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Temporal coherent control of resonant two-photon double ionization of the hydrogen molecule
via doubly excited states
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We use time-delayed, counter-rotating, circularly polarized few-cycle attosecond nonoverlapping pulses to
study the temporal coherent control of the resonant process of two-photon double ionization (TPDI) of hydrogen
molecule via doubly excited states for pulse propagation direction along k̂ either parallel or perpendicular to the
molecular axis R̂. For k̂ ‖ R̂ and a pulse carrier frequency of 36 eV resonantly populating the Q2

1�+
u (1) doubly

excited state as well as other 1�+
u doubly excited states, we find that the indirect ionization pathway through these

doubly excited states changes the character of the kinematical vortex-shaped momentum distribution produced
by the two direct ionization pathways from fourfold to twofold rotational symmetry. This result is similar to
what found in TPDI of the He atom involving 1Po

±1 doubly excited states [Ngoko Djiokap and Starace, J. Opt.
19, 124003 (2017)]; however, angular distributions exhibiting a quantum beat effect between the ground state
and a doubly excited state seen for the He atom are observed here for its molecular counterpart with an anomaly
in shape and magnitude, not in frequency. The sixfold differential probability integrated over the azimuthal angle
of the photoelectron pair shows that this anomaly is due to autoionization decays and quantum beats between
doubly excited states. For k̂ ⊥ R̂ and a broadband pulse carrier frequency of 30 eV populating the Q1

1�+
u (1),

Q1
1�+

u (1), Q2
1�+

u (1), and Q1
1�+

u (2) doubly excited states, the momentum distribution is shown to exhibit
dynamical electron vortices with four spiral arms, which originates from the interplay between the 1�+

g , 1�+
g ,

and 1�+
g dynamical ionization amplitudes. Our treatment within either the adiabatic-nuclei approximation or

fixed-nuclei approximation shows that the latter provides a very good account for this correlated process.

DOI: 10.1103/PhysRevA.103.053110

I. INTRODUCTION

Temporal coherent control in which a sequence of two
time-delayed pulses is used to create and follow several quan-
tum paths is an attractive way for achieving laser control
of chemical and molecular processes [1–5]. For atomic ion-
ization, while quantum interferences including three kinds
of quantum beats could arise for both overlapping and
nonoverlapping pulses, optical interference only occurs for
overlapping pulses [5,6]. The first kind of quantum beats
(called here QB-I) relies on the superposition between the
ground state of energy Eg and a bound state of energy εk ,
which is established by the first pulse and has a beat frequency
(εk − Eg). When the bandwidth of the pulses is broad enough
to support several bound states coherently, the second kind of
quantum beats (called QB-II) takes place and it relies on the
population oscillation between the excited states with a period
2π/(εk − εk′ ) corresponding to the energy spacing between
them. The third kind of quantum beats (called QB-III) of
interest occurs when each quantum path leads to a continuum
electron wave packet. Since the final continuum states have
the same kinetic energy E , the created wave packets necessar-
ily interfere when they overlap spatially and temporally at the
detector, causing a modulation of the photoelectron signal due
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to ambiguity in knowledge of which pulse was responsible for
the birth of the electron. This QB-III, also known as Ramsey
interference [7], can be perceived as a temporal analog to
a Young’s double-slit arrangement, which has a period of
2π/(E + Eb), where Eb is the binding energy of the system.
While the period of QB-II is longer than that for QB-I, the
latter is in turn longer than that for the QB-III; however, they
may all occur simultaneously depending on the process and
observable. Our primary interest is on the correlated process
of two-photon transitions.

For the correlated process of a two-photon double ion-
ization (TPDI) of the He atom by a pair of time-delayed
linearly polarized attosecond pulses, several theoretical stud-
ies [8–13] have shown how the beat periods of the coherent
superposition of intermediate states, both among themselves
(QB-II) and with the ground state (QB-I), affects the He2+

yield. For a pair of nonoverlapping oppositely circularly po-
larized attosecond pulses, a recent theoretical study [14] based
on the time-dependent second-order perturbation theory (PT)
and full-dimensional time-dependent Schrödinger equation
(TDSE) predicted the attosecond QB-III phenomenon in the
angular distribution at a fixed excess energy E = 2ω + Eg

for the nonresonant case of TPDI of the He atom, where
four-arm spiral patterns were present in the two-electron mo-
mentum distribution. For the resonant case of TPDI of the He
atom via doubly excited states, the indirect ionization path
involving several doubly excited states was found to break
down the fourfold rotational symmetry of the vortex-shaped
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momentum distribution. Also, QB-I involving the strongest
2s2p 1Po doubly excited state [14,15] with a period of 69
attoseconds (as) was predicted in the angular distribution at a
fixed excess energy E , in the energy-integrated angular distri-
bution, and in the energy distribution [14]. For the attosecond
time delays used in [14], QB-I involving other doubly excited
states together with the rather slow (femtosecond) dynamical
processes of autoionization (∼17 fs) and QB-II between dou-
bly excited states (∼1.2 fs) were found to affect by only 8%
the magnitude of angular distributions exhibiting this QB-I
effect. As shown in this contribution, the possibility of ex-
tending such study for TPDI from the simplest two-electron
atom to its molecular counterpart looks far from straightfor-
ward given its deviation from spherical symmetry, the rather
steep repulsive potential curves of molecular doubly excited
states with relatively short lifetimes and comparable oscillator
strengths, and different electric dipole selection rules due to
the molecular orientation R̂ with respect to the laser beam di-
rection k̂. While TPDI of H2 by such attosecond pulse scheme
has never been studied, our recent study of single-photon
double ionization known as double photoionization (DPI) of
fixed-in-space H2 [16] evidenced two types of electron vor-
tices. For a particular class of electron detection geometry for
which the mutual angle β = cos−1(p̂1 · p̂2) between the elec-
tron momenta p1, p2 is held fixed, while kinematical electron
vortices similar to the one obtained in DPI of the He atom [17]
were predicted in the momentum distribution for the k̂ ‖ R̂
scheme, the occurrence of dynamical electron vortices were
investigated for the k̂ ⊥ R̂ scheme.

In this paper we use oppositely circularly polarized few-
cycle attosecond nonoverlapping pulses to study the resonant
process of TPDI of the hydrogen molecule isotopes via Q1

and Q2 doubly excited states. When those superexcited states
are populated by one-photon absorption transition from the
1�+

g ground state by the first pulse, we study the occurrence
of both kinematical and dynamical electron vortices, autoion-
ization, as well as the three kinds of quantum beats. To allow
comparison between TPDI of He and H2 initially in their
ground states, we employ few-cycle pulses and time delays τ

shorter than a femtosecond to freeze any nuclear dynamics be-
tween the electronic transitions involving these superexcited
states with their rather steep repulsive potential curves. Our
predictions for both the parallel [Fig. 1(a)] and perpendic-
ular [Fig. 1(b)] pulse schemes are based on time-dependent
fully ab initio simulations within either the fixed-nuclei ap-
proximation [16,18–25] or the adiabatic-nuclei approximation
[21]. Only for the k̂ ‖ R̂ scheme in Fig. 1(a) that we extend
the time-dependent second-order PT successfully applied for
TPDI of He [14] to treat the resonant TPDI of H2.

Our findings are fourfold. First, for the k̂ ‖ R̂ scheme in
Fig. 1(a), a three-cycle pulse carrier frequency of 36 eV is on
resonance with the vertical transition at the equilibrium inter-
nuclear distance Re = 1.4 a.u. between the field-free ground
state and Q2

1�+
u (1) doubly excited state. Note that several

doubly excited states, including the Q1
1�+

u (1), Q1
1�+

u (2),
Q2

1�+
u (2), and Q2

1�+
u (3) doubly excited states [26] with

more or less comparable oscillator strength, are also popu-
lated thanks to the broad pulse bandwidth. We find that the
indirect ionization pathway involving these doubly excited
states changes the character of the kinematical vortex-shaped

FIG. 1. Top: Detection geometries to study TPDI of fixed-in-
space T2 by nonoverlapping circularly polarized attosecond pulses
propagating along k̂ either parallel (a) or perpendicular (b) to the
molecular axis R. In (a), p1 and p2 are emitted back-to-back (BTB) in
the polarization (x, y) plane; while in (b), p1 ‖ k̂ while p2 is recorded
in the polarization (x, y) plane. For k̂ ‖ R in (a), (c) shows three
ionization paths: 


‖
1 describes the �M = +1 transitions 1�+

g →
1�+

u (M = +1) →1 �+
g (M = +2) for two-photon absorption by the

RCP pulse from the ground state; 

‖
2 describes the �M = −1 tran-

sitions 1�+
g → 1�+

u (M = −1) → 1�+
g (M = −2) for two-photon

absorption by the LCP pulse (delayed in time by τ ) from the
ground state; and 


‖
12 describes the transitions 1�+

g → 1�+
u (M =

+1) → 1�+
g (M = 0) for one-photon absorption by the RCP pulse

from the ground state to doubly excited states, followed by one-
photon absorption by the LCP pulse from doubly excited states. For
k̂ ⊥ R in (b), (d) shows three ionization pathways: 
⊥

1 describes
the �M = +1, 0 transitions 1�+

g → [1�+
u (M = +1), 1�+

u (M =
0)] → [1�+

g (M = +2), 1�+
g (M = +1)] for two-photon absorp-

tion by the RCP pulse from the ground state; 
⊥
2 describes

the �M = −1, 0 transitions 1�+
g → [1�+

u (M = −1), 1�+
u (M =

0)] → [1�+
g (M = −2), 1�+

g (M = −1)] for two-photon absorp-
tion by the LCP pulse from the ground state; and 
⊥

12 de-
scribes the transitions 1�+

g → [1�+
u (M = +1), 1�+

u (M = 0)] →
[1�+

g (M = 0), 1�+
g (M = −1)] for one-photon absorption by the

RCP pulse from the ground state and one-photon absorption by the
LCP pulse from doubly excited states.

momentum distribution from fourfold to twofold symmetry.
This result is similar to that found for He atom involving the
strongest 2s2p 1Po doubly excited state among the populated
2snp 1Po doubly excited states [14].

Second, when varying τ for this k̂ ‖ R̂ scheme within the
fixed-nuclei approximation we find that the twofold symmet-
ric angular distribution at a fixed excess energy E rotates
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and exhibits the correct QB-I frequency associated with the
Q2

1�+
u (1) doubly excited state, but its shape and magnitude

change with τ . In contrast to He where a QB-I effect involving
the strongest 2s2p 1Po doubly excited state was evidenced
[14], it is found that this QB-I anomaly reported here in H2 at
Re = 1.4 a.u. is not caused by the anisotropy (deviation from
spherical symmetry) effect, due to electron-nucleus interac-
tions in H2. Indeed, the anisotropy of the electron density is
rather small at the equilibrium internuclear distance.

Third, by integrating the sixfold differential probability
(SDP) over the azimuthal angle ϕ of the photoelectron pair
PT for this k̂ ‖ R̂ scheme shows that any QB-I effect can
be eliminated, isolating thus the two-electron dynamics due
to autoionization and QB-II between doubly excited states.
Our TDSE results for this observable reveal significant time-
dependent activities attributed to autoionization decays and
QB-II, which mostly explain the QB-I anomaly seen for the
Q2

1�+
u (1) doubly excited state. Indeed, with an energy spac-

ing of 2–8 eV between these doubly excited states [26] with
rather comparable oscillator strengths and lifetimes shorter
(by an order of magnitude) than that of the 2s2p 1Po doubly
excited state in He, the QB-II effect with a period of 0.5–
2 fs together with autoionization decays (∼1.4 fs) in TPDI are
expected to be more significant in H2 than in He for attosecond
time delays.

Fourth, for k̂ ⊥ R̂ in Fig. 1(b), a three-cycle pulse carrier
frequency of 30 eV is close to be resonant with the vertical
transition at Re = 1.4 a.u. between the field-free ground state
and the strongest Q1

1�+
u (1) or Q2

1�+
u (1) doubly excited

state. Note that several doubly excited states, including the
Q1

1�+
u (2) and Q2

1�+
u (1) doubly excited states and the other

states mentioned above, with more or less comparable os-
cillator strengths, are populated as well thanks to the broad
pulse bandwidth. Despite those facts for k̂ ⊥ R̂, we report
here on dynamical electron vortices exhibiting four-arm spiral
patterns in the momentum distribution since two photons are
absorbed from each laser pulse. We show how this kind of
electron vortices stems from an interplay between the 1�+

g ,
1�+

g , and 1�+
g dynamical ionization amplitudes.

This paper is organized as followed. In Sec. II we present
our numerical methods for solving the TDSE. In Sec. III PT is
described and used to analyze our TDSE results in Secs. IV A,
IV C, and IV D. In Secs. IV A and IV B we discuss effects of
doubly excited states on momentum distributions for k̂ ‖ R
and k̂ ⊥ R, respectively. In Sec. IV C we discuss effects of
doubly excited states on angular distributions for k̂ ‖ R. In
Sec. IV D two-electron dynamics of autoionization and QB-II
between doubly excited states are separated from any QB-I
effect and discussed in the ϕ-integrated energy distribution
for k̂ ‖ R. In Sec. V we summarize our results and draw
some conclusions. Atomic units (a.u.) are used throughout this
paper unless specified otherwise.

II. NUMERICAL METHODS

In this section we first provide a brief overview of our
ab initio computational methods for investigating ionization
of hydrogen molecule by an arbitrarily polarized XUV light.
Next, we describe our numerical procedures in obtaining

the SDP within either the fixed-nuclei approximation or the
adiabatic-nuclei approximation.

To obtain the SDP numerically, we have used our code
that was developed and applied to investigate DPI of fixed-
in-space H2 by a pair of time-delayed elliptically polarized
attosecond pulses [16]. It is an extension of our computer
codes [14,17,27–29] that were developed and used to inves-
tigate other ionization processes for the two-electron atomic
system produced by elliptically polarized pulses, such as
single ionization [28,29] and double ionization [14,17,27].
These codes are generalized to take into account the two-
center molecular hydrogen problem within the fixed-nuclei
approximation (as in Refs. [16,18–25]). As in Refs. [18,22],
we employ a single-center, time-dependent close-coupling
expansion of the two-electron wave packet in spherical co-
ordinates (with the origin at the center of mass of the nuclei).
For a fixed internuclear separation R, the radial part of the
two-electron wave packet �(r1, r2; R, t ) is discretized using
a finite-element discrete variable representation (FE-DVR)
[30]. As pointed out in Ref. [31], the FE-DVR scheme can
be carefully chosen in order to avoid the singularities at r j =
±R/2, where j = 1, 2. To efficiently time propagate the wave
packet �(r1, r2; R, t ) for elliptically polarized pulses, we use
a real-space-product algorithm [31] together with a Wigner
rotation transformation [32,33].

In our single-center approach in spherical coordinates, we
first propagate the two-electron wave packet in imaginary time
to prepare the initial 1�+

g ground state of the H2 molecule
at a fixed R. In contrast to the He atom, the total electronic
angular momentum L is not a good quantum number for
the hydrogen molecule. While the spherically symmetric He
atom ground state has L = 0, the nonspherical symmetry of
the electron-nucleus interaction in the H2 molecule requires
that the ground state is described using several even L com-
ponents. We include four total electronic angular momenta
(L = 0, 2, 4, 6) and all combinations of individual electron or-
bital angular momenta l1, l2 = 0–5. Our calculated electronic
energy of the 1�+

g ground state at the equilibrium internuclear
separation Re � 1.4 a.u. is Eg = −1.888573 a.u. [16], which
is to be compared with the benchmark value of −1.888760
[34] or −1.888761 a.u. [35], after taking out the internuclear
repulsion.

Starting from the initial 1�+
g ground state at a fixed R,

we solve the TDSE by including seven total electronic an-
gular momenta (L = 0–6), their azimuthal quantum numbers
|M| � L, all combinations of individual electron orbital an-
gular momenta l1, l2 = 0–5, and their azimuthal quantum
numbers |m1| � l1 and |m2| � l2. After the end of the pair
of time-delayed circularly polarized pulses with total duration
Tf = τ + T (where T is the total duration of each pulse and
τ is the time delay between the two laser pulses), we freely
propagate in time the wave packet (solution of the TDSE) for
a longer additional time Tp in order to ensure that its dou-
bly ionized part �C (r1, r2; R, t ) is sufficiently far away from
the nuclei, and also so that the two photoelectrons are well
separated from each other [18,19]. At a time tp = Tf + Tp,
where Tp � 35 a.u., we obtain the SDP at R = Re within the
fixed-nuclei approximation

W (p1, p2; Re) = |A(p1, p2; Re)|2, (1)
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from the TPDI amplitude

A(p1, p2; R) = 〈(−)
p1,p2

(r1, r2)|�C (r1, r2; R, tp)〉, (2)

where (−)
p1,p2

is the field-free double-continuum final state
with excess energy E = (p2

1 + p2
2)/2, which is approximated

by a product of two Coulomb waves with charge Z = 2
[18,19]. In the projection (3) we note that �C (r1, r2; R, t )
equals the wave packet (that we obtain by solving the TDSE
within a radial box of 350 a.u.) from which we have removed
contributions of bound and singly ionized states (as done in
Refs. [18,36]).

The derivation of the TPDI probability (1) implicitly relies
on the Born-Oppenheimer approximation, where the elec-
tronic and nuclear motions are separated. Using sufficiently
short (attosecond) pulses and time delays, we assume there
is no nuclear dynamics between the electronic transitions.
When nuclear motion is considered in both the initial and
final states, we treat the process of TPDI of the hydrogen
molecule within the adiabatic-nuclei approximation by using
the so-called Chase’s approximation to obtain the ionization
amplitude, as in Ref. [21]:

Aκ (p1, p2) =
∫ ∞

0
dR χκ (R) A(p1, p2; R) χ0(R), (3)

where A(p1, p2; R) is defined by Eq. (2). We have used the
axial approximation, which assumes that following absorption
of two photons from an ultrashort laser pulse, the nuclei fly
apart along a vector that remains stationary in the labora-
tory frame. Here χ0(R) is the initial-state vibrational wave
function, which within the harmonic-oscillator approxima-
tion, writes

χ0(R) = (
√

μω0/π )1/2e−μω0(R−Re )2/2, (4)

where ω0/2 = √
km/4μ is the zero-point energy, with km

and μ being the force constant and reduced mass of the
molecular isotope, respectively. Physically, this zero-point
energy raises the energy for the ground state of nuclear mo-
tion above the minimum in the potential curve U (R), so
that the equilibrium dissociation energy De and the ground-
vibrational-state dissociation energy D0 differ by ω0/2. The
measured zero-point energy is 0.27284 eV for H2 [37] with
μ(H2) = 1836/2, 0.193135 eV for D2 [37] with μ(D2) =
2μ(H2), and 0.15278 eV for T2 [38] with μ(T2) = 3μ(H2),
meaning that the vibrational broadening due to the quantum
uncertainty relation (zero-point energy) is smallest for T2.
Knowing these two physical quantities, the calculated force
constants km for these three isotopes are respectively 574.79,
576.03, and 540.69 N/m. The first two values for km have to
be compared with those given in Table 3.3 from Ref. [39],
which are 573.4 N/m for H2 and 576.9 N/m for D2.

For the final state of our dissociative TPDI process, co-
herent electronic and nuclear wave packets are created with
different energy sharing between these two degrees of free-
dom. The final-state nuclear wave function χκ (R) satisfying

(
− 1

2μ

d2

dR2
+ 1

R
− κ2

2μ

)
χκ (R) = 0 (5)

is simply the repulsive Coulomb function corresponding to
two bare protons. Given the broad pulse bandwidth �ω,
the energy conservation relation writes E0 + 2ω ± 2�ω =
E + EN , where E = E1 + E2 is the excess energy shared by
electrons, EN = κ2/2μ is the nuclear kinetic energy release
(KER), and E0 = −1.888761 a.u. +1/Re + ω0/2 is the initial
target energy of the hydrogen molecular isotope.

In evaluating the TPDI amplitude (3), we note that the
lower and upper classical turning points of the molecule in its
initial vibrational state, located, respectively, at R< � 1.0 a.u.
and R> � 1.9 a.u., place effective upper and lower bounds on
the observable of KER. For a carrier frequency ω so that 2ω

is well above the Franck-Condon threshold, the nuclear wave
function χκ (R) oscillates rapidly beyond its classical turning
point Rc, which necessarily lies within the Frank-Condon
interval [R<, R>] over the range of observable KER. In such
cases, the reflection approximation can be used to describe
χκ (R) by a delta function at the classical turning point Rc,

χκ (R) = Nκ δ(R − Rc), (6)

where there is a one-to-one mapping between the KER and
the internuclear distance, i.e., EN = 1/Rc. Using the energy-
normalization condition, one can determine the normalization
constant Nκ = |dU/dR|−1/2

R=Rc
, which involves the slope of the

final-state potential curve. Since U (R) = 1/R in the final state,
therefore Nκ = Rc. Substituting χκ (R) (6) in Aκ (p1, p2) (3),
and integrating over the internuclear separation R, leads to

Aκ (p1, p2) = Rc A(p1, p2; Rc) χ0(Rc). (7)

Therefore, taking the squared modulus of the amplitude (7)
gives a sevenfold differential probability (with respect to the
electron momenta p1, p2 and the nuclear KER EN ) for our
process of TPDI:

Wκ (p1, p2) = R2
c |A(p1, p2; Rc) χ0(Rc)|2. (8)

Integrating this sevenfold differential probability over the
KER, EN = 1/Rc, i.e., over Rc, yields the SDP:

W (p1, p2) =
∫

dRc W (p1, p2; Rc) |χ0(Rc)|2, (9)

where W (p1, p2; Rc) is defined as in Eq. (1) by replacing Re

by Rc. Finally, since the Gaussian-shaped χ0(R) [see, e.g.,
Eq. (4)] is strongly peaked about the equilibrium internuclear
distance Re, one may replace W (p1, p2; Rc) by W (p1, p2; Re)
and take it outside of the integral (9):

W (p1, p2) = W (p1, p2; Re)
∫

dRc |χ0(Rc)|2. (10)

Given that the initial-state vibrational wave function χ0(R)
is normalized to unity, the SDP (10) within the adiabatic-
nuclei approximation under such a reasonable consideration
naturally reduces to the SDP within the fixed-nuclei approx-
imation defined by Eq. (1). Below in Sec. IV, we test the
validity of the fixed-nuclei approximation compared to the
more realistic adiabatic-nuclei approximation. As in Ref. [16],
TDSE results for momentum, angular, and energy distribu-
tions presented in Sec. IV have been verified to be converged.
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TABLE I. Position εk (eV) with respect to the minimum of the
ground-state energy curve U (R), width 
k (eV), lifetime τk (fs), and
transition dipole moment μk (a.u.) of some relevant doubly excited
autoionizing states of H2 as a function of the internuclear distance R.

R (a.u.) εk [26] 
k [26] τk [26] μk [40]

Q1
1�+

u (1) 1.0 40.3 0.033 19.9 0.0584
1.2 36.9 0.0096 68.2 0.03567
1.4 34.2 0.0053 124.1 0.03505
1.6 31.8 0.0069 94.9 0.03145

Q1
1�+

u (2) 1.4 34.9 0.0038 172.9
Q2

1�+
u (1) 1.0 39.8 0.05 12.4 0.05998

1.2 37.9 0.033 20.08 0.06319
1.4 36.3 0.481 1.37 0.0644
1.6 34.8 0.386 1.7 0.06506
1.8 33.6 0.32 2.1 0.06060

Q2
1�+

u (2) 1.4 38.3 0.131 5.0
Q2

1�+
u (3) 1.4 38.5 0.017 38.7

Q1
1�+

u (1) 1.0 37.5 0.246 2.67 0.07930
1.2 34.6 0.33 1.97 0.08823
1.4 31.99 0.427 1.54 0.09571
1.6 29.7 0.515 1.28 0.1012

Q1
1�+

u (2) 1.0 39.88 0.055 12.0 0.03277
1.2 36.85 0.0776 8.5 0.03707
1.4 34.14 0.104 6.3 0.04063
1.6 31.75 0.129 5.1 0.04162

Q2
1�+

u (1) 1.4 38.58 0.011 60.5
Q2

1�+
u (2) 1.4 39.19 0.006 115.2

III. PERTURBATION THEORY ANALYSIS

To describe and analyze the resonant process of TPDI of
the fixed-in-space hydrogen molecules where k̂ ‖ R, below
we generalize the PT analysis that was developed and suc-
cessfully applied to treat TPDI of He [14]. As for He atom, the
use of circularly polarized pulses for achieving the temporal
coherent control of resonant TPDI of its molecular counterpart
via doubly excited states strongly depends upon the pulse
parameters. As shown below, we choose pulse parameters
and isotopes to allow comparison between TPDI of hydrogen
molecule within the fixed-nuclei approximation and helium
atom. First, we choose the carrier frequency ω � 36 eV of
the two pulses such that it is on resonance with the transition
between the electronic ground state and the Q2

1�+
u (1) doubly

excited state at the equilibrium internuclear distance Re � 1.4,
see Table I. Second, the bandwidth �ω of the first pulse
should be broad enough to support spiral patterns (Ramsey
dark and bright interference fringes) in the momentum distri-
bution. However, it should not be so broad as to allow double
ionization of H2 (with a ground state binding energy at R = Re

of 51.4 eV) by a single-photon transition.
Third, sufficiently short pulses should be used to make

the molecular TPDI problem more atomiclike by freezing
the nuclear motion between the electron transitions. Although
this frozen-nuclei approximation avoids a complete mess in
the time-development of different wave packets, it allows
for different electronic components and thus beat frequen-
cies. Furthermore, using Newton’s second law to estimate the
minimum time τd it takes the two nuclei initially at rest to
move apart by �R = 0.1 a.u. due to the rather steep repulsive

potential curves of the Q1 or Q2 autoionizing states, we find
τd = (2μ�R/F )1/2. Extracting the force F = −∇U from the
repulsive potential curves U (R) of the Q1 (Q2) autoionizing
states [41], we obtain τd � 474 as (541 as) for H2, 670 as (765
as) for D2, and 821 as (938 as) for T2. Therefore, for few-cycle
pulses with duration less than 500 as and time delays τ shorter
than its upper bound τd , the frozen-nuclei approximation with
atomiclike transitions for these isotopes can be adopted to
freeze any nuclear dynamics involving the Q1 or Q2 doubly
excited states.

When choosing each pulse with n = 3 cycles correspond-
ing to a duration T � 345 as, the pulse bandwidth is �ω �
1.44ω/n = 17.28 eV for a cosine-squared envelope, meaning
that all these conditions are well fulfilled. At this resonant car-
rier frequency and with such large �ω, Table I shows that not
only the Q1 doubly excited states but also the Q2 doubly ex-
cited states are populated. Some examples of such states listed
in Table I include the Q1

1�+
u (1), Q1

1�+
u (2), Q2

1�+
u (2), and

Q2
1�+

u (3) doubly excited states, with the transition dipole
moment μk of the first state being comparable to that of the
Q2

1�+
u (1) doubly excited state. Thus, the two-electron wave

packet created by the first pulse encompasses several doubly
excited states, with possibility of occurrence of quantum beat
phenomena. Fourth, the first pulse has a peak intensity of
50 TW/cm2 with a maximum of 100 TW/cm2, which are
not very intense such that higher-order nonlinear effects be-
yond the second-order ones occur. These intensities are strong
enough to transfer significant population into these doubly
excited states by one-photon transition from the ground state.
Also, for such pulse intensity the so-called rotating wave
approximation (RWA) is valid meaning that photon emission
processes are negligible.

For pulse parameters used here, the Keldysh parameter
is γ � 46 and the ponderomotive energy is Up � 12 meV,
which is much smaller than ω. Thus, PT analysis is valid
and is then used to analyze our numerical TDSE results. In
the following, for only the case where k̂ ‖ R̂, we parametrize
the PT amplitude and probability for TPDI of the hydrogen
molecule in terms of the vectors of the problem, namely, the
pulse polarization vector e, and the photoelectron momenta
p1, p2. The pulse polarization vector e is defined as

e = (ε̂ + iηζ̂)/
√

1 + η2, (11)

where η is the pulse ellipticity, and ε̂ and ζ̂ = [k̂ × ε̂] are the
major and minor axes of the polarization ellipse. Note that
η = +1 for a right-circularly polarized (RCP) pulse, η = −1
for a left-circularly polarized (LCP) pulse.

From symmetry properties of the atomic and molecular
problems, it can be shown that the parametrization of the PT
amplitude for our TPDI molecular process when k̂ ‖ R and
for our TPDI atomic process of He have the same vectorial
structure. Thus, the parametrization for our TPDI molecular
process described below is just an extension of that for the
TPDI atomic process of the He [14]. Although the PT de-
veloped in Ref. [14] was for the specific detection geometry
of in-plane back-to-back (BTB) emission of photoelectrons,
p̂2 = −p̂1, as in Fig. 1(a), it also applies for the case of
orthogonal detection geometry where the electron momentum
p1 is emitted along the pulse propagation direction k̂ and the
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other electron momentum p2 is recorded in the polarization
plane. For these two detection geometries and under the RWA
and fixed-nuclei approximation, the PT amplitude for TPDI of
hydrogen molecule by two nonoverlapping counter-rotating
circularly polarized attosecond pulses delayed in time by τ

can thus be written in the same form as Eq. (5) in Ref. [14]:

A(p1, p2; Re) = e−2iφ1 [A
1 + A
2 + A
12 ], (12)

where φ1 is the carrier-envelope phase (CEP) of the first pulse;
p̂ ≡ p̂2 for the two detection geometries; and

A
1 = A�(ρ)(p̂ · e)2 (13)

describes the transitions 1�+
g → 1�+

u (M = +1) →
1�+

g (M = +2) for two-photon absorption by the first RCP
pulse from the ground state to the double continua,

A
2 � A�(ρ)(p̂ · e∗)2ei (14)

describes the transitions 1�+
g → 1�+

u (M = −1) →
1�+

g (M = −2) for two-photon absorption by the time-
delayed second LCP pulse from essentially the same ground
state to the double continua, and

A
12 = [B� (ρ; τ )|p̂ · e|2 + C� (ρ; τ )]eiψ (15)

describes the transitions 1�+
g → 1�+

u (M = +1) →
1�+

g (M = 0) for one-photon absorption by the first RCP
pulse from the ground state to doubly excited states, followed
by one-photon absorption by the second LCP pulse from
doubly excited states to the double continua. In Eqs. (13)–(15)
the argument ρ of the dynamical parameters A�, B� , and
C� is defined as ρ ≡ (p1, p2, u, u1, u2), where u = p̂1 · p̂2,
u1 = p̂1 · R̂, and u2 = p̂1 · R̂. Parity conservation and particle
exchange rules require that the dynamical parameters A�(ρ),
B� (ρ; τ ), and C� (ρ; τ ) are symmetric under the exchange of
electron momenta p1 ↔ p2. In Eq. (14), the Ramsey phase 

defined as

 = (E − Eg)τ + 2φ12 (16)

is comprised of two terms: (E − Eg)τ is the difference in the
phase accumulated by the pair of two-electron wave packets
produced with a time delay τ via the two direct paths 


‖
1 and



‖
2, and φ12 is the relative CEP between the two pulses. In

Eq. (15) the phase ψ defined as

ψ = Eτ + φ12 (17)

expresses the fact that when the two-electron wave packet
is created via the path 


‖
12, the two-electron wave packet

created via the path 

‖
1 has already acquired a phase −Eτ .

Using Eq. (11), the geometric factors (p̂ · e)2 and |p̂ · e|2 in
Eqs. (13)–(15) expressed in terms of the spherical angles
(θ, ϕ) of the electron momentum p,

(p̂ · e)2 = 1
2 sin2 θe±2iϕ, (18)

|p̂ · e|2 = 1
2 sin2 θ, (19)

allow us to better interpret each of the three dynamical
parameters A�(ρ), B� (ρ; τ ), and C� (ρ; τ ). Each of these
ϕ-independent molecular dynamical parameters is a prod-
uct of the Fourier transform of the pulse envelope and the

transition matrix element between the initial 1�+
g (M = 0)

ground state and a final continuum state. While the final
state is the 1�+

g (M = ±2) continuum states for A�(ρ), it is
the 1�+

g (M = 0) continuum states with even values of L for
B� (ρ; τ ) and with only L = 0 for C� (ρ; τ ).

Taking the squared modulus of the PT amplitude (12), we
obtain the SDP for TPDI of the hydrogen molecules by a pair
of nonoverlapping oppositely circularly polarized attosecond
pulses for k̂ ‖ R and for the two detection geometries,

W (p1, p2; Re) = |A
1 + A
2 |2 + |A
12 |2
+2 Re [A∗


1
A
12 ] + 2 Re [A∗


2
A
12 ], (20)

which contains four terms. Substituting the geometric factor
(18) in Eqs. (13) and (14), the first term in the SDP (20)
describing Ramsey interference between these two direct ion-
ization pathways 


‖
1 and 


‖
2 writes

|A
1 + A
2 |2 = |A�(ρ)|2 sin4 θ cos2(/2 − 2ξϕ), (21)

where ξ = +1 (−1) for RCP/LCP (LCP/RCP) pulses.
The second term |A
12 |2 ≡ |A
12 (ρ, θ, τ )|2 in the SDP (20)

describes the pump-probe transition. Moreover, the form of
the geometric factor (19) show that this second term does not
depend on the azimuthal angle ϕ of the electron momentum
unit vector p̂, but does depend on both the polar angle θ and
time delay τ . Using the Hermitian stationary Green’s function
in the second-order PT amplitude, A
12 (ρ, θ, τ ) can be ap-
proximated as a sum over intermediate autoionizing (doubly
excited) states in which we introduce the decay factors e−τ/τk :

A
12 (ρ, θ, τ ) =
∑

k

e−iεkτ Ak

12

(ρ, θ )e−τ/τk , (22)

where k runs from 1 to N , with N being the number of doubly
excited states (with energy εk and lifetime τk) lying within the
bandwidth of the pump pulse. Using Eq. (22), the pump-probe
signal |A
12 (ρ, θ, τ )|2 becomes

|A
12 (ρ, θ, τ )|2 =
∑

k

∣∣Ak

12

(ρ, θ )
∣∣2

e−2τ/τk

+ 2
∑

k

∑
k′>k

∣∣Ak∗

12

(ρ, θ )
∣∣∣∣Ak′


12
(ρ, θ )

∣∣

× e−τ/τk e−τ/τk′

× cos[(γk′ − γk ) + (εk − εk′ )τ ], (23)

where γk ≡ γk (ρ, θ ) is the phase of the dynamical parameter
Ak


12
(ρ, θ ).

The third term in the SDP (20), which describes interfer-
ence between the pathways 


‖
1 and 


‖
12, writes

2 Re [A∗

1

A
12 ] = 2|A∗
�(ρ)A
12 (ρ, θ, τ )| sin2 θ

× cos2{[Eτ + φ12 + �(ρ, θ, τ )]/2 − ξϕ},
(24)

while the fourth term in the SDP (20), which describes inter-
ference between the pathways 


‖
2 and 


‖
12, writes

2 Re [A∗

2

A
12 ] = −2|A∗
�(ρ)A
12 (ρ, θ, τ )| sin2 θ

× sin2{[Egτ − φ12 + �(ρ, θ, τ )]/2 + ξϕ}.
(25)
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In Eqs. (24) and (25) we note the presence of a dynamical
phase �(ρ, θ, τ ) defined by

tan �(ρ, θ, τ ) = Im [A∗
�(ρ)A
12 (ρ, θ, τ )]

Re [A∗
�(ρ)A
12 (ρ, θ, τ )]

, (26)

which is the phase of the dynamical parameter
A∗

�(ρ)A
12 (ρ, θ, τ ), whose squared modulus writes

|A∗
�(ρ)A
12 (ρ, θ, τ )|2

=
∑

k

∣∣A∗
�(ρ)Ak


12
(ρ, θ )

∣∣2
e−2τ/τk

+ 2
∑

k

∑
k′>k

∣∣A�(ρ)Ak∗

12

(ρ, θ )
∣∣∣∣A∗

�(ρ)Ak′

12

(ρ, θ )
∣∣

× e−τ/τk e−τ/τk′ cos[(αk′ − αk ) + (εk − εk′ )τ ], (27)

where αk ≡ αk (ρ, θ ) is the phase of the dynamical parameter
A∗

�(ρ)Ak

12

(ρ, θ ).
An analysis of the term |A∗

�(ρ)A
12 (ρ, θ, τ )| (27) present
in Eqs. (24) and (25) shows that autoionization decays with
rates 1/τk and QB-II processes between doubly excited states
with frequencies (εk − εk′ ) may occur thanks to the interfer-
ences between the direct pathway 


‖
1 or 


‖
2 with the indirect

pathway 

‖
12. Also, these two time-dependent phenomena are

present in the pump-probe term |A
12 (ρ, θ, τ )|2 (23). For time
delays τ shorter than a femtosecond used in this work, one ex-
pects autoionization decays of the Q2

1�+
u (1) doubly excited

state to occur because of its relative short lifetime of 1.4 fs
[26]. Also, Table I shows that the transition dipole moments
of the Q2

1�+
u (1) and Q1

1�+
u (1) doubly excited states only

differ by a factor 2 [40]. Since the Q1
1�+

u (1) and Q2
1�+

u (1)
doubly excited states located respectively at 34.2 and 36.3 eV
above the electronic ground state have comparable transition
dipole moments, one expects QB-II effects between these
doubly excited states with a period 2π/(εk − εk′ ) ∼ 2 fs to
occur. Finally, if one retains only the contribution from the
Q2

1�+
u (1) doubly excited state by neglecting contributions

from other doubly excited states, one can combine Eqs. (26)
and (22) to predict that QB-I between the ground state and
that doubly excited state is present in the fourth term (25) of
the SDP (20) describing interference between the direct path-
way 


‖
2 and the indirect pathway 


‖
12. Below, we use TDSE

calculations to demonstrate these three kinds of two-electron
dynamics in the momentum, angular, and energy distributions.

IV. NUMERICAL RESULTS

Our objective in presenting our numerical TDSE results
is to show how molecular doubly excited state dynamics
can affect the two-electron momentum, angular, and energy
distributions in TPDI of the hydrogen molecule in the two
schemes specified in Fig. 1, where the fixed-in-space diatomic
molecule is aligned [Fig. 1(a)] or perpendicular [Fig. 1(b)]
to the propagation direction of the laser beams. We only
focus on time-delayed (nonoverlapping) oppositely circularly
polarized attosecond pulses with a carrier frequency that is
resonant with the transition between the field-free ground state
and a specific doubly excited state. Thus, each cosine-squared
pulse with n = 3 cycles, zero CEP, and peak intensity I =
50 TW/cm2 has a carrier frequency of ω � 36 eV for k̂ ‖ R̂

[Fig. 1(a)] and of ω � 30 eV for k̂ ⊥ R̂ [Fig. 1(b)]. These
correspond to a pulse bandwidth �ω � 1.44ω/n of 17.3 and
14.4 eV, as well as to a pulse duration T of 345 and 414 as. For
each scheme we consider the orthogonal detection geometry
and the in-plane back-to-back detection geometry in the case
where the two electrons unequally share the excess energy
0.1 � E � 50 eV in the proportion 25% : 75%. Below, while
Secs. IV A and IV B are devoted to the investigation of doubly
excited state effects on the momentum distributions for our
two molecular orientations, Sec. IV C focuses on effects of
doubly excited states on the angular distributions. Finally,
Sec. IV D uses the ϕ-integrated energy distribution to isolate
and demonstrate the autoionization decays and QB-II between
doubly excited states.

For each of the momentum and angular distributions, we
compare our complete TDSE results (i) with the TDSE results
(ii) in which we exclude the ionization pathway corresponding
to one-photon absorption from each pulse, specified by the
pathway 


‖
12 in Fig. 1(c) or the pathway 
⊥

12 in Fig. 1(d). For
k̂ ‖ R̂ in Fig. 1(a), this comparison is particularly dramatic
for the two-electron momentum and angular distributions,
whose fourfold rotational symmetry characters are completely
changed by transitions corresponding to the indirect 


‖
12

pathway. In contrast, for k̂ ⊥ R̂ in Fig. 1(b), this compar-
ison reveals that the indirect 
⊥

12 pathway is necessary for
the formation of four-arm spiral patterns in the momentum
distributions.

A. Effects of molecular doubly excited state on the momentum
distribution for the pulse scheme k̂ ‖ R

For the case where the pair of nonoverlapping counter-
rotating circularly polarized attosecond pulses propagate
along the fixed-in-space molecular axis R, our TDSE results
for the momentum p2 distribution for the in-plane BTB detec-
tion geometry are shown in Figs. 2(a) and 2(c), while those
for the orthogonal detection geometry (p1 ⊥ p2) are shown
in Figs. 2(b) and 2(d). For these two detection geometries,
Fig. 2(a) and Fig. 2(b) show our TDSE results (ii) for the
p2 distributions obtained numerically by including only the
pathways 


‖
1 and 


‖
2 in the projection (1), i.e., they include

final continuum states with M = ±2. Clearly one sees that
the p2 distributions in the polarization plane for these two
detection geometries exhibit regular spiral pattern with four
arms. The handedness of the four-arm spirals observed in
Figs. 2(a) and 2(b) for these two detection geometries is the
same and dictated by the pulse helicities; it is counterclock-
wise for our time-delayed RCP/LCP pulses, and it changes to
clockwise when switching the ordering of the two pulses (not
shown). Moreover, the spiral pattern has a fourfold rotational
symmetry since the four spiral arms are equally separated by
π/2. These TDSE results (ii) can be well understood using
PT analysis. For these two detection geometries, it is very
important that the dynamical amplitude A�(p1, p2, u, u1, u2)
in the SDP (21) does not have any angular dependence since
the mutual angles u, u1, and u2 are all kept fixed during the
detection of the two photoelectrons. Indeed, u = −1, u1 =
u2 = 0 in Fig. 2(a) for p̂1 = −p̂2; while u = u2 = 0, and
u1 = 1 for p̂1 ⊥ p̂2. In the pulse polarization plane (θ = π/2),
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FIG. 2. Momentum p2 distributions [Eq. (1)] for TPDI of H2 by
a pair of nonoverlapping, right-left, circularly polarized attosecond
pulses (RCP/LCP) propagating along k̂ parallel to the molecular
axis R. In the left panels [(a) and (c)], the two photoelectrons are
emitted back-to-back (BTB) in the pulse polarization xy-plane. In
the right panels [(b) and (d)], they are ejected orthogonally with one
electron being fixed along k̂ and the second electron being recorded
in the pulse polarization xy plane. Top: Results when excluding the
ionization 1�+

g channels. Bottom: Results when including the ion-
ization channels 1�+

g and 1�+
g . Each cosine-squared pulse in the pair

has a carrier frequency ω � 36 eV, peak intensity I = 50 TW/cm2,
CEP φ1 = φ2 = 0, n = 3 optical cycles, total duration T � 345 as,
and bandwidth �ω � 1.44ω/n = 16.8 eV. The time delay between
the two pulses is τ = T . The two electrons unequally share (UES)
the excess energy 0.1 � E � 50 eV in the proportion 25% : 75%. In
(a)–(d) the magnitudes of the SDP [in units of 10−6 a.u. (a), (c), and
(d) and of 10−7 a.u. (b)] are indicated by the color scales. Here the
polarization plane and the molecular plane are perpendicular.

kinematical vortex patterns are defined by the zeros and the
maxima of the kinematical factor cos2(2ξϕ − /2) in the
right-hand side of the SDP (21):

ϕmax(E ) = ξ [nπ + (E − Eg)τ + 2φ12]/2,

ϕzero(E ) = ξ [nπ + π/2 + (E − Eg)τ + 2φ12]/2, (28)

where n = 0,±1,±2, . . . . We note that Eq. (28) defines
Archimedean spirals in the (E , ϕ) plane. Given that |ξ | = +1,
the number of spiral arms is four since n can only take the
values 0,1,2,3; other values of n will replicate the same lines.
Also, these four arms of Archimedean spirals (28) are equally
separated by π/2, confirming the fourfold rotational symme-
try seen in Figs. 2(a) and 2(b). We note that this kind of
spiral patterns observed here for k̂ ‖ R̂ were first predicted
for single-photon [28] and multiphoton [29] attosecond single
ionization of atoms with various and controlled number of
spiral arms. They have now been confirmed experimentally
[42–45] for femtosecond multiphoton ionization of K and Na

atoms. Possible applications of kinematical electron vortices
include laser pulse diagnostics with an emphasis as a pulse
polarization photodetector, and control of electron motion on
its natural attosecond timescale via the QB-III effect.

Figures 2(c) and 2(d) show the full TDSE results (i) for
the p2 distributions in which the ionization pathway 


‖
12 is

now included in the projection (1), i.e., they include final
continuum states with M = 0 besides the M = ±2 ones. Note
that the Q2

1�+
u (1) doubly excited state and other doubly ex-

cited states with symmetry 1�+
u are populated by one-photon

transition from the first pulse thanks to its broad bandwidth
�ω = 17.28 eV. One sees that the structure of the p2 distri-
bution in the polarization plane changes dramatically, and it
also strongly depends upon the detection geometry. For both
detection geometries, one sees that the fourfold symmetry of
the momentum distributions seen in Figs. 2(a) and 2(b) is de-
stroyed by the contribution of the indirect ionization pathway



‖
12. For the in-plane BTB detection geometry, the momentum

distribution in Fig. 2(c) exhibits a two-arm spiral pattern for
p < 1 a.u.; together with a ringlike pattern for p � 1 a.u.
Despite the breakdown of the fourfold rotational symmetry
of the spiral pattern as the time delay increases, we found
that the two-arm spiral pattern for the in-plane BTB detection
geometry is stable and its handedness is preserved. For the
orthogonal detection geometry, the momentum distribution in
Fig. 2(d) does not exhibit a spiral pattern, instead it exhibits a
combination of dipolar patterns for momenta p � 0.3 a.u. and
circular symmetric patterns for momenta p > 0.7 a.u., which
are connected by dark and bright interferences fringe patterns
for momenta 0.3 < p < 0.7 a.u.

The difference in the shape of the p2 distributions observed
in Figs. 2(c) and 2(d) for the two detection geometries can be
understood using PT formula (20) by analyzing the relative
magnitudes of its four terms and their angular structures. The
relative magnitudes of these four terms are provided in Fig. 3,
where we show the energy dependence of the dynamical
parameters 
M

j (E ), with M = 0,±2 and j = 1, 2, 12. Here

+2

1 (E ) = |A�(ρ)|2, 
−2
2 (E ) � |A�(ρ)|2, and 
0

12(E ) ≡
|A
12 (ρ, θ ; τ )|2 = |B� (ρ; τ )/2 + C� (ρ; τ )|2 describe the ion-
ization pathways 


‖
1, 


‖
2, and 


‖
12, respectively. For τ = 345

as, these dynamical parameters are calculated numerically
using our TDSE calculations by including in the projection (1)
only final continuum states with M = 0 for j = 12; M = +2
for j = 1; and M = −2 for j = 2. Shown in Fig. 3(a) are
results for the orthogonal geometry, while Fig. 3(b) shows
results for the in-plane BTB geometry. One sees that the calcu-
lated parameters 
+2

1 (E ) and 
−2
2 (E ) are nearly identical for

each of the two detection geometries, as correctly assumed by
our PT. Over a wide excess energy range (except at very low
excess energy E ), the contrast between the calculated param-
eters 
0

12(E ) and 
+2
1 (E ) � 
−2

2 (E ) is much more larger for
the orthogonal geometry [see Fig. 3(a)] than for the in-plane
BTB geometry [see Fig. 3(b)]. According to PT formula (20)
for the SDP, one sees that the last three terms of the SDP
involves the ionization amplitude A
12 (ρ, θ ; τ ) for the indirect
ionization path 


‖
12. Thus, for the orthogonal geometry it is

then clear that the shape of the p2 distribution in Fig. 2(d) over
a wide excess energy range is dictated by the angular structure
of the second term |A
12 (ρ, θ ; τ )|2 in the SDP (20), while for
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FIG. 3. Excess energy E dependence on the dynamical parame-
ters 
M

j (where j = 1, 2, 12) describing the ionization pathways 

‖
1 ,



‖
2 , and 


‖
12, respectively, in TPDI of H2 by a pair of nonoverlapping

counter-rotating circularly polarized attosecond pulses propagating
along the fixed-in-space molecular axis k̂ ‖ R. These parameters are
extracted from TDSE calculations by including in the projection
only final states with M = 0 for j = 12; M = +2 for j = 1; and
M = −2 for j = 2. For an unequal energy sharing (UES) proportion
of 25% : 75%, two detection geometries are considered: (a) orthog-
onal geometry where p1 ‖ k̂ and p2 detected in the laser polarization
plane, and (b) back-to-back (BTB) emission of electrons in the laser
polarization plane.

the in-plane BTB geometry the shape of the p2 distribution
in Fig. 2(c) results from the strong interplay between the
four terms in the SDP (20) given that these three dynamical
parameters are comparable.

As the pump-probe term |A
12 (ρ, θ ; τ )|2 (23) is indepen-
dent of the azimuthal angle ϕ of the momentum unit vector
p̂ ≡ p̂2, the breakdown of the fourfold rotational symmetry of
the vortex pattern in Fig. 2(c) for the in-plane BTB geometry
can only be due to the two interference terms (24) and (25),
which differ in their kinematical structures. The kinematic
factor cos2{[Eτ + φ12 + �(ρ, θ, τ )]/2 − ξϕ} of the interfer-
ence term 2 Re [A∗


1
A
12 ] (24) leads to two-arm spiral vortex

patterns with the same handedness as the four-arm spirals
produced by the first term |A
1 + A
2 |2 (21) of the SDP. How-

ever, the spiral equations for this two-arm spiral,

ϕmax(E ) = −ξ [nπ − (Eτ + φ12 + �)/2],
(29)

ϕzero(E ) = −ξ [nπ + π/2 − (Eτ + φ12 + �)/2],

are modified by the dynamical phase �(ρ, θ ; τ ) (26). Corre-
spondingly, the dipolelike kinematic factor sin2{[Egτ − φ12 +
�(ρ, θ, τ )]/2 + ξϕ} of the interference term 2 Re [A∗


2
A
12 ]

(25) cannot support a spiral vortex structure in the momentum
distribution since its dependence on the excess energy E is
only via the dynamical phase �(ρ, θ ; τ ) (26). We then con-
clude that the change of shape from the fourfold to twofold
rotational symmetry of the vortex patterns occurring at p < 1
a.u. when comparing Figs. 2(a) and 2(c) for the in-plane
BTB geometry originates only from the interference term
2 Re [A∗


1
A
12 ] (24). In contrast, for p > 1 a.u. for which


0
12(E ) is much greater than 
+2

1 (E ) � 
−2
2 (E ), the change

of shape from four-arm spiral pattern to a ringlike pattern
observed when comparing Figs. 2(a) and 2(c) is an indi-
cation of the dominance of the isotropic pump-probe term
|A
12 (ρ, θ ; τ )|2 (23) in the SDP (20). Such dominance of the
isotropic pump-probe term seen in Fig. 3(a) for the orthogo-
nal detection geometry for p > 0.7 a.u. leads to a circularly
symmetric pattern in Fig. 2(d) that obscures the occurrence
of any two-arm spiral pattern. For p < 0.7 a.u., this isotropic
pump-probe term seen in Fig. 3(a) becomes less dominant
such that the shape of the p2 distribution in Fig. 2(d) is now
controlled by the interplay between the last three terms in the
SDP (20) that leads to a dipolelike pattern exhibiting some
dark and bright interference fringes between the two regions.

All the results for the momentum distributions, calculated
using Eqs. (1) and (2), presented in Fig. 2 and analyzed by
Fig. 3 are obtained within the fixed-nuclei approximation at
the equilibrium internuclear distance R � 1.4 a.u. To freeze
any nuclear motion between the electron transitions for the
TPDI process involving doubly excited state channels, we
have used sufficiently short pulses to make the molecular
TPDI problem more atomiclike; and also used time delays
τ shorter than τd , which depends on the isotope, see the
second paragraph of Sec. III. For each τ , stable vortex patterns
such as the one in Fig. 2(c) are found. However, there is
unavoidably the vibrational broadening due to the quantum
uncertainty principle (zero-point energy) and nuclear motion
in the final state that are always present and thus need to be
investigated. When considering nuclear motion in the initial
state, the small zero-point energy ω0/2 = √

km/4μ of 0.27 eV
for H2, 0.19 eV for D2, and 0.15 eV for T2 raises the energy
of the ground state above the minimum of the U (R) curve.
As the field-free Q2

1�+
u (1) doubly excited state is located at

36.3 eV above this minimum (see Table I), the correspond-
ing resonant carrier frequency ω is thus 36.03 eV for H2,
36.11 eV for D2, and 36.15 eV for T2. In order to calculate the
TPDI probability within the adiabatic-nuclei approximation
using Eq. (9), TDSE calculations of W (p1, p2; Rc) for nine
values of the classical turning point Rc are carried out within
the Franck-Condon region. For each isotope, all the TDSE
calculations for different Rc are done for the same carrier
frequency, durations, and time delays of three cycles. Using
the initial-state vibrational wave function χ0(Rc) displayed
in Fig. 4(a) and defined by Eq. (4) within the harmonic-
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FIG. 4. (a) Initial-state vibrational wave function χ0(Rc ) given
by Eq. (4) within the harmonic-oscillator approximation. (b)–(d) The
p2 distributions calculated using Eq. (9) within the adiabatic-nuclei
approximation for TPDI of (b) H2, (c) D2, and (d) T2. The small
zero-point energy ω0/2 = √

km/4μ of 0.27 eV for H2, 0.19 eV
for D2, and 0.15 eV for T2 raises the energy of the ground state
above the minimum of the U (R) curve. As the field-free Q2

1�+
u (1)

doubly excited state is located at 36.3 eV above this minimum (see
Table I), the corresponding resonant carrier frequency ω is 36.03 eV
for H2, 36.11 eV for D2, and 36.15 eV for T2. TDSE calculations
of W (p1, p2; Rc ) for a given isotope at different values of Rc are
done for the same carrier frequency, pulse duration, and time delay
of three cycles. (e) The same as in (b), but calculated by adapting the
carrier frequency ω such that the same electronic state is reached for
different values of Rc. In (b)–(e), the magnitudes of the SDP (in units
of 10−6 a.u.) are indicated by the color scales. (f) In units of 10−6

a.u. the energy-integrated angular distribution in which the result
extracted from Fig. 2(c) for the fixed-nuclei approximation (FNA)
is compared with the three isotopic results (b)-(d) for the adiabatic-
nuclei approximation. The two electrons are emitted back-to-back
(BTB) in the pulse polarization xy plane and unequally share (UES)
the excess energy 0.1 � E � 50 eV in the proportion 25% : 75%.
Other pulse parameters are specified in the caption of Fig. 2.

oscillator approximation, our TDSE results for the momentum
distributions calculated using Eq. (9) are shown in Fig. 4(b)
for H2, Fig. 4(c) for D2, and Fig. 4(d) for T2. For a given
isotope one sees that the zero-point energy due to nuclear
motion does not erase the vortex pattern signature, since the

patterns in Figs. 4(b)–4(d) greatly resemble the one displayed
in Fig. 2(c). Indeed, Figs. 4(b)–4(d) and Fig. 2(c) have the
same shape and only differ slightly in magnitudes, which can
be explained by the little difference seen in Fig. 4(a) for the
Gaussian-shaped vibrational wave function χ0(Rc) for these
three isotopes. The same conclusion about the persistence of
vortex patterns from these three isotopes is obtained when cal-
culating the momentum distribution using Eq. (9) by adapting
the pulse carrier frequency ω such that the same intermediate
electronic state is reached for different values of Rc, as illus-
trated in Fig. 4(e) for H2.

Another observable relevant to probe the applicability of
fixed-nuclei approximation with respect to adiabatic-nuclei
approximation is the energy-integrated angular distribution
shown in Fig. 4(f). Plotted in this figure are the result extracted
from Fig. 2(c) within the fixed-nuclei approximation and the
three isotopic results extracted from Figs. 4(b)–4(d) within
the adiabatic-nuclei approximation. While Fig. 4(f) shows
that the angular distributions for all these isotopes have the
same shape, the difference in magnitudes induced by nuclei
vibrations is rather little. Very striking is the observation in
Fig. 4(a) that χ0(R)—already peaked about the equilibrium
internuclear distance Re for H2—becomes strongly peaked
about Re when the reduced mass μ of the isotope increases.
Consequently, according to the discussion below Eq. (9) the
validity of the fixed-nuclei approximation should be more ef-
fective for heavier isotopes. Our numerical results in Fig. 4(f)
confirm those expectations. The contrast between results for
the adiabatic-nuclei and fixed-nuclei approximations is largest
for the lightest isotope H2, and smallest for the heaviest iso-
tope T2. As μ increases (from H2 to T2 via D2) the angular
distributions obtained within the adiabatic-nuclei approxima-
tion converge towards the angular distribution obtained within
the fixed-nuclei approximation. Although the treatment of this
resonant TPDI process within the adiabatic-nuclei approxima-
tion is more realistic and accurate, one sees that its simplistic
treatment within the fixed-nuclei approximation provides a
very good account.

B. Effects of molecular doubly excited state on the momentum
distribution for the pulse scheme k̂ ⊥ R

For the case where the pair of nonoverlapping counter-
rotating circularly polarized attosecond pulses propagate
perpendicularly to the fixed-in-space molecular axis R, we
only consider the orthogonal detection geometry in which
one electron is emitted along the pulse propagation direction
p1 ‖ k̂ and the other is emitted in the polarization xy plane,
as illustrated in Fig. 1(b). We do not consider the in-plane
BTB detection geometry since it is known [16] that the larger
contrast between the 1�+

u and 1�+
u ionization amplitudes in

such detection scheme does not favor the observation of spiral
patterns in the momentum distribution when purely circularly
polarized attosecond pulses delayed in time are used to dou-
ble photoionize the hydrogen molecule in the configuration
k̂ ⊥ R.

Our TDSE results for the p2 distribution for the orthogonal
detection geometry is shown in Fig. 5(a) when only the two
direct ionization channels 
⊥

1 and 
⊥
2 in Fig. 1(b) are included

in the TDSE calculations. In other words, here the contri-
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FIG. 5. Momentum p2 distributions [Eq. (1)] for TPDI of H2 by
a pair of nonoverlapping, right-left, circularly polarized attosecond
pulses (RCP/LCP) delayed in time by τ = 414 as and propagating
along k̂ perpendicular to the molecular axis R. The p2 distributions
are obtained by TDSE calculations that include: (a) the 1�+

g and
1�+

g continuum states with M = ±2, ±1; (b) the 1�+
g continuum

states with M = ±1; (c) the 1�+
g continuum states with M = ±2;

(d) the 1�+
g continuum states with M = 0; and (e) the 1�+

g , 1�+
g ,

and 1�+
g continuum states with M = 0, ±1, ±2. (f) The same as

(e) but for a time delay τ = 551 as, i.e., one cycle longer. The two
photoelectrons unequally share (UES) the excess energy 0.1 � E �
50 eV in the proportion 25% : 75%; they are ejected orthogonally
with one electron being fixed along k̂ and the second electron being
recorded in the pulse polarization xy plane. The pulse parameters are:
a carrier frequency ω = 30 eV, peak intensity I = 50 TW/cm2, CEP
φ1 = φ2 = 0, optical cycles n = 3, total duration T � 414 as, and
bandwidth �ω � 1.44ω/n = 14.4 eV. The magnitudes of the SDP
[in units of 10−6 a.u. (a), (b), and (d), 10−7 a.u. (c), and 10−5 a.u. (e)
and (f)] are indicated by the color scales. Here the polarization plane
coincides with the molecular plane.

butions for the indirect ionization channel 
⊥
12 in Fig. 1(b)

are omitted. In contrast to the case of pulse configuration
k̂ ‖ R, one sees that this momentum distribution obtained for
k̂ ⊥ R does not present any helical structure. Instead, it does
exhibit two sets of twofold symmetric quadrupole patterns

well separated in energy, with one appearing at lower energies
delimitated by p < 0.6 a.u. and the other appearing at higher
energies delimitated by p > 0.6 a.u. In each of these two sets,
the two spots along the direction ϕ ∼ π/4, 5π/4 with respect
to the molecular x axis have the same intensity. This is also the
case for the two spots along the direction ϕ ∼ 3π/4, 7π/4.
However, for the low-energy set the pair of spots along the
direction ϕ ∼ π/4, 5π/4 are less brighter than those along
the direction ϕ ∼ 3π/4, 7π/4; while for the high-energy set
the pair of spots along the direction ϕ ∼ π/4, 5π/4 are more
brighter than those along the direction ϕ ∼ 3π/4, 7π/4.

To understand the twofold symmetric quadrupolelike shape
of the p2 distribution shown in Fig. 5(a), we note that accord-
ing to the electric dipole selection rules the first two-electron
wave packet is created through the direct ionization path-
way 
⊥

1 , which describes the transitions 1�+
g → [1�+

u (M =
+1), 1�+

u (M = 0)] → [1�+
g (M = +2), 1�+

g (M = +1)] for
two-photon absorption by the RCP pulse from the ground
state to the double continua. In the following, A(1)

� and A(1)
�

are used to denote the ionization amplitudes corresponding
respectively to these two final continuum states. Likewise,
the second two-electron wave packet is created through the
direct ionization pathway 
⊥

2 , which describes the transi-
tions 1�+

g → [1�+
u (M = −1), 1�+

u (M = 0)] → [1�+
g (M =

−2), 1�+
g (M = −1)] for two-photon absorption by the LCP

pulse from essentially the same ground state to the double
continua. We also use A(2)

� and A(2)
� to denote the ionization

amplitudes corresponding respectively to these two final con-
tinuum states. Since the two oppositely circularly polarized
attosecond pulses are delayed in time by τ , the second two-
electron wave packet is created when the first two-electron
wave packet has already accumulated a Ramsey phase 

given by Eq. (17). Therefore, the momentum distribution in
Fig. 5(a) is obtained by superposing three kinds of patterns:

W
⊥
2


⊥
1

= ∣∣[A(1)
� + A(1)

�

] + ei
[
A(2)

� + A(2)
�

]∣∣2

= ∣∣[A(1)
� + eiA(2)

�

] + [
A(1)

� + eiA(2)
�

]∣∣2

= ∣∣A(1)
� + eiA(2)

�

∣∣2 + ∣∣A(1)
� + eiA(2)

�

∣∣2

+ 2 Re
[(

A(1)∗
� + e−iA(2)∗

�

)(
A(1)

� + eiA(2)
�

)]
. (30)

In the SDP (30), the first term |A(1)
� + eiA(2)

� |2 describes
Ramsey interference between the 1�+

g (M = ±1) compo-
nents of the created pair of two-electron wave packets;
the second term |A(1)

� + eiA(2)
� |2 describes Ramsey interfer-

ence between the 1�+
g (M = ±2) components of the created

pair of the two-electron wave packets; and the third term
2 Re [(A(1)∗

� + e−iA(2)∗
� )(A(1)

� + eiA(2)
� )] describes the mix-

ing of the 1�+
g (M = ±1) and 1�+

g (M = ±2) ionization
amplitudes within each two-electron wave packet or in
between the created pair of two-electron wave packets.
Figure 5(b) on the one hand shows that Ramsey interference
from the first term |A(1)

� + eiA(2)
� |2 in the SDP (30) leads to

two sets of fourfold symmetric quadrupolelike patterns with
the four spots in each of the two sets having the same intensity.
Figure 5(c) on the other hand shows that Ramsey interference
from the second term |A(1)

� + eiA(2)
� |2 in the SDP (30) leads

to two sets of patterns with the one at lower energies being a
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figure-eight-shaped dipole along the molecular x axis and the
other at higher energies being a broadside oval-shaped dipole
along the y direction perpendicular to the molecular x axis.
However, the magnitude of the SDP in Fig. 5(c) is one order
of magnitude smaller than the SDPs in Figs. 5(a) and 5(b).
Therefore, the four spots seen in Fig. 5(a) indicate that the
leading channels in the p2 distribution stems from the ioniza-
tion paths 
⊥

1 with the 1�+
g (M = +1) final continuum state

and 
⊥
2 with the 1�+

g (M = −1) final continuum state. More-
over, all these TDSE results in Figs. 5(b) and 5(c) show that
the difference in the brightness of the quadrupolelike pattern
seen in Fig. 5(a) is thus due to the third term 2 Re [(A(1)∗

� +
e−iA(2)∗

� )(A(1)
� + eiA(2)

� )] in the SDP (30), which mixes the
ionization amplitudes produced either from the same path or
from different path, but with different molecular symmetry.

In Fig. 5(e) we show the p2 distribution for the orthog-
onal detection geometry and the pulse configuration k̂ ⊥
R when the two direct ionization channels 
⊥

1 and 
⊥
2 in

Fig. 1(b), as well as the indirect ionization pathway 
⊥
12,

are all included in the TDSE calculations. Owing to the
broad pulse bandwidth �ω � 1.44ω/n = 14.4 eV, the pulse
carrier frequency of ω = 30 eV is such that Q1

1�+
u (1),

Q1
1�+

u (1), Q2
1�+

u (1), and Q1
1�+

u (2) doubly excited states
are all populated by one-photon absorption from the first
pulse. These molecular doubly excited states are thus involved
in the indirect ionization pathway 
⊥

12 in Fig. 1(b). Therefore,
this indirect ionization pathway 
⊥

12 describes the transi-
tions 1�+

g → [1�+
u (M = +1), 1�+

u (M = 0)] → [1�+
g (M =

0), 1�+
g (M = −1)] for one-photon absorption by the RCP

pulse from the ground state to doubly excited states, followed
by one-photon absorption by the LCP pulse from the popu-
lated doubly excited states to the double continua. Figure 5(d)
shows that the momentum distribution, obtained by projecting
the two-electron wave packet onto only final 1�+

g (M = 0)
continuum state, exhibits two sets of broadside oval-shaped
dipolelike patterns along and perpendicular to the molecular
x axis. We note that the magnitude of the SDPs in Figs. 5(a)
and 5(d) are comparable. Consequently, thanks to strong inter-
ference the p2 distribution in Fig. 5(e) is just a superposition
of the twofold symmetric quadrupolelike pattern in Fig. 5(a)
with the two sets of broadside oval-shaped dipolelike patterns
in Fig. 5(d).

Surprisingly, one sees that the p2 distribution in Fig. 5(e)
produced by time-delayed right-left circularly polarized at-
tosecond pulses presents a counterclockwise spiral pattern
with four arms. Inverting the ordering of the two pulses leads
to a clockwise spiral pattern (not shown). Moreover, increas-
ing the time delay τ between the pulses results in tightly
wound spiral patterns, as illustrated in Fig. 5(f) when τ in
Fig. 5(e) is increased by one cycle, T0 = 2π/ω � 138 as.
Although the ionization pathway 
⊥

12 involves the final contin-
uum state 1�+

g (M = −1), the comparison between Figs. 5(a)
and 5(e) probes qualitatively the contribution of the indirect
ionization pathway 
⊥

12—involving doubly excited states—
relative to the direct ionization pathways 
⊥

1 and 
⊥
2 . We can

conclude that just as a strong interplay between the 1�+
u (M =

+1) and 1�+
u (M = 0) continuum amplitudes produced in

single-photon double ionization of H2 was found to lead to
dynamical electron vortices with two spiral arms [16], here

the dynamical electron vortices with four spiral arms seen in
Figs. 5(e) and 5(f) stems from a strong overlap between the
leading 1�+

g (M = ±1) and 1�+
g (M = 0) ionization ampli-

tudes. The difference in the number of spiral arms is related to
the number of absorbed photons in a given process. While one
photon was absorbed from each pulse in DPI of H2 [16], here
two photons are absorbed from each pulse for our resonant
TPDI of H2 within the k̂ ⊥ R̂ configuration.

C. Effects of molecular doubly excited states on the angular
distributions at fixed excess energy

In this section, for only the pulse configuration k̂ ‖ R̂, we
consider the energy-sharing configuration and resonant pulse
parameters used in Sec. IV A to study whether the angular
distributions for a fixed energy E = 2ω + Eg exhibit QB-I be-
tween the 1�+

g ground state and the Q2
1�+

u (1) doubly excited
state. Our focus is on the in-plane BTB detection geometry for
which the indirect ionization pathway 


‖
12 involving doubly

excited states is demonstrated above in Sec. IV A to change
the character of the vortex pattern from four-arm spiral pattern
to two-arm spiral pattern thanks to its strong interference with
the two direct paths 


‖
1 and 


‖
2. As the SDP in Sec. IV A for

the orthogonal detection geometry is essentially controlled by
the indirect ionization pathway 


‖
12, this case is not considered

because there is almost no interference.
For the in-plane BTB detection geometry where ω � 36.14

eV, we show in Fig. 6 the angular distributions in the pulse
polarization xy plane for a fixed excess energy E = 2ω + Eg

and five time delays: τ = T = 343 as [Fig. 6(a)]; τ = T +
T0/4 � 372 as [Fig. 6(b)]; τ = T + T0/2 � 401 as [Fig. 6(c)];
τ = T + 3T0/4 � 429 as [Fig. 6(d)]; and τ = T + T0 � 458
as [Fig. 6(e)], where T0 = 2π/ω � 114 as is the pulse optical
period. In each panel of Fig. 6 we compare our TDSE results
(i) obtained by projecting the two-electron wave packet onto
the 1�+

g (M = ±2) and 1�+
g (M = 0) final continuum states

with our TDSE results (ii) for the 1�+
g (M = ±2) final con-

tinuum states. For each time delay τ in Fig. 6, comparing
the angular distributions (i) and (ii) probes both qualitatively
and quantitatively the contribution of the indirect ionization
pathway 


‖
12—involving the Q2

1�+
u (1) doubly excited state

and other 1�+
u doubly excited states [e.g., Q1

1�+
u (1)] listed in

Table I—relative to the direct ionization pathways 

‖
1 and 


‖
2.

The angular distribution (ii) in Fig. 6 at any time delay τ ex-
hibits a fourfold symmetric quadrupolelike shape. In contrast,
the shape of the angular distribution (i) in Fig. 6 varies with the
time delay τ , changing from a twofold symmetric quadrupole
shape to a broadside oval-dipole shape or even to a peanut-
dipole shape. As τ increases, the angular distributions (ii)
rotate counterclockwise with an angular shift �ϕ specified in
Table II. Meanwhile, the angular distributions (i) also rotate in
the same direction and at the same frequency. From Fig. 6 and
Table II one sees that the angular distributions (ii) do have a
periodicity with increasing time delay τ of π/ω = T0/2 � 57
as; while the angular distributions (i) in Fig. 6 do not.

Let us explain all these TDSE results (i) and (ii) using
PT. First, the angular distributions (ii) resulting from Ramsey
interference between the created pair of two-electron wave
packets produced by the two direct ionization pathways 


‖
1
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FIG. 6. Angular distributions (in units of 10−7 a.u.) in TPDI of
the hydrogen molecule initially in the ground state at R = 1.4 a.u.
for a fixed excess energy E = 2ω − Eb � 20.9 eV produced by a pair
of nonoverlapping, right-left, circularly polarized attosecond pulses
having a relative CEP φ12 = 0, an intensity I = 50 TW/cm2 for five
values of the time delay τ : (a) τ = T � 343 as; (b) τ = T + T0/4 �
372 as; (c) τ = T + T0/2 � 401 as; (d) τ = T + 3T0/4 � 429 as;
and (e) τ = T + T0 � 458 as, where T0 = 2π/ω. The pulse carrier
frequency ω = 36.14 eV is resonant with the Q2

1�+
u (1) doubly

excited state; however, the broad pulse bandwidth �ω = 17.28 eV
is such that other doubly excited states [e.g., Q1

1�+
u (1)] are also

involved. The solid (black) curves are our TDSE results (i) including
all paths 


‖
1 , 


‖
2 , and 


‖
12, which lead to final states 1�+

g (M = 0)
and 1�+

g (M = ±2). The dash double-dotted (blue) curves are our

TDSE results (ii) scaled by a factor 10 including only the paths 

‖
1

and 

‖
2 , which lead to final states 1�+

g (M = ±2). In panel (f), we
compare results in (a) and (e) to show the presence and absence of τ

periodicity in results (ii) and (i), respectively. The degree of energy
sharing is fixed to 25% : 75%, and electrons are emitted back-to-back
in the laser polarization plane.

and 

‖
2 is described by PT formula (21). For a fixed excess

energy E = 2ω + Eg,  = (E − Eg)τ + 2φ12 = 2(ωτ + φ12)
such that the angular distribution (ii) given by (21) becomes

W

‖
2



‖
1

= |A�(ρ)|2 cos2(ωτ + φ12 − 2ξϕ). (31)

It is clear from its ϕ dependence that the angular distribu-
tion (31) exhibits a fourfold symmetric quadrupolelike shape.

TABLE II. Angular shift �ϕ(τ ) of the angular distributions as a
function of the time-delay τ at the fixed excess energy E = 20.926
eV in Fig. 6 with respect to the horizontal axis.

τ (as) 343 372 401 429 458
�ϕ(τ ) 0◦ 45◦ 90◦ 135◦ 180◦

Also, it has a periodicity with increasing time delay τ of
π/ω. These predictions for the shape and periodicity are well
consistent with our TDSE results (ii) reported in Fig. 6 and
Table II.

Second, the shape of the angular distribution (i) is de-
scribed by PT formula (20) with its four terms given by PT
formulas (31), (23), (24), and (25). For a fixed time delay τ ,
since the second term (23) in (20) does not depend upon the
azimuthal angle ϕ of the momentum p2, the ϕ dependence of
the ionization probability is thus controlled by the interplay
between the first term (31) in (20)—discussed above—with
the two interference terms (24) and (25). Indeed, for a fixed
excess energy E = 2ω + Eg and in the pulse polarization
plane (θ = π/2), the first interference term (24) becomes

2 Re
[
A∗


1
A
12

] ∝ |A∗
�(ρ)A
12 (ρ, θ, τ )|

× cos2{φ12/2 + ωτ + [Egτ + �(ρ, θ, τ )]/2 − ξϕ},
(32)

while the second interference term (25) becomes

2 Re
[
A∗


2
A
12

] ∝ −|A∗
�(ρ)A
12 (ρ, θ, τ )|

× sin2{φ12/2 − [Egτ + �(ρ, θ, τ )]/2 − ξϕ}. (33)

From their ϕ dependence, one sees that the two interference
terms (32) and (33) present a dipolar shape; however, their
periodicity with increasing time delay τ are different and
strongly depend on the interplay of the molecular doubly ex-
cited states via the dynamical phase �(ρ, θ, τ ) (26). Indeed,
if �(ρ, θ, τ ) (26) were to be linear in τ with a coefficient
�̃, then the period for the interference term (32) would be
2π/[2ω + (Eg + �̃)] while that for the interference term (33)
would be 2π/|Eg + �̃|. Our TDSE results in Fig. 3(b) for the
in-plane BTB detection geometry show that the magnitude
of the dynamical parameter |A�(ρ)|2, which is proportional
to the transition probabilities for the paths 


‖
1 and 


‖
2, is

comparable to the magnitude of the dynamical parameter
|A∗

�(ρ)A
12 (ρ, θ, τ )| in the interference terms involving ei-
ther the path 


‖
1 or the path 


‖
2 with the path 


‖
12. Therefore,

the effects of constructive and destructive interference of the
three ϕ-dependent terms in (20) become clear. The interplay
between the first term |A
1 + A
2 |2 (31) and the interference
term 2 Re [A∗


1
A
12 ] (32) produces two large lobes in the

angular distribution (i) in one direction, whereas the inter-
play between this first term (31) and the interference term
2 Re [A∗


2
A
12 ] (33) produces two small lobes in the angular

distribution (i) in a perpendicular direction. These positive
and negative interference effects lead to a twofold symmetric
quadrupolelike shape for the angular distribution (i) observed
in Fig. 6.

Although several Q doubly excited states with 1�+
u sym-

metry are populated by one-photon transition thanks to the
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broad pulse bandwidth, the Q2
1�+

u (1) doubly excited state
with energy εQ2

1�+
u (1) has the largest oscillator strength among

those states. Retaining only the contribution from this state
in the derivation of the dynamical phase �(ρ, θ, τ ) (26), one
gets

�(ρ, θ, τ ) � αQ2
1�+

u (1)(ρ, θ ) − εQ2
1�+

u (1)τ, (34)

where αQ2
1�+

u (1)(ρ, θ ) is the phase of the dynamical param-

eter A∗
�(ρ)AQ2

1�+
u (1)


12
describing the interference of the path



‖
1 or 


‖
2 with the path 


‖
12. In this case, one reads from

Eq. (34) that �̃ = −εQ2
1�+

u (1) leads to the same period of
T0 = 2π/ω � 114 as for both interference terms (32) and
(33), where ω � (εQ2

1�+
u (1) − Eg) is the beat frequency be-

tween the 1�+
g ground state and the Q2

1�+
u (1) doubly excited

state. Moreover, as the time delay τ increases, the result-
ing twofold symmetric quadrupolelike shape of the angular
distribution (i) should thus rotate counterclockwise with a fre-
quency ω and should remain unchanged, i.e., be periodic when
τ = n(2π/ω), where n is an integer. While this prediction
for the rotation direction for the angular distribution (i) as τ

varies is quite satisfied in Fig. 6, the differences in both the
shape and the magnitude of the angular distributions (i) at
different values of τ evidence the absence of its time-delay
periodicity. In other words, the QB-I between the 1�+

g ground
state and the Q2

1�+
u (1) doubly excited state has an anomaly

in shape and magnitude, but not in frequency. These effects
are clearly visible in Fig. 6(f) where the angular distributions
(i) for τ = 343 as and τ = 343 + T0 = 458 as have the same
orientation, but they do not coincide.

The fact that the angular distributions (i) rotate with in-
creasing τ at the correct QB-I frequency ω � (εQ2

1�+
u (1) − Eg)

between the 1�+
g ground state and the Q2

1�+
u (1) doubly

excited state is a strong indication that the approximation
(34) may be used. In other words, the interplay between
that doubly excited state and other Q doubly excited states
with 1�+

u symmetry (listed in Table I) involved in the dy-
namical phase �(ρ, θ, τ ) (26) does not affect this QB-I
frequency. Furthermore, the reported anomaly in shape and
magnitude of this QB-I effect is a clear indication that besides
the Q2

1�+
u (1) doubly excited state, other Q doubly excited

states with 1�+
u symmetry may significantly contribute to

this resonant TPDI process either through the QB-II process
or autoionization decays, which is the goal of the next sub-
section. Indeed, the Q2

1�+
u (1) doubly excited state has a

relatively short lifetime of 1.4 fs [26], while its transition
dipole moment is only a factor 2 larger than that for the
Q1

1�+
u (1) doubly excited state [40]. Therefore, for attosec-

ond time delays used here the QB-II phenomenon between
the Q1

1�+
u (1) and Q2

1�+
u (1) doubly excited states at a

frequency (εQ1
1�+

u (1) − εQ2
1�+

u (1) ) together with autoioniza-
tion decays may significantly change the magnitude of the
dynamical parameter |A∗

�(ρ)A
12 (ρ, θ, τ )| (27), which en-
ters in both the interference terms (32) and (33). These two
time-dependent processes may also change the magnitude of
the pump-probe term |A
12 (ρ, θ, τ )|2 (23). To show how the
two-electron dynamics of autoionization and QB-II effects
are responsible for the anomaly in the QB-I effect between
the ground state and Q2

1�+
u (1) doubly excited state, below

we use PT to analyze the TDSE results for the time delay
sensitivity of the energy distributions obtained by integrating
the SDPs over the azimuthal angle ϕ of the photoelectron pair.

D. Dynamics of autoionization and QB-II between doubly
excited states revealed in the ϕ-integrated energy distributions

To remove any QB-I phenomenon in the energy distri-
butions but remain sensitive to the two-electron dynamics
of autoionization decays and QB-II between doubly excited
states, we integrate the SDP (20) over the azimuthal angle ϕ

of the electron pair and obtain

W (ρ, θ, τ ) = π sin4(θ )|A�(ρ)|2 + 2π |A
12 (ρ, θ, τ )|2.
(35)

The ϕ-integrated energy distribution (35) is comprised of only
the first two terms of the SDP (20), as the interference terms
(24) and (25) between the path 


‖
12 (involving among others

the QB-I effect) and either 

‖
1 or 


‖
2 vanish upon integrating

over ϕ. As the first term in Eq. (35) is independent of the time
delay τ , its energy distribution ∝ |A�(ρ)|2 in the polarization
plane (θ = π/2) has the shape shown in Fig. 3. Strikingly, its
second term depends on the time delay τ . From Eq. (23), that
second term ∝ |A
12 (ρ, θ, τ )|2 involves autoionization decays
and QB-II effects. Therefore, the ϕ-integrated energy distribu-
tion (35) appears to be a unique observable for exploring these
two kinds of two-electron dynamics. For the same detection
scheme and pulse parameters used in Fig. 2(c), our TDSE
results for the ϕ-integrated energy distribution (i) in the polar-
ization plane (θ = π/2) are shown in Fig. 7 for four values of
the time delay considered in Fig. 6. Clearly Fig. 7(a) on a log
scale shows that the ϕ-integrated energy distribution (i) is very
sensitive to the time delay τ , which is due to the combined
effects of autoionization decays and QB-II according to PT
formula (35). Also, these TDSE results are independent of
the relative CEP φ12, a result which is consistent with the PT
result (35). Finally, the vertical dashed line shown in Fig. 7(b)
on a linear scale marks the excess energy at which the angular
distributions in Fig. 6 are presented. As the time delay τ

between the two pulses varies, a careful analysis of the relative
magnitude of the probability at that excess energy permits to
fully understand the anomaly in shape and magnitude of the
QB-I effect seen in Fig. 6 for the Q2

1�+
u (1) doubly excited

state.

V. SUMMARY AND CONCLUSIONS

In summary, using both analytical tools and numerical
TDSE toolboxes we have investigated the correlated, reso-
nant process of TPDI of the hydrogen molecule via doubly
excited states by using time-delayed and nonoverlapping op-
positely circularly polarized attosecond pulses. Sufficiently
short attosecond pulses and time delays are used to make the
molecular problem more atomiclike by freezing nuclei mo-
tion in the intermediate states. We have treated this problem
within the adiabatic-nuclei approximation (including nuclei
vibrational motion in both the initial and final states) or
within the fixed-nuclei approximation, and found that the
latter is valid as it provides a very good account for this
process.
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FIG. 7. TDSE results (in units of 10−6 a.u.) on a log scale (a) or
linear scale (b) for the energy distributions obtained by integrating
the SDP (1) over the azimuthal angle ϕ of the photoelectron pair.
Results are shown for four values of the time delay τ considered in
Fig. 6 and analyzed using PT formula (35). The two electrons are de-
tected back-to-back (BTB) in the laser polarization plane (θ = π/2)
and unequally share (UES) the excess energy 0.1 � E � 50 eV in
the proportion 0.25 : 0.75. The vertical dashed line in (b) marks the
position of the energy E = 2ω − Eb � 20.9 eV. The other parame-
ters are specified in the caption for Fig. 2(c).

For the pulse direction k̂ either parallel or perpendicular
to the fixed-in-space molecular axis R̂, we have shown that
exquisite temporal coherent control for this resonant process
can be achieved by interfering three ionization pathways.
These include the two direct ionization pathways and the in-
direct ionization pathway that involves several doubly excited
states, which are populated by the first circularly polarized
pulse. For the two photoelectrons unequally sharing the ex-
cess energy, we have considered two detection geometries for
which the mutual angle β = cos−1(p̂1 · p̂2) between the two
electron momenta is always kept constant. Our study revealed
that this resonant process of TPDI of the hydrogen molecule

is very sensitive to the molecular orientation with respect
to the laser pulse direction. Different patterns appear in the
two-electron momentum distribution in the polarization plane
when k̂ ‖ R̂ or k̂ ⊥ R̂, since ionization amplitudes with dif-
ferent molecular symmetry are excited via the three pathways
according to the electric dipole selection rules and they are
mixed.

In the former case (k̂ ‖ R̂), just as for He atoms [14], the
indirect ionization path is found to change the character of the
fourfold rotational symmetry of the momentum distributions
produced by Ramsey interference of the two direct ionization
paths; however, in contrast of atoms the angular distributions
here for molecules present a QB-I effect [between the ground
state and the strongest Q2

1�+
u (1) doubly excited state] with

an anomaly in shape and magnitude, not in frequency. QB-
II between doubly excited states together with autoionization
decays are shown to be mainly responsible for the reported
QB-I anomaly.

In the latter case (k̂ ⊥ R̂), the momentum distribution
resulting from the superposition of these three ionization
paths exhibits counterintuitively a pattern of four-arm spiral
dynamical vortices, which reflects not only the number of
photons absorbed per pulse from the ground state and their
handedness, but also the relative magnitude and phase of
the interfering leading 1�+

g (M = ±1) and 1�+
g (M = 0) ion-

ization amplitudes. For both the parallel and perpendicular
molecular orientations, we found that the vortex spiral pat-
terns remain stable upon inclusion of vibrational broadening
due to the quantum uncertainty relation (zero-point energy).

We have only considered the cases of the purely parallel
and perpendicular molecular orientations. To get a complete
picture one must consider the case of an arbitrarily oriented
H2 molecule. However, such a numerical project is beyond
the scope of the present study where the so-called M-mixing
problem due to elliptically polarized pulses must be solved
for each molecular direction. For future works, we note from
Ref. [46] for a linearly polarized laser light that the isotropic
rotational distribution for DPI of randomly oriented hydrogen
molecules obtained by integrating the SDP over the molec-
ular orientation R̂ is just a sum of the parallel contribution
weighted by 1/3 and perpendicular contribution weighted by
2/3. For TPDI, it is already more complicated as this observ-
able involves not only terms arising from the purely parallel
and perpendicular orientation, but also a number of mixed and
interference terms.

The experimental observation of our predictions for the dif-
ferent patterns present in the momentum distributions for both
parallel and perpendicular molecular orientations requires
the broad bandwidth of isolated nonoverlapping attosecond
pulses. Indeed, the momentum distributions for the strictly
parallel and perpendicular configurations can be post-selected
(within a certain aperture) in recoil-ion and cold target recoil-
ion momentum spectroscopy (COLTRIMS) experiments [47].
Evolving from COLTRIMS, reaction microscope techniques
[48] already exist for measuring TPDI momentum distribu-
tions. Also, electron vortices [28,29] with full control of the
number of spiral arms have been demonstrated experimentally
in multiphoton ionization of potassium or sodium using ei-
ther single-color or two-color femtosecond time-delayed laser
pulses [42–45] using velocity map imaging (VMI). Finally,
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isolated attosecond pulses with controlled polarization have
been realized [49].
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