).
The operator Ŝ = (Sx, Sy, Sz )T is the spin operator. The oper-
ator Si=x,y,z is defined in the covariant spherical representation
as

Sx = 1√
2

(S−1 − S1), (B13a)

Sy = i√
2

(S−1 + S1), (B13b)

Sz = S0. (B13c)

The notation |nISFmF 〉 is selected as the basis of the
atomic hyperfine structure, where F is the total quantum
number, mF is the quantum number of projection component
of F on the quantization axis, S is the electron-spin quantum
number, I is the nuclear-spin quantum number and n is the set
of the remaining quantum numbers. According to the Wigner-
Eckart theorem [57], the matrix elements of the operators
Sq=0,±1 are given by

〈F, mF |Sq|F ′, m′
F 〉 = 〈F‖S‖ F ′〉(−)F−mF

(
F ′ 1 F
m′

F q −mF

)
,

(B14)

the reduced density-matrix element 〈F‖S‖F ′〉 can be further
simplified by factoring out the F and F ′ dependence as

〈F‖S‖ F ′〉 ≡ 〈n, I, S, F‖S‖ n, I, S′, F ′〉

= 〈S‖S‖ S′〉(−)F ′+S+1+I
√

(2F ′ + 1)(2F + 1)

{
S′ F ′ I
F S 1

}
,

(B15)

where the irreducible density-matrix element 〈S‖S‖S′〉 = √
3/2δSS′ in the case of spin an electron. The notation δSS′ is Kronecker

symbol. Therefore, a detailed matrix representation of the operator Si in the ground state of Fg = 4 can be obtained

Sx = 1√
2

⎛
⎝ 4∑

mF ,m′
F =−4

〈4, mF |S−1|4, m′
F 〉|4, mF 〉〈4, m′

F | −
4∑

mF ,m′
F =−4

〈4, mF |S1|4, m′
F 〉|4, mF 〉〈4, m′

F |
⎞
⎠, (B16)

Sy = i√
2

⎛
⎝ 4∑

mF ,m′
F =−4

〈4, mF |S−1|4, m′
F 〉|4, mF 〉〈4, m′

F | +
4∑

mF ,m′
F =−4

〈4, mF |S1|4, m′
F 〉|4, mF 〉〈4, m′

F |
⎞
⎠, (B17)

Sz =
4∑

mF ,m′
F =−4

〈4, mF |S0|4, m′
F 〉|4, mF 〉〈4, m′

F |, (B18)

where the matrix element 〈4, mF |Sq|4, m′
F 〉 of the spin operator S can be given by Eqs. (B14) and (B15).

The relaxation processes analyzed above are all of the standard Lindblad form. Meanwhile, the relaxation process Ltransitρ

will be processed phenomenologically. The relaxation process Ltransitρ is given by [57]

Ltransitρ = − 1
2 {κ, ρ} + �. (B19)

The first term denotes the relaxation of atoms flying out of the laser beam and the detailed relaxation matrix in the ground state
of Fg = 4 is then given by

κ = γ

4∑
mF =−4

|4, mF 〉〈4, mF |, (B20)

where the coefficient γ is the transit decay rate. The second term represents the relaxation rate of other atoms flying into the
laser beam and the matrix takes the form

� = γ

9

4∑
mF =−4

ρeq
mF ,mF

|4, mF 〉〈4, mF |, (B21)

where the density-matrix element ρ
eq
mF ,mF is the equilibrium population without laser field.

According to the definition of state multipoles

m(F ′F )KQ =
∑
M ′M

(−)F ′−M ′√
2K + 1

(
F ′ F K
M ′ −M Q

)
〈F ′M ′|ρ|FM〉, (B22)
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the total relaxation processes are expanded in spherical tensor representation as the relaxation of atomic multipole moment Lmkq.
According to the Wigner D functions [55], the total relaxation processes of the atomic multipole moments in the laboratory frame
xyz is rotated into the rotating frame x′y′z′.

Therefore, the time-dependent evolution of the orientation in the frame x′y′z′ is given by

ṁ1,0 = −
(

γ + 29

64
γse + 7

45
�L

)
m1,0 + i

√
1

2
�e−iθ m1,−1 + i

√
1

2
�eiθ m1,1 + 1

20

√
11

6
�Lm3,0, (B23a)

ṁ1,±1 =
[
∓i� j −

(
γ + 29

64
γse + 7

360
�L

)]
m1,±1 + i

√
1

2
�e∓iθ m1,0 + 1

60

√
11�Lm3,±1. (B23b)

The time-dependent evolution of the alignment in the frame x′y′z′ is

ṁ2,0 = −
(

γ + 31

64
γse + 271

1134
�L

)
m2,0 + i

√
3

2
�e−iθ m2,−1 + i

√
3

2
�eiθ m2,1 + 19

378

√
13

2
�Lm4,0 − 7

324

√
77�Lm0,0,

(B24a)

ṁ2,±1 =
[
∓i� j −

(
γ + 31

64
γse + 323

1512
�L

)]
m2,±1 + i

√
3

2
�e∓iθ m2,0 + i�e±iθ m2,±2 + 19

756

√
65

3
�Lm4,±1, (B24b)

ṁ2,±2 =
[
∓i2� j −

(
γ + 31

64
γse + 26

189
�L

)]
m2,±2 + i�e∓iθ m2,±1 + 19

756

√
65

6
�Lm4,±2. (B24c)

The time-dependent evolution of hexadecapole moment in the frame x′y′z′ is

ṁ4,0 = −
(

γ + 19

32
γse + 380

693
�L

)
m4,0 + i

√
5�e−iθ m4,−1 + i

√
5�eiθ m4,1 + 35

198

√
35

26
�Lm6,0 − 5

63

√
13

2
�Lm2,0, (B25a)

ṁ4,±1 =
[
∓i� j −

(
γ + 19

32
γse + 1523

2772
�L

)]
m4,±1 + i

√
5�e∓iθ m4,0 + i

√
9

2
�e±iθ m4,±2

+ 245

198

√
1

39
�Lm6,±1 − 5

126

√
65

3
�Lm2,±1, (B25b)

ṁ4,±2 =
[
∓i2� j −

(
γ + 19

32
γse + 383

693
�L

)]
m4,±2 + i

√
9

2
�e∓iθ m4,±1 + i

√
7

2
�e±iθ m4,±3

+ 49

99

√
5

39
�Lm6,±2 − 5

126

√
65

6
�Lm2,±2, (B25c)

ṁ4,±3 =
[
∓i3� j −

(
γ + 19

32
γse + 221

396
�L

)]
m4,±3 + i

√
7

2
�e∓iθ m4,±2 + i

√
2�e±iθ m4,±4 + 7

33

√
35

78
�Lm6,±3, (B25d)

ṁ4,±4 =
[
∓i4� j −

(
γ + 19

32
γse + 56

99
�L

)]
m4,±4 + i

√
2�e∓iθ m4,±3 + 35

198

√
7

26
�Lm6,±4. (B25e)

According to the Eqs. (B23a)–(B25e), the equivalent radio-
frequency magnetic field, the relaxation processes Ltransitρ

and Lseρ couple together different components of the same
order of the atomic multipole moment mk,q. However,
the linearly polarized light pump relaxation LLρg will ei-
ther couple the even-order atomic multipole moments mk,q

together, or couple the odd-order atomic multipole mo-
ments together. The steady-state equations of even-order
atomic multipole moments are linear inhomogeneous equa-
tions. Therefore, the physical evolution of the system is
determined by the even-order atomic multipole moments.
Considering the weak pumping condition, the hexade-
capole moments and higher-order multipole moments can
be omitted. Therefore, it is reasonable to simulate the
evolution of the system by calculating the evolution of the
alignment.

At the same time, according to Eq. (B11), the DC compo-
nent of the absorption coefficient in the frame x′y′z′ is

α=α0

9

(
14m0,0 +

√
77

2
m2,0

)
. (B26)

APPENDIX C: VISUALIZATION OF STEADY-STATE
ATOMIC POLARIZATION OF THE SYSTEM

The visualization of the steady-state atomic polarization
of the system is given by the angular-momentum probability
surfaces which is extremely useful for studying and under-
standing the symmetry of higher-order multipole moments
and atomic polarization of atomic ensemble. The probability
of finding the maximum value of the angular-momentum pro-
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jection in the polar angles β and ϕ is given by [57,69]

r(β, ϕ) = 〈m = F |ρ(β, ϕ)|m = F 〉 (C1)

with

ρ(β, ϕ) = R−1(ϕ, θ, 0)ρR(ϕ, β, 0), (C2)

where R(ϕ, β, γ ) is the rotation matrix and ρ is the density
matrix. According to Eqs. (B23a)–(B25e), the steady-state
evolution of the system is mainly contributed by the even-
order atomic multipole moments. Further considering, it is
reasonable to simplify the system to alignment system under
the condition of satisfying the weak light pumping. In the lab-
oratory frame xyz, the expression of the angular-momentum
probability surface of our system can be analytically given by

r(β, ϕ, t ) =
√

4π

9
mlab

0,0(t )Y0,0(β, ϕ)

+
√

4π

9

√
28

55

2∑
q=−2

mlab
2,q(t )Y2,q(β, ϕ)

=
√

4π

9
D0

00

(π

2
,
π

2
, π

)
m0,0(t )Y0,0(β, ϕ) (C3)

+
√

4π

9

√
28

55

2∑
q′,q=−2

m2,q′ (t )

× D2∗
q′q

(π

2
,
π

2
, π

)
Y2,q(β, ϕ),

where mlab
k,q(t ) and mk,q(t ) are the state multipoles of the

atomic ensemble in the laboratory frame xyz and in the rotat-
ing frame x′y′z′, respectively. The special function Ylm(β, ϕ) is
the spherical harmonics with the polar axis z in the laboratory
frame xyz. The symbol Dk

q′q(φ, ϑ,ψ ) is the Wigner D func-
tions with the arguments φ, ϑ , ψ , and the indicators q′ and q
are in the range from −k to k. When t → ∞, i.e., the atomic
ensemble reaches its steady state, and the atomic alignment
can be given by

m2,q(t ) = m2,q(∞)e−iq(ωm±ωRF )t . (C4)

Here m2,q(∞) is the steady-state solution of Eq. (8). The
subscript q takes 0, ±1, and ±2 corresponding to the DC
component of the alignment, the first-harmonic component
of the alignment and the second-harmonic component of the
alignment [43], respectively. During the experiment, the scan-
ning time of the radio-frequency magnetic field is 5 s and the
relaxation time of the atom is about 0.025 s (the half- width
at half maximum of atoms is about 40 Hz), so the system is
in a steady state throughout the scanning process. The terms
containing the first harmonic signal m2,±1(∞)e∓i(ωm±ωRF )t and
the second-harmonic signal m2,±2(∞)e∓2i(ωm±ωRF )t are fast
oscillating terms, and the time period average values are 0.
Therefore, under the condition of t → ∞ (t � 1/�2q), i.e.,
the system is in a steady state, only the DC terms m0,0(∞)
and m2,0(∞) affect the polarized form of atomic ensemble.
Simultaneously, the transmission spectrum detected by the
pump-probe light field is also the steady-state DC components
m0,0(∞) and m2,0(∞). To clearly describe the physical picture

FIG. 12. In the laboratory frame xyz where the quantum axis is
along the direction of light polarization, the atomic ensemble exhibits
different polarization states with removing any contribution of the
rotating terms m2,q(q �= 0). (a) The atomic ensemble without any
relaxation processes and the equivalent radio-frequency excitation
produced by the cascade two-photon process. (b) The steady-state
polarization of atomic ensemble in the absence of the equivalent
radio-frequency excitation produced by the cascade two-photon pro-
cess. (c) The steady-state polarization of atomic ensemble in the
presence of the equivalent resonant radio-frequency excitation pro-
duced by the cascade two-photon process in the x direction. (d) The
atomic ensemble with the spin-exchange collision relaxation process
Lseρ, transit relaxation process Ltransitρ and the equivalent resonant
radio-frequency excitation produced by the cascade two-photon pro-
cess in the absence of optical-pump relaxation process LLρg.

explained by the angular-momentum probability surfaces, the
simplified analytical expression is transparently given by

r(∞) =
√

4π

9
m0,0(∞)Y0,0(β, ϕ)

−
√

4π

9

√
28

55

1

2
m2,0(∞)Y2,0(β, ϕ)

+
√

4π

9

√
28

55

√
6

4
m2,0(∞)[Y2,2(β, ϕ) + Y2,−2(β, ϕ)]

=
√

4π

9
m0,0(∞)Y0,0(β ′, ϕ′)

+
√

4π

9

√
28

55
m2,0(∞)Y2,0(β ′, ϕ′), (C5)

where Yk,q(β ′, ϕ′) is the spherical harmonic function with the
polar axis z′ in the rotating frame x′y′z′. Figure 12 shows
the angular-momentum probability surfaces of the atomic en-
semble in the steady state. Through the phenomena described
in the Fig. 12(b), the optical pump relaxation process LLρg

polarizes atoms symmetrically along the quantization axis
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x in the laboratory frame xyz, which coincides with the z′
axis in the rotating frame x′y′z′. This is consistent with the
physical picture expressed by Eq. (C5). Figure 12(c) shows
the equivalent radio-frequency excitation by the cascade two-
photon process will destroy the atomic polarization. The
equivalent radio-frequency excitation produced by the Raman

two-photon and the equivalent radio-frequency excitation pro-
duced by the cascade two photon have the same effect on the
polarization of the atomic ensemble. Since the spin-exchange
relaxation and transit relaxation processes are isotropic, these
two losses do not contribute to the polarization of the atomic
ensemble.
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