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Model-potential method for high-order harmonic generation in monolayer graphene
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We develop a model potential to simulate the effective potential of a single active electron in monolayer
graphene by taking the electron energy band structure calculated by the density functional theory (DFT) as a
reference. Based on the single-electron Schrödinger equation, the model potential is used to calculate not only
the energy band structure but also the transition dipole moment, charge density, and other physical quantities
of graphene. These quantities are compared with results from DFT and a good consistency is achieved. The
simulation of laser-graphene interaction with the same laser parameters as Yoshikawa et al. [Science 356,
736 (2017)] is performed with the time-dependent Schrödinger equation. The obtained driving laser ellipticity
scaling, the harmonic ellipticity, and the harmonic major-axis angle can well reproduce the experimental results.
It is found that the carrier-envelope phase and chirp effects are capable of regulating high-order harmonic
generation in monolayer graphene. The model potential method can be extended to field-free calculations and
dynamic simulations in other materials as long as the corresponding model potential is constructed.
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I. INTRODUCTION

At present, the simulation of the interaction between
laser and real solid materials is mainly realized by solving
semiconductor Bloch equations (SBEs) [1–4] and time-
dependent density functional theory (TDDFT) [5–9]. The
time-dependent Schrödinger equation (TDSE) is mainly used
in model solids [10–12] which cannot represent real solid ma-
terials. The SBE method needs a precalculated band structure
and transition dipole moment, which are typically calculated
by density functional theory (DFT). The DFT method pro-
duces accurate relative energy. But the calculation of the
transition dipole phase introduces meaningless values for dif-
ferent k points, because different iteration steps are needed
to get a convergent energy at different k points and in every
iteration of the Kohn-Sham (KS) equations only the modu-
lus of the wave function is retained and no constraints and
connections between different k points are added to wave
function phase calculation. The DFT generates discontinuous
eigenwave-function phases. Because the SBE in the length
gauge contains the derivative of an eigenwave function with
respect to k, the SBE cannot be directly solved based on
the eigenwave function with discontinuous phases. The treat-
ment of dipole phases has been proposed in Refs. [13–17].
The TDDFT method is very time consuming, even using lots
of computing resources. It usually needs large memory and
is difficult to be applied in large system simulations [18].
But, if time-dependent electron-electron interaction is strong,
TDDFT is still a good choice.

We have developed a model potential method for real
monolayer graphene which is based on the time-dependent
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Schrödinger equation and basis expansion techniques. The
accuracy of an eigenenergy from a model potential is usually
worse than that from the pseudopotential mostly used in DFT
and TDDFT calculations. Usually it is difficult to accurately
obtain the band structure and other information about crys-
tals using the model potential. But our model potential has
been optimized to be sufficiently accurate for both field-free
and field-driven conditions. Comparisons of our calculations
with DFT and experimental results will be shown in the
following text.

The TDSE calculation starts from the potential which con-
tains the material structure. It is not necessary to modify the
phase of the eigenstate as well as the phase of the dipole in
the TDSE calculation. The problem of phase discontinuity of
the eigenwave function is introduced in the calculation of the
diagonalization of the Hamiltonian matrix. At the potential
level, the problem itself does not exist. The model poten-
tial method can be applied in both reciprocal space and real
space in which inhomogeneous field effects can be taken into
consideration. We go into formalism details about field-free
graphene in Sec. II and laser-irradiated graphene in Sec. III. A
brief summary is given in Sec. IV.

II. FIELD-FREE CALCULATIONS OF PHYSICAL
QUANTITIES OF GRAPHENE

The time-independent Schrödinger equation (TISE),

Ĥ0|φn〉 = En|φn〉, (1)

is solved to get the eigenstates |φn〉 and eigenvalues En of
monolayer graphene, where the field-free Hamiltonian is

Ĥ0 = �̂p2

2
+ V (�r). (2)
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Atomic units are used throughout the paper unless stated
otherwise. Inspired by the band-structure calculation work
[19,20], we construct a two-dimensional periodic potential
for monolayer graphene whose bond length, the distance be-
tween two nearest-neighbor carbon atoms, is R = 0.142 nm.
If

√
(x − xc)2 + (y − yc)2 < 0.41R,

V (x, y) = −av exp{−bv[(x − xc)2 + (y − yc)2]}, (3)

where av = 1.901, bv = 2.84648, (xc, yc) is the coordinate of
a carbon atom, and V (x, y) = 0 elsewhere.

We expand the eigenstates with basis functions by means
of which matrix elements of the Hamiltonian are also calcu-
lated. The orthonormal basis function in the x direction under
coordinate representation is taken, according to the Bloch
theorem, as

〈
x
∣∣ψix

〉 = 1√
ax

exp(ikxx)unx (x), (4)

where ix is the integer index of the basis function (ix =
1, 2, 3, . . .), kx is the quasimomentum, and unx is a spatial
periodic function

unx (x ± ax ) = unx (x), (5)

where ax denotes the spatial period (length of the unit cell) in
the x direction. We assume unx (x) to be

unx (x) = exp(inxωxx), (6)

where ωx = 2π
ax

depicts the spatial frequency of the periodic

potential in the x direction. 1√
ax

normalizes the basis function
and ensures that

〈ψm|ψ j〉 = δ(m − j) =
{

1 (m = j)

0 (m �= j).
(7)

Nx basis functions are used in the x direction. We recommend
an odd number for Nx so the constant basis (nx = 0) and sym-
metric bases (nx = ±n) are included. The relation connecting
ix, nx, and Nx is nx = ix − Nx+1

2 in the case that Nx is odd. This
set of bases is sufficient for one-dimensional systems.

When the system is two dimensional which is just the case
for monolayer graphene, an additional set of bases should be
introduced. The y-direction basis function is

〈
y
∣∣ψiy

〉 = 1√
ay

exp(ikyy)uny (y). (8)

For every property and relation stated about |ψix 〉, there is an
analog for the orthonormal basis in the y direction. The direct
product of the basis vectors in the x and y directions generates
two-dimensional basis vectors and their combination is flexi-
ble and changeable. One formalism of two-dimensional basis
set is recommended as follows:

|�1(x, y)〉 = |ψ1(x)ψ1(y)〉,
|�2(x, y)〉 = |ψ1(x)ψ2(y)〉,
|�3(x, y)〉 = |ψ1(x)ψ3(y)〉, . . . , (9)

in which case there are many published processing functions
to handle the generated two-dimensional array. The lth two-

dimensional basis vector can be expressed as〈
r
∣∣�l (x, y)

〉
= 〈r|ψix (x)ψiy (y)〉

= 1√
axay

exp

[
i

(
nx

2π

ax
+ kx

)
x + i

(
ny

2π

ay
+ ky

)
y

]
. (10)

Then matrix elements that constitute the time-independent
Hamiltonian turn out to be

〈�k (x, y)

∣∣∣∣ �̂p2

2

∣∣∣∣�l (x, y)〉

= 1

2

[(
2πnx

ax
+ kx

)2

+
(

2πny

ay
+ ky

)2]
× δ(ix − jx )δ(iy − jy) (11)

and

〈�k (x, y)|V |�l (x, y)〉 = 1

axay

∫∫
dxdyV exp

[
i
2π (ix − jx )

ax
x

+ i
2π (iy − jy)

ay
y

]
, (12)

where

|�k (x, y)〉 = ∣∣ψ jx (x)ψ jy (y)
〉
. (13)

Solving Eqs. (1), (2), (11), and (12), we can obtain the eigen-
values and eigenstates that are cornerstones for calculating the
graphene band structure, dipole, and charge density.

The spatial structure and unit cell of monolayer graphene
are shown in Fig. 1(a). Lengths of two sides of the unit cell are
ax = √

3R and ay = 3R. According to the symmetry of the
Brillouin zone, we designate, in Fig. 1(b), a high-symmetry
path as �-X ′-M-X -D-�-M. If necessary, the energy bands can
be transformed into a hexagonal Brillouin zone from the rect-
angular one by quantum unfolding [21]. The band structure
along the selected path is calculated by solving Eq. (1) and
is displayed in Fig. 1(c). The carbon atom Perdew-Burke-
Ernzerhof pseudopotential is used in the Vienna Ab initio
Simulation Package (VASP) to compute energy bands that are
shown in Fig. 1(d) to verify the band structure from our model
potential. A high consistency is achieved in results from TISE
[Fig. 1(c)] and DFT [Fig. 1(d)], especially those near the Dirac
point (zero energy) that are precisely the energy bands which
play a major role in the field-driven electron dynamics.

Transition dipole moments, which are calculated by

�dm,n = i

En − Em
〈φm| �̂p|φn〉, (14)

largely determine the strength of the interband transition
process of electrons. The x- and y-direction components of
transition dipole moments between the state n (the first band
above zero energy) and the state m (the first band below zero
energy) are separately presented in Figs. 2(a) and 2(b). TISE
and DFT results agree well in both directions. Their abso-
lute values are different, as different normalization techniques
are performed on eigenstates. In TISE, the basis-expansion
coefficient matrix of an eigenstate is normalized. And then,
the normalized eigenstates are used to calculate transition
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FIG. 1. Band structure of monolayer graphene. (a) A sketch of
graphene honeycomb lattice. Solid black circles represent carbon
atoms. The rectangle area surrounded by the solid red line is the unit
cell used through this article. (b) The high-symmetry path in part
of the first Brillouin zone. The red triangle indicates the zero-gap
Dirac point. The band structure has been calculated by (c) TISE
and (d) DFT. Vertical dashed lines in (c) and (d) correspond to
high-symmetry points presented in (b). The energy bands closest to
zero are marked in red in (d).

dipoles. However, what really matters is their relative values
in different k points that already match.

The charge distribution is further computed and displayed
in Fig. 3 to confirm that TISE and DFT results can coincide
with each other even in a single k-point eigenstate. 101 × 101
k points are used in the DFT static self-consistent calcula-
tion for the band structure, dipole, and charge density. The
accuracy of eigenvalues and eigenstates ensures that we can
accurately obtain almost all the unperturbed physical prop-
erties of graphene, which means that the model potential
we constructed is sufficient to simulate the real single-layer
graphene.

FIG. 2. Absolute values of transition dipoles in the high-
symmetry path. Components of transition dipoles in (a) x and (b) y
directions. Dipole amplitudes from TISE method (solid black lines)
are compared with those from DFT calculations (red dashed lines).
The longitudinal coordinates on the left-hand side in (a) and (b) cor-
respond to TISE, while the right-hand-side ones in red correspond to
DFT.

FIG. 3. Single k-point charge distribution of monolayer
graphene. Charge densities of two adjacent eigenstates around zero
energy at D, the Dirac point marked in Fig. 1(b), are exhibited
in (a) and (b) (below zero energy) and (c) and (d) (above zero
energy). Carbon atoms are indicated by open black circles in TISE
results [(a) and (c)]. They are omitted in the DFT outcomes [(b) and
(d)] because they are in exactly the same place visually. But the
coordinates of carbon atoms are different because the origin of the
coordinates is shifted in the DFT calculation.

III. LASER-GRAPHENE INTERACTION

The laser-graphene interaction is simulated by numerically
solving the two-dimensional TDSE within the dipole approx-
imation in the velocity gauge:

i
∂ψ (�r, t )

∂t
=

( �̂p2

2
+ V (�r) + �A(t ) · �̂p

)
ψ (�r, t ), (15)

where �A is the magnetic vector potential and �A(t ) =
− ∫ �E (t ) dt . The elliptically polarized field �E (t ) is defined as⎧⎪⎪⎨

⎪⎪⎩
Ex = 1√

1 + ε2
E0 f (t ) cos(ω0t + ϕ)

Ey = − ε√
1 + ε2

E0 f (t ) sin(ω0t + ϕ),
(16)

where Ex and Ey are the x and y components of the laser field,
respectively. ε, E0, ω0, and ϕ separately correspond to the
laser ellipticity, electric field strength, laser angular frequency,
and the carrier-envelope phase (CEP). The envelope function
is portrayed as f (t ) = exp(−2 ln 2 t2/τ 2), where τ is related
to the full width at half maximum (FWHM). The definition
of screw is in accordance with the traditional terminology
that is also used in Born’s book [22]: ε < 0 corresponds
to a left-handed polarized field, and ε > 0 corresponds to
right-handed polarization. The electric field has a strength of
30 MV/cm, single photon energy of 0.26 eV, FWHM of 25 fs,
and five-cycle duration.

We assume that the Fermi level is zero before the
pump pulse arrives and that electrons are distributed all
over the valence band below the Fermi level. 101 × 101
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quasimomentum k points at equal intervals are sampled in
the valence band. The TDSE is solved in each k point inde-
pendently [10]. But the spatially inhomogeneous fields will
induce couplings between different crystal momenta. In the
inhomogeneous-field case, we can solve the TDSE in real
space in the length gauge. The initial state in real space can
be formed by adding different k eigenstates together. The cou-
plings between different k points will be naturally contained in
the time-evolution process in real space. The Crank-Nicolson
method [11,23,24],(

1 + i
t

2
Ĥ

(
t + t

2

))
|ψ (�r, t + t )〉

=
(

1 − i
t

2
Ĥ

(
t + t

2

))
|ψ (�r, t )〉, (17)

is used to propagate the time-dependent wave function with
1024 × 4 time steps per optical cycle. The electron wave
function is expanded with basis vectors defined in Eq. (10).
And then, currents can be calculated as

jx(t ) = 〈ψ (t )| p̂x|ψ (t )〉 (18)

and

jy(t ) = 〈ψ (t )| p̂y|ψ (t )〉. (19)

The harmonic emission intensity is obtained from the Fourier
transform of these laser-induced currents:

Sx(ω) =
∣∣∣∣
∫

jx(t ) exp(−iωt )dt

∣∣∣∣
2

(20)

and

Sy(ω) =
∣∣∣∣
∫

jy(t ) exp(−iωt )dt

∣∣∣∣
2

. (21)

We also calculate the laser-ellipticity dependence of high-
order harmonic generation (HHG) in graphene. Similar results
are obtained with Yoshikawa et al.’s experiment [25] and
presented in Figs. 4(a) and 4(b). With the increase of the
ellipticity of driving light, the harmonic intensity in the x
direction decreases gradually. However, the harmonic inten-
sity in the y direction increases first and then decreases, and
the maximum appears at a certain ellipticity. In the experi-
mental results, the maximum y component is larger than the
maximum x component for the seventh harmonic but smaller
than the maximum x component for the fifth harmonic. The y-
direction maximum of the seventh harmonic does not exceed
the maximum value in the x direction in the TDSE results.
They are almost of the same size. This difference should be
attributed to the time-dependent electron-electron interaction
which should be calculated with TDDFT or the dephasing
time which can be phenomenologically added in the SBE. The
TDSE results of the fifth harmonic show a good consistency
with the experiment. With the increase of harmonic order,
the maximum intensity of the y-direction harmonic increases
relative to the maximum intensity of the x-direction harmonic
in the experiment. The TDSE results can well reproduce this
trend.

The detailed harmonic elliptical properties including har-
monic ellipticity and harmonic major axis orientation angle
are extracted with the method in Refs. [22,26] and shown

in Figs. 4(c) and 4(d) for the linear driving pulse, and in
Figs. 4(e) and 4(f) for the pump light ellipticity of 0.3. A
linear pump pulse generates linearly polarized harmonics and
their polarization direction is parallel to the driving light, as
is shown in Figs. 4(c) and 4(d). But for the case where the
ellipticity of the driving light is 0.3 [Figs. 4(e) and 4(f)],
different harmonics show different properties. The fifth and
seventh harmonics have close ellipticities around 0.2, which
is almost the same as Yoshikawa et al.’s experiment [25]. The
fifth harmonic is left-handed polarized while the seventh one
is on the opposite and this is not distinguished experimentally.
Their polarization direction no longer follows the polarization
axis of the driving laser. The harmonic major axis orientation
angle is found at around 130◦ for the fifth harmonic and 110◦
for the seventh harmonic, which is also in good coincidence
with Yoshikawa et al.’s results [25].

Graphene is expected to play an important role in elec-
tronic and optical devices owing to its excellent mechanical,
electrical, and optical properties. Therefore, the optical re-
sponse of graphene deserves extensive studies. CEP has been
demonstrated to be able to effectively regulate harmonic gen-
eration in semiconductors [27], especially harmonics with
relatively higher energy where interband contribution domi-
nates. We find that the CEP of a linearly polarized field along
the x axis can also regulate HHG in graphene that has a
zero-gap band structure. The seventh and the ninth harmonics
in the pump pulse with a CEP of 0.5π are shifted to lower
frequencies compared with those in the field with a CEP of
zero, which is shown in Fig. 5(a). But harmonics lower than
the seventh order hardly change with the variation of CEP.
We increased the light intensity to 1.15 times stronger, and
similar results still exist. Although the shift is not very large,
this implies that interband contribution has significant effects
in graphene, especially on harmonics above the seventh order.

The chirped electric field is defined as

A(t ) = −E0/ω0 sin

[
ω0(t − td/2) + αc

(
t − τ0

600

)2]
f (t ),

(22)
where td is the pulse duration, αc is the chirp parameter, and
τ0 is 1/3 if αc � 0 or 2/3 if αc < 0. The chirp has little effect
on the intensity of the harmonic emission which is presented
in Fig. 5(b). For visual clarity, the red line is multiplied by
103, and the green and black lines are multiplied by 10−3.
Many noninteger harmonics arise in the harmonic emission
under the chirp parameters of 0.5 and −0.5, resulting in a
multipeak spectrum. As the chirp amplitude continues to in-
crease, near-continuous spectra appear when chirp parameters
are 1 and −1. To have a deep insight into the underlying
radiation mechanism, time-frequency analyses are performed
on the laser-induced currents by means of wavelet transform
[28–30]. Time profiles of HHG for different chirp param-
eters are exhibited in Figs. 5(c)–5(e), from which we can
see harmonic radiation channels follow electric field peaks.
Under the pump pulse without chirp, intensities and times of
emission are nearly symmetric about the center of the pulse
duration. This symmetry, together with a half-cycle emission
period, generates odd-order harmonics. The introduced laser
chirp shifts emission times in the temporal domain and breaks
the time symmetry and periodicity of spectral and tempo-
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FIG. 4. Laser ellipticity dependence of HHG in graphene and the generated harmonic ellipticity. (a) The pump pulse ellipticity dependence
of the fifth high harmonic. (c) Under the linearly polarized driving pulse (εd = 0), the generated fifth harmonic ellipticity and its major axis
orientation angle of the electric vector ellipse are shown. The same physical quantities are presented in (e) except that the ellipticity of the
driving light is 0.3. Panels (b), (d), and (f) correspond to (a), (c), and (e), respectively, but for the seventh harmonic.

ral structures [Figs. 5(c)–5(e)]; then noninteger harmonics
emerge. With the increasing chirp amplitude, the asymmetric
and aperiodic harmonic radiation times increase, more and
more noninteger harmonics appear, and then the harmonic
spectrum begins to approach a continuum spectrum.

With the increase of the amplitude of chirp parameter,
blueshifts occur in the harmonic spectrum. The blueshift is
partly because of an increase in the frequency of the driving
pulse, as can be seen in Fig. 5(b). What makes more sense
is that the blueshifts caused by the up chirp and the down
chirp are different, and the difference grows with the increas-
ing chirp amplitude. Especially when the absolute value of
chirp parameter is taken as one, the frequency-shift difference
of the third harmonic under up-chirp and down-chirp pulses
can even exceed one photon energy, which can be observed
clearly in experiments. The blueshift of negative chirp is larger
than that of positive chirp. According to the definition of the
chirped pulse, the up-chirp pulse and the down-chirp pulse are

just flipped about the center of time duration. Time-frequency
analyses of pulses with the same chirp size but different chirp
signs will reveal that the frequency distribution of pulse is
also flipped in the temporal domain when the sign of the chirp
parameter alters. Fourier transforms of the two pulses produce
the same spectrum. Then how does the difference of blueshift
come about, for example, when the chirp is 0.5 or −0.5? An
additional asymmetrical process is needed to generate this
blueshift difference. The excitation process of electrons is
a natural one. It is affected by the excitation passages and
the number of electrons. Without considering the influence
of electron population on energy band, the distortion of the
energy band is almost the same under the same laser fre-
quency and intensity according to the Floquet-Bloch method
[31], and hence the electron excitation passage would be the
same in the same laser parameters. Because the electric field
of αc = 0.5 coincides with the field of αc = −0.5 when the
electric field is flipped in time, the electron excitation passage
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FIG. 5. CEP and chirp effects of high-order harmonic generation in monolayer graphene. (a) Harmonic spectra in different CEPs. The
shaded area of the spectrum denotes the harmonic emission when CEP is zero. The red line spectrum corresponds to the case when CEP
is 0.5π . (b) Spectra in different chirp parameters: upper red line, chirp = 0; middle cyan line, chirp = 0.5; middle yellow dot-dashed line,
chirp = −0.5; lower green line, chirp = 1; and lower black dotted line, chirp = −1. Spectral and temporal emission profiles of HHG for three
chirp parameters: (c) chirp = −0.5, (d) chirp = 0, and (e) chirp=0.5. Gray lines in (c–e) represent the electric fields with corresponding chirp
parameters. Tlaser denotes the optical cycle.

in the case of αc = 0.5 should be the same with that in the
case of αc = −0.5 when it is flipped in the time axis. They
are symmetrical in the time domain. Under the irradiation of
pulse, electrons are excited, so the number of electrons on the
low-energy band gradually decreases and the number of elec-
trons on the high-energy band increases finally. It is somewhat
like the ground-state depletion process of atoms subjected to
an intense laser field. It is irreversible. The depletion in atoms
is usually omitted because of a large gap between the deeply
bound states, but the case will be different in graphene where
a zero gap exists. Because of the zero gap and band energy
levels, continuous small energy gaps appear in graphene. The
interband transition may happen in a wide frequency zone and
over a wide time range. So the process of electron excitation
in graphene is like this: For the down-chirp pulse, the former
high-frequency part of the pulse interacts with graphene first
and the corresponding excitation passage opens immediately.
The number of electrons in the low-energy band is close to
100% now. When the latter low-frequency part of the pulse
arrives, a different excitation passage opens, but now the
number of electrons to be excited has been reduced signifi-
cantly. For the up-chirp pulse, the process is similar. But the
former low-frequency-pulse-induced excitation passage cor-
responds to more electron population in the low-energy band,
and the latter high-frequency-pulse-induced passage corre-
sponds to less electron population to be excited. Generally,
influenced by the two factors, the symmetrical electron excita-
tion passages and the asymmetrical low-energy-band electron

population reduction, the electron excitation processes under
up-chirp and down-chirp pulses are not symmetrical in the
time axis, which will greatly affect the electron intraband
oscillation and interband electron-hole recombination. The
ionization difference in atoms caused by opposite signs of the
chirp parameter has been reported in Ref. [32]. An accurate
quantitative description about the blueshift in graphene needs
to include excitation passages and the acceleration theorem
that is an additional part compared with atomic systems [32].

IV. SUMMARY AND CONCLUSION

In addition to the usual SBE and TDDFT methods, we have
developed an electron-wave-function-based model potential
method that can calculate physical properties of field-free
graphene and simulate laser-graphene interaction processes
including harmonic generation, excitation, and ionization
of electrons. Results from DFT, an electron-density based
method, are used to verify the accuracy of the potential. In
addition, this method can be readily extended to other materi-
als and three dimensional simulations. HHG from graphene
driven by elliptically polarized light is computed and very
similar results with the experimental work [25] are obtained
under the same laser parameters. We also find that the CEP
and chirp of a laser pulse can be used as fine-tuning tools
for harmonic generation in graphene. Under the irradiation of
the pump pulse, the time-dependent energy bands, such as the
analog of adiabatic passages in atoms [32] or time-averaged
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Floquet-Bloch bands [31,33], can be accomplished in this
method with minor modifications.
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APPENDIX: HOW IS THE MODEL
POTENTIAL CONSTRUCTED?

The Schrödinger equation of the multiple-electron
system is[

−1

2

N∑
i=1

∇2
i +

N∑
i=1

W (�ri) +
N∑

i=2

∑
j<i

U (�ri, �r j )

]
ψ = Eψ,

(A1)
where W (�ri ) depicts the interaction energy between one elec-
tron and all atomic nuclei, U (�ri, �r j ) defines the interaction
energy between two electrons located at �ri and �r j , ψ =
ψ (�r1, �r2, �r3, . . . , �rN ) is the exact electron wave function, and
it contains all the coordinates of the N electrons. But this
many-body problem cannot be directly solved [34]. Hohen-
berg, Kohn, and Sham turned this problem into a problem
of a single-electron Schrödinger equation by using electron
density, namely, the Kohn-Sham equation[

− 1

2
∇2 + W (�r) + VH (�r) + Vxc(�r)

]
ψi(�r) = εiψi(�r), (A2)

where VH (�r) = ∫ n(�r′ )
|�r−�r′ |d

3�r′ is the Hartree potential, n(�r) =
2

∑
i ψ

∗
i (�r)ψi(�r) is the electron density, and Vxc(�r) is called

the electron exchange and correlation term. Vxc contains the
correction for the self-interaction contribution in the Hartree
potential, electron exchange energy, electron correlation en-
ergy, and all other unknown effects [34]. The exact form of
Vxc is unknown.

We can lump together the three interaction terms W , VH ,
and Vxc, namely, V = W + VH + Vxc. V is the total effective
potential which is the model potential. V contains electron-
nucleus interaction and electron-electron interaction and, of
course, the electron exchange and correlation energy is in-
cluded but it cannot be directly extracted out. By comparing
Eqs. (1), (2), and (A2), we can find that the error of the
model potential method will not be larger than that of the
DFT method in theory. If the extraction of the electron ex-
change and correlation energy is necessary, we should resort

to the DFT method. In the laser-matter interaction process,
the model potential method and the SBE method do not con-
tain the time-dependent interaction between electrons which
should be considered with TDDFT.

How do we get the form of the model potential? The
positions of carbon atoms, namely, (xc, yc), are arranged ac-
cording to the spatial structure of real graphene. We use a
Gaussian-type model function with parameters as the effec-
tive carbon atom potential. The parameters av and bv are
responsible for the height and full width at half maximum of
the well, respectively. We adjust the parameters av and bv to
modify the shape of the potential well, which makes the band
structure, eigenwave function, and transition dipole moments
from the potential well agree with those of experiments and
DFT calculations. With enough parameters, we can always get
any type of potential [35]. The type of model function can be
selected arbitrarily according to the system to be simulated.
If necessary, we can always make the eigenstates get closer
to the real situation by changing the function type and mod-
ifying the parameters. After getting the model potential, the
3N-dimensional problem shown in Eq. (A1) is converted into
a three-dimensional problem which is like the DFT method
shown in Eq. (A2).

More energy bands are obtained in the DFT calculation
compared with the TISE calculation, which is shown in
Figs. 1(c) and 1(d). The reason is that in the construction of
the graphene model potential, we make two simplifications:
(a) the effective potential energy felt by electrons at a distance
from carbon atoms is zero, and (b) the potential well of a
single carbon atom is isotropic. These simplifications make
the case a bit like the tight-binding approximation.

The main differences between Figs. 1(c) and 1(d) lie in
energy bands away from zero at points X ′ and �. However,
due to the large band gap, the transition probability in this
zone is relatively small. So, the additional bands have little
effect on the interband dynamics of electrons. Although cross
connections exist in energy bands, electrons mainly move
along an energy band with the same orbits, so the extra energy
bands have little effect on the intraband motion of electrons.

There are minor differences between transition dipoles of
TISE and DFT results around the point X ′ in Figs. 2(a) and
2(b), which is because for DFT calculations, we take the two
bands closest to zero in VASP [the red line in Fig. 1(d)], instead
of energy bands with the same orbits [Fig. 1(c)], to calculate
the transition dipole moment. But the energy gap around X ′
is relatively large, so the two dipoles from the closest-to-zero
bands [Fig. 1(d)] and the orbit-resolved bands [Fig. 1(c)] are
both close to zero. The not-yet-distinguished bands only affect
the dipole results of DFT in Figs. 2(a) and 2(b) in the small
zone around X ′ as we can see in Fig. 1(d). The model potential
method is not affected in the field-free and field-driven cases.
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