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We explore coherent control of Penning and associative ionization in cold collisions of metastable He∗(2 3S)
atoms via the quantum interference between different states of the He∗

2 collision complex. By tuning the
preparation coefficients of the initial atomic spin states, we can benefit from the quantum interference between
molecular channels to maximize or minimize the cross sections for Penning and associative ionization. In
particular, we find that we can enhance the ionization ratio by 30% in the cold regime. This work is significant
for the coherent control of chemical reactions in the cold and ultracold regimes.
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I. INTRODUCTION

Developing new tools and techniques for controlling cold
and ultracold atomic collisions has been the focus of nu-
merous experimental and theoretical studies [1,2] due to the
pivotal role of interatomic interactions in determining the col-
lective properties of ultracold atomic gases and Bose-Einstein
condensates [1,2]. For example, the use of Feshbach reso-
nances induced by external magnetic or laser fields enables
precise tuning of interatomic interactions in optical lattices
and the realization of strongly interacting quantum states of
matter [3,4]. Apart from magnetic Feshbach resonances, a
number of alternative mechanisms have been proposed for
controlling ultracold atomic collisions based on dc and ac
electric fields [5,6], radio-frequency fields [7–9], and laser
radiation [10–12].

Coherent control [13] is a promising technique for manip-
ulating ultracold atomic [14] and molecular [15] scattering
dynamics by initiating scattering in a quantum superposition
of internal states [16,17], which leads to constructive and de-
structive interference between the different indistinguishable
scattering pathways, affecting the outcome of the dynamical
process [13]. Initially applied to laser-driven unimolecular
processes such as photodissociation, coherent control has
enjoyed much success when applied to a wide range of
molecular processes. Due to the small number of available
quantum states and their robustness to decoherence at low
temperatures, cold collisions could be particularly amenable
to coherent control, providing a fertile ground for develop-
ing and applying new control scenarios. Recent theoretical
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and experimental studies have demonstrated efficient quantum
state control of product channel branching in Penning ioniza-
tion (PI) and associative ionization (AI) in cold collisions of
ground-state Ar atoms with metastable Ne∗ [18]. Additional
theoretical studies have explored coherent control of cold
Ar + Ne∗ collisions, stressing the important role of rotational
symmetry [14,19,20] (see, however, Ref. [21]).

Our previous work [14,19,20] has focused on coherent
control of cold collisions of metastable and ground-state rare-
gas atoms such as Ne∗(3P2) + Ar, raising the question of
whether low-temperature collisions of two metastable atoms
such as He∗ + He∗ or Ne∗ + Ne∗ can be efficiently controlled
using quantum superpositions. Such collisions play a key role
in evaporative cooling of trapped metastable rare-gas atoms
[2,22]. Specifically, while elastic collisions drive thermal-
ization and cooling, inelastic collisions (PI and AI) lead to
detrimental trap losses [2]. Thus, minimizing inelastic colli-
sion rates could be used to optimize evaporative cooling of
metastable atoms and thereby lead to denser and longer-lived
ultracold atomic gases [2].

He∗ plays a particularly significant role in ultracold atomic
physics [2] as the first metastable atom cooled to quantum
degeneracy [22–24], as well as the lightest and simplest of
all rare-gas atoms with a unique spherically symmetric 3S
electronic configuration. These characteristics could make
He∗(3S) an ideal collision partner for sympathetic cooling of
atoms and molecules in a magnetic trap [25,26]. In addition,
interactions of He∗ with other atoms, such as Rb, are readily
amenable to highly accurate ab initio and quantum scatter-
ing calculations [27]. Penning and associative ionization in
cold He∗(2 3S) + He∗(2 3S) collisions could therefore serve
as a paradigm of collisional processes in cold mixtures of
metastable rare-gas atoms.
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Here, we explore the possibility of coherent control over
inelastic AI and PI processes in cold and ultracold collisions
of metastable He∗ atoms. We show that by forming coherent
superpositions of the degenerate magnetic sublevels of He∗

it is possible to effectively enhance or suppress the PI and
AI cross sections in cold He∗ + He∗ collisions, as well as the
branching ratio of AI to PI.

The remainder of this paper is organized as follows.
Section II describes the general theory and numerical methods
used to compute the Penning and associative ionization cross
sections in atom-atom scattering. The theory for He∗(2 3S) +
He∗(2 3S) collisions is described in Sec. II A. Computational
results are provided in Sec. III and conclusions are discussed
in Sec. IV. Atomic units (h̄ = me = e = a0 = 1) are used
throughout unless indicated otherwise.

II. PENNING AND ASSOCIATIVE IONIZATION

To describe the theory of the scattering processes that lead
to Penning and associative ionization, we focus on the case
of two colliding atoms. However, the treatment can also be
extended to atom-molecule or molecule-molecule scattering
[20,28,29]. Details on the numerical methods used are pro-
vided in Appendix A.

An atom A in the metastable state A∗ that collides with an
atom B can undergo either Penning ionization (PI),

A∗ + B → A + B+ + e−, (1)

or associative ionization (AI),

A∗ + B → (AB)+ + e−. (2)

The products of PI are atom A deexcited to its ground state, an
ion B+ and the ejected electron e−, i.e., the Penning electron.
AI leads to a dimer AB+ and an ejected electron. The energy
balance of the reaction is given by [28]

E∗ + ε0 = VI + ε + E+, (3)

where ε0 is the electronic excitation energy of the atom A∗,
E∗ is the incident kinetic energy of the collision, VI is the

first ionization energy of B, E+ is the kinetic energy of the
atoms or the dimer after collision, and ε is the kinetic energy
of the released electron. If ε0 > IE, both PI and AI occur at
any scattering energy. If both species in the initial state are
metastable states, then the energy balance Eq. (3) becomes

E∗ + εA
0 + εB

0 = VI + ε + E+, (4)

εA
0 and εB

0 being the excitation energy of the species A and
B, respectively. The energetic condition for the ionization
then becomes εA

0 + εB
0 > IE. These conditions are fulfilled for

He∗(3S) + He∗(3S) collisions, since the first ionization energy
of He is VI = 24.589 eV and the excitation energy of He∗(23S)
is εA

0 = εB
0 = 19.820 eV [30].

A. He∗(3S) + He∗(3S)

As described above, even at low incident kinetic energies,
the electronic excitation energy of the colliding atoms allows
for electron emission in the scattering of metastable helium
atoms via two different mechanisms:

He∗ + He∗ →
{

He+ + He + e− (PI),
He+

2 + e− (AI). (5)

Two scenarios are possible: (i) the metastable atoms are in
the same electronically excited state 2 3S, or (ii) they are in
different electronic states, in particular, 2 3S and 2 1S. Here
we focus on the scattering of He∗(2 3S) + He∗(2 3S). We
invoke the rotating atom approximation (RAA) that assumes
that the angular momentum of the colliding atoms faithfully
follows the internuclear axis during the collision [31]; i.e.,
there is no dynamical reorientation of the internal angular
momenta of the atoms (here, the electronic spins of He∗)
in the scattering process [19,20]. This approximation is very
accurate in the thermal regime [29], as demonstrated by our
recent calculations of the PI and AI cross sections for Ne∗-Ar
collisions, whose product ratio agrees with experiment over a
wide range of collision energies down to 0.02 K [18]. For the
case of He∗(2 3S) + He∗(2 3S) [29], the possible processes are

He∗(2 3S) + He∗(2 3S)[1 3�+
u ] → He(1 1S) + He+(1 2S)[2�+

u ] + e−, (6a)

→ He(1 1S) + He+(1 2S)[2�+
g ] + e−, (6b)

He∗(2 3S) + He∗(2 3S)[1 1�+
g ] → He(1 1S) + He+(1 2S)[2�+

u ] + e−, (6c)

→ He(1 1S) + He+(1 2S)[2�+
g ] + e−. (6d)

The atomic entrance channels can also couple to the
1 5�+

g electronic state of He∗
2, but the autoionization of this

quasimolecular state is strongly suppressed due to spin con-
servation. Specifically, since we assume that the total spin of
the collision complex is conserved, it is not possible to obtain
an exit channel with the same spin as the entrance channel
1 5�+

g by coupling the states 2�g or 2�u with an ejected
electron following the ionization. Further details can be found
in Refs. [32–34]. Note that the electrons in Eqs. (6a) and (6c),
and also in Eqs. (6b) and (6d), are in different states, so these
product channels show no interference.

Here we consider the case of collisions of two bosonic
4He atoms [He∗(2 3S) + He∗(2 3S)], which imposes certain
conditions on the wave function: Namely, the orbital angular
momentum J∗ for the collision can only take even (odd) for
gerade (ungerade) electronic states of the collision. This effect
also restricts the angular momentum of the outgoing electron,
�. Specifically, a transition from gerade (ungerade) to gerade
(ungerade) leads to � even, whereas a change of gerade to
ungerade or vice versa implies � odd [29].

To account for autoionization, the entrance channels
are described by optical potentials V∗(R) = V (R) − i

2�t (R)
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FIG. 1. Potential energy curves V (R) for He∗(3S)-He∗(3S) in-
volved in the entrance and exit channels. Note that the scale used is
different for the two channels. The potentials have been taken from
Refs. [29,37]; see text for further details.

[29,33,35,36], where V (R) are the potential curves shown
in Fig. 1 and �t (R) is the total ionization width. The ionic
molecular states 2�+

u and 2�+
g are described by the analytical

potentials of V+(R) taken from Ref. [37]. The real part of
the optical potentials, V (R), for R ∈ [3, 14) is obtained by
interpolating the data in Table 3 of Ref. [29]. For R � 3 we
set V (R) = V (3), and for R � 14 the long-range expansion in
terms of the C6 and C8 coefficients is used. In Fig. 2 we show
the autoionization widths �t (R), which can be written as

�t (R) =

⎧⎪⎨⎪⎩
�̃t (3), R � 3,

f
(
R; {Rj, �̃t (Rj )}N

j=1

)
, 3 � R � 9,

aebR, R � 9,

(7)

where �̃t (Rj ) is the autoionization width tabulated in Ref. [29]
for Rj = 3 + 0.5( j − 1). As we see in Eq. (7), we assume
that the autoionization width is constant for R � 3, with
�t (R) = �̃t (3), and that �t (R) is approximated by an expo-
nential function for R � 9. Finally, for R ∈ [3, 9], �t (R) is
given by an interpolation function f (R; {Rj, �̃t (Rj )}N

j=1) built
with B-splines, where N = 13 is the number of grid points.

B. Initial state

The electronic state of He∗(2 3S) is predominantly de-
scribed by the configuration 1s2s in terms of the 1s and 2s
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FIG. 2. Ionization widths �t (R) for the entrance and exit chan-
nels involved in the ionization. The autoionization widths are
interpolated using the tabulated data in Ref. [29]; see text for further
details.

atomic orbitals. The electronic part of the He∗ wave function
is given by a linear combination of spin functions |SM〉, de-
noted |1M〉 below, where the total spin is S = 1 and M is the
projection of S along the Z axis of the laboratory fixed frame.
Specifically,

|φ2 3S (1, 2, {a})〉 = A

{
�(�r1, �r2)

1∑
M=−1

aM |1M〉
}

, (8)

where �(�r1, �r2) is the spatial part as a function of the position
of the electrons, aM are the preparation coefficients, and A is
the antisymmetrization operator. The initial scattering state of
two He∗ atoms in the center-of-mass frame (CMF) is then

|�(1, 2, 3, 4, {a}, {b}, �r)〉

= A

{[
�

(
�r1 − �r

2
, �r2 − �r

2

) 1∑
M=−1

aM |1M〉
]

×
[
�

(
�r3 + �r

2
, �r4 + �r

2

) 1∑
M ′=−1

bM ′ |1M ′〉
]}

, (9)

where �r is the relative position of the He nuclei. In general,
the wave function of the He∗(2 3S)-He∗(2 3S) dimer may be
written as

|�(1, 2, 3, 4, {a}, {b}, �r)〉

= A

{[
�̃(�r1, �r2, �r3, �r4, �r)

1∑
M=−1

1∑
M ′=−1

aMbM ′ |1M〉|1M ′〉
]}

= A

{[
�̃(�r1, �r2, �r3, �r4, �r)

2∑
S=0

2∑
M ′′=−2

cS,M ′′ |SM ′′〉He-He

]}
,

(10)

where �̃(�r1, �r2, �r3, �r4, �r) is the spatial part of the He∗-He∗

dimer electronic wave function, which depends on the
position vectors �r j of the jth electron and the internu-
clear separation �r of the dimer. Also note that |SMS〉He-He
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corresponds to the angular momentum wave function in the
molecular coupled basis. The states with S = 0, 1, and 2
correspond to the 1�+

g , 3�+
u , and 5�+

g electronic states, and
the molecular coefficients {c} are expressed via the atomic
preparation coefficients as

cS,M ′′ =
1∑

M=−1

1∑
M ′=−1

aMbM ′ 〈SM ′′|1M, 1M ′〉. (11)

Specifically, for the He∗ dimer, S = 0, 1, and 2, and we have

c22 = a1b1, (12a)

c21 = 1√
2

(a1b0 + a0b1), (12b)

c20 = 1√
6

(a1b−1 + 2a0b0 + a−1b1), (12c)

c2−1 = 1√
2

(a0b−1 + a−1b0), (12d)

c2−2 = a−1b−1, (12e)

c11 = 1√
2

(a1b0 − a0b1), (12f)

c10 = 1√
2

(a1b−1 − a−1b1), (12g)

c1−1 = 1√
2

(a0b−1 − a−1b0), (12h)

c00 = 1√
3

(a1b−1 − a0b0 + a−1b1). (12i)

The total cross section corresponding to the initial su-
perposition of atomic states described by the wave function
|�〉 = ∑

S,M cS,M |SM〉 at a collision energy E∗ may be written
as

σ ({cS,M})(E∗) =
∑
S,M

|cSM |2σS,M (E∗)

+
∑
S 
=S′

∑
M 
=M ′

c∗
S,McS′,M ′σS,S′,M,M ′ (E∗), (13)

where σS,S′,M,M ′ (E∗) is the contribution to the integral cross
section corresponding to the interference between the chan-
nels S, M and S′, M ′ [13,18,19],

σS,S′,M,M ′ (E∗) =
∑∫

q
f ∗
S,M,q(E∗) fS′,M ′,q(E∗)dq, (14)

where fS,M,q(E∗) is the scattering amplitude for the initial state
characterized by the total spin S and its projection M, and for
the exit channel with quantum numbers q, which include the
final scattering angles of the ejected electron and of the dimer.

Note that σS,S′,M,M ′ (E∗) = σS,S′,M+M ′ (E∗)δM,M ′ due to the
rotational symmetry around the internuclear axis. As dis-
cussed above, σS,S′,M+M ′ are nonzero only if S, S′ 
= 2, since
the PI and AI are spin forbidden for the 5�+

g state, which
corresponds to S = 2. Here we neglect the weak magnetic
dipole-dipole interactions between the electronic states of
different S, which is a good approximation, verified experi-
mentally in Ref. [32].

C. Considerations on internal symmetries

As demonstrated in previous work [14], the symmetries
of the system imply certain conditions on coherent control.
Specifically, for He(2 3S)-He(2 3S) scattering, the total final
channel (molecular channel + outgoing electron) is uniquely
determined by the initial scattering channel and the initial
scattering energy. First, the invariance under rotations in the
laboratory frame implies that two initial states interfere only
if they have the same total magnetic quantum number M.
Second, consider now the interference between pathways me-
diated by the parity symmetry. The initial collision state via
the ionizing channels 3�+

u or 1�+
g determines that the total

final channel must be ungerade or gerade. Therefore, even if
the ionization from two different channels decays to the same
molecular channel, the ejected electron carries information
about the parity of the initial state, defining the total state of
the system. These two conditions imply that σS,S′,M+M ′ = 0 if
S 
= S′, where M and M ′ are the magnetic quantum numbers
of the initial atomic states along the laboratory Z axis. Thus,
the cross section [Eq. (13)] is

σ ({cS,M̄})(E∗) =
∑
S,M̄

|cSM̄ |2σS (E∗), (15)

with σS (E∗) ≡ σS,S,M̄ (E∗) and M̄ = M + M ′. Note that
σ ({cS,M̄})(E∗) does not depend on the total magnetic quan-
tum number M̄, but only on the total spin S of the He∗-He∗

collision complex and the kinetic energy.
In other words, Eq. (15) establishes that the total cross

section for a given collisional energy E∗ depends on the pop-
ulation |cSM̄ |2 of each molecular channel in the initial state.
We note that, while Eq. (15) contains no interference terms
in the molecular basis due to symmetry restrictions, there
are interference terms in the atomic basis, which is related
to the molecular basis via Eq. (11). Thus, the cross sections
[Eq. (15)] can be controlled by varying the relative phases
of the atomic preparation coefficients aM and bM defined by
Eqs. (12a)–(12i) [14]. Note that the different roles of interfer-
ence contributions in the atomic and molecular bases is both
insightful and unique to scattering that is reliant on vector
properties. From the viewpoint of control, however, the atomic
basis, and its associated interference attributes, is the more
important basis since the atomic states can be prepared in the
laboratory.

To summarize the above discussion, the initial state of each
of the colliding atoms leads to the initial state of the two-atom
system in the form of a superposition of several molecular
channels, whose population depends only on the initial atomic
states. In the case of He∗(2 3S)-He∗(2 3S), the populations can
be computed using the coefficients in Eqs. (12a)–(12i), which
are determined by the preparation coefficients of each indi-
vidual He∗(2 3S) state and, therefore, on their relative phases.
In the next section we give some examples where changing
the relative phase between the different initial states leads to
significant changes in the cross sections and hence control.

III. RESULTS

Here, we consider the ionization cross sections for partic-
ular entrance channels and several coherent-control scenarios
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g channel and σ1 to the 3�+
u channel.

that can be used to benefit from interference between scatter-
ing channels to enhance or diminish collision cross sections.

A. Absolute cross sections

We first compute the ionization cross sections σS of
Eq. (15) for the processes given by Eqs. (6a)–(6d) in the
molecular channels 1�+

g and 3�+
u . The total S-dependent

AI and PI cross sections σ0 and σ1, are shown in Fig. 3.
The PI and AI for both of the autoionizing channels have
similar values at temperatures higher than 10 mK, although
for the same type of ionization (i.e., AI or PI) there are out-
of-phase oscillations for 1�+

g and 3�+
u . This pattern appears

because both entrance molecular channels are similar and the
high number of partial waves that contribute allows access to
He(1S)-He+(1S). Note that the cross sections in this regime
can be improved by using a more sophisticated Vε�(r) for
non-s-wave ejected electrons, which accounts for steric effects
in autoionization.

However, for temperatures below 10 mK, autoionization
presents a very different pattern for the 1�+

g and 3�+
u chan-

nels, as shown in Fig. 3. On the one hand, the autoionization
for the entrance channel 1�+

g becomes much larger at low
temperatures in accord with the Wigner threshold law. In
this regime, only the partial waves with low incident angular
momenta contribute, which are J∗ = J+ = 0 for Eq. (6d) and
J∗ = 0 and J+ = 1 for Eq. (6c), since J+ = 0 is forbidden for
gerade channels in the bosonic case, as described in Sec. II C
and Appendix A. The overlap between the initial 1�+

g scatter-
ing state and the outgoing scattering states of 2�+

g symmetry
is larger than that between the states 1�+

g and 2�+
u . This can

be explained for the outgoing continuum states in terms of
the position of the short-range barrier, which is closer to the
nucleus for 2�+

u than for 2�+
g . This creates a larger overlap

with the entrance scattering states for the 2�+
g state. It is

counterintuitive that the AI is larger for the gerade exit channel
whereas we find only 2 bound states for J+ = 0 vs 26 for 2�+

u .
This can be explained by noting that the bound states of the
2�+

u channel are located at R � 3 a.u., far from the entrance

channel minimum, which occurs at R � 6 a.u., leading to a
small overlap. On the contrary, the bound states supported by
the 2�+

g electronic state are located around 8 a.u., having a
significant overlap.

On the other hand, the ionization through the 3�+
u state

occurs mainly due to the J∗ = 1 partial wave in the ultracold
regime, which implies that the atoms encounter a centrifugal
barrier. Therefore, the lower the temperature is, the lower the
probability to tunnel through the barrier is. This effect dimin-
ishes the overlap, and therefore the ionization cross sections
decrease, as shown in Fig. 3. These considerations are not
relevant for higher temperatures because the real part of the
ionic potentials, shown in Fig. 1, differ only slightly around
the well. As a result, the scattering states are very similar
for all the exit channels. Besides, this well is located close
to a region where the entrance potentials are very similar,
which implies a similar overlap of the incoming scattering
wave function of the 3�+

u and 1�+
g states with the bound and

scattering states of 2�g and 2�u symmetries in that region. As
mentioned above, we observe an out-of-phase oscillation in
the cross section in Fig. 3 above 10 mK, induced by the phase
shift determined by the inner part of the potential. We note
that the autoionization rates from the entrance channels to the
two accessible exit channels are very similar for the optical
potentials and Vε�(R) considered.

B. Rotated states

First, we consider the rotation of states with well-defined
magnetic quantum numbers as a theoretical protocol to pre-
pare the initial atomic states. The selection of atomic states
|1M〉 with well-defined quantum numbers as well as their
rotation is attainable by means of available technologies.
Specifically, these methodologies make use of external mag-
netic fields, which can prepare atomic species in different spin
states with Stern-Gerlach-like setups prior to colliding them
in merged beams. In addition, π/2 radio-frequency pulses
or stimulated Raman adiabatic passage (STIRAP) is widely
used to turn atomic states with well-defined M into a coherent
superposition of these states with different M. Moreover, they
can also be used to drive the atomic spin, which faithfully
follows the field lines, allowing for an efficient preparation
of initial states for coherent control, as done in Refs. [18,38].

The rotation operator RY
θ (θ ) applied to the initial two-atom

state |1MA〉|1MB〉 gives

RY
θ |1M〉 =

1∑
M ′=−1

d1
M ′,M (θ )|1M ′〉, (16)

where RY
θ denotes a rotation by angle θ around the Y axis

of the laboratory fixed frame and dS
M ′,M (θ ) are the reduced

Wigner matrix elements [39]. Consider then the initial state
|1MA〉|1MB〉 and consider the cross sections after rotating
atom A by an angle α and atom B by an angle β. The initial
rotated state of the two atoms then becomes, as a function of
the control parameters α and β,

RY
α |1MA〉RY

β |1MB〉

=
1∑

M ′
A=−1

1∑
M ′

B=−1

d1
M ′

A,MA
(α)d1

M ′
B,MB

(β )|1M ′
A〉|1M ′

B〉. (17)

052809-5



OMISTE, TSCHERBUL, AND BRUMER PHYSICAL REVIEW A 103, 052809 (2021)

0 π
2 π 3π

2 2π
0

π
2

π

3π
2

2π

0 π
2 π 3π

2 2π
0

π
2

π

3π
2

2π

0 π
2 π 3π

2 2π
0

π
2

π

3π
2

2π

α

β

0.162

0.172
α

β

2200

3200
α

β

390

520

FIG. 4. Scattering results for the entrance channel RY (α)RY (β )
|11〉|10〉 at 10 mK: σ AI (upper panel), σ PI (middle panel), and
σ AI/σ PI (lower panel).

We compute the PI and AI cross sections for this superposition
of initial states using Eq. (15) in combination with Eq. (11),
which allows us to compute the preparation coefficients in the
molecular basis.

Figures 4 and 5 show the ionization cross sections σ AI

and σ PI and their ratio as a function of the control angles
α and β for the initial two-atom states |11〉|11〉, |11〉|10〉,
and |10〉|10〉 rotated according to Eq. (17), at 10 mK. The
cross sections are characterized by a pronounced band struc-
ture, which manifests itself in the dependence on the relative
atomic orientation, γ = α − β.

This band structure is due to the independence of the
cross section σS on the total magnetic quantum number M,

0 π
2 π 3π

2 2π
0

π
2

π

3π
2

2π

0 π
2 π 3π

2 2π
0

π
2

π

3π
2

2π

0 π
2 π 3π

2 2π
0

π
2

π

3π
2

2π

α

β

0.16

0.195
α

β

1400

3200
α

β

250

550

FIG. 5. Scattering results for the entrance channel RY (α)RY (β )
|10〉|10〉 at 10 mK: σ AI (upper panel), σ PI (middle panel), and
σ AI/σ PI (lower panel).

which only determines the population of the 1�+
g , 3�+

u , and
5�+

g states via the preparation coefficients cSM in Eq. (15).
We can extend this argument to any rotation around the Y
axis applied to both atoms simultaneously. However, if the
Hamiltonian includes terms that couple the translational and
rotational degrees of freedom, such as the spin-spin cou-
pling, this phenomenon does not hold, as in the case of
Ne∗-Ar scattering [14,18]. Further details can be found in
Appendix B.

In Fig. 6 we show the absolute cross sections and the ion-
ization ratio for the initial scattering states |11〉|11〉, |11〉|10〉,
and |10〉|10〉 at 10 mK as a function of γ = α − β at 100 μK.
It is noteworthy that the patterns of the ionization ratio for
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FIG. 6. Cross sections at T = 10 mK: (a) σ AI, (b) σ PI, and (c) ionization ratio σ AI/σ PI. Cross sections at T = 100 μK: (d) σ AI, (e) σ PI,
and (f) ionization ratio σ AI/σ PI. Results are for rotations around the Y axis as a function of γ = β − α for the states |11〉|11〉 (solid red lines),
|11〉|10〉 (dashed blue lines), and |10〉|10〉 (dash-dotted orange lines). Note that we assume �max = 1.

|10〉|10〉 and |11〉|10〉 are different as the collision energy is
lowered from 10 mK to 100 μK. As an example, consider
AI for |11〉|10〉 shown in Figs. 6(a) and 6(d). For 10 mK we
observe a maximum of ∼520 at α = β = 0, which diminishes
to ∼390 at α = 0 and β = π/2. On the other hand, this
pattern is inverted for 100 μK, where σ AI has a minimum
at α = β = 0 and a maximum that is reached by increas-
ing β to π/2. By comparing the cross section at these two
configurations we find that the maximum is located at α =
β = 0 if 3σ1 > 2σ0, as is the case for 10 mK. However, we
observe that the maxima and the minima are located in the
same regions of γ , although they can interchange their role. In
the case of |11〉|11〉, the pattern is found to be independent of
the scattering energy, since for α = β = 0 the cross sections
for both AI and PI are zero. The location and characteristics
of the maxima and the minima are discussed in detail in
Sec. III C.

Figures 6(c) and 6(e) show the ratio σ AI/σ PI, which is
dramatically different at 10 mK and 100 μK. The control of
AI and PI as a function of angle γ = β − α, shown in Fig. 6,
is significant. Of particular relevance is the ratio of the two
product channels since the output of either product channel
could be varied by varying the incident flux. For example, the

|11〉|10〉 case at 10 mK [Figs. 6(a)–6(c)] shows a variation
of the product ratio σ AI/σ PI from 0.19 to 0.162, i.e., a 19%
variation. At 100 μK this range increases from 0.165 to 0.22,
a 33% variation.

Finally, note that the ratio σ AI/σ PI is not defined for the
initial state |11〉|11〉, since it only couples to the 5�+

g channel,
which does not autoionize. However, we can identify this
ionization ratio with σ AI

1 /σ PI
1 corresponding to the dominant

contribution when rotating by a small angle around the Y axis,
which also matches the ratio for the initial state |11〉|00〉, as
illustrated in Fig. 6.

C. Searching for maximum cross sections

In this section, we explore the extent of the coherent control
of PI and AI in cold He∗-He∗ collisions. To this end, we search
for the initial parameters α and β, which maximize (minimize)
the PI and AI cross sections as well as the ionization ratio
σ AI/σ PI. As noted above, these states can be prepared exper-
imentally by standard techniques such as coherent population
transfer [40], electromagnetically induced transparency [41],
or STIRAP [42]. A typical experiment would consist of sev-
eral stages [29,43].
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(i) Two collimated beams of He∗(3S1) and He∗(1S1) atoms
are deflected by means of magnetic fields, so that we can
select He∗(3S1).

(ii) Then, a STIRAP laser, which is perpendicular to the
beam, populates the desired quantum state. Typically, this
population transfer takes a few microseconds [43], which
ensures that the atoms in a beam at ∼1000 km/s are in the
appropiate final state after interacting with the STIRAP laser.
Furthermore, in the absence of fields, the atomic beam is
composed of a coherent superposition of degenerate states,
which guarantees no loss of coherence.

(iii) Finally, the beams cross in a chamber allowing the
reaction, Note that the angle formed by the beams could be
modified to rotate the spin state.

Consider first the maxima and minima of the individual AI
and PI cross sections, σ [Eq. (15)]; details of the optimiza-
tion method are provided in Appendix C. We obtain that the
preparation coefficients fulfill the following conditions:

a j =
∑

SM σSMcSM
∂c�

SM
∂a�

j∑
SM |cSM |2σSM

, (18a)

b j =
∑

SM σSMcSM
∂c�

SM
∂b�

j∑
SM |cSM |2σSM

. (18b)

We can check by inspection that the following set of four
preparation coefficients,

a0 = b0 = 1,

a1 = a−1 = b1 = b−1 = 0 ⇒ σ = σ0

3
, (19)

a0 = b−1 = 1,

a1 = a−1 = b1 = b0 = 0 ⇒ σ = σ1

2
, (20)

a1 = b−1 = 1,

a0 = a−1 = b1 = b0 = 0 ⇒ σ = σ1

2
+ σ0

3
, (21)

a1 = b1 = 1,

a0 = a−1 = b−1 = b0 = 0 ⇒ σ = 0, (22)

are solutions of Eqs. (18a) and (18b) and thus maximize or
minimize the total cross sections: the first two provide local
extrema, whereas the second two are absolute maxima and
minima, respectively.

Note that σ ’s in Eqs. (19)–(22) apply to both PI and AI.
For example, Eq. (19) indicates that σ AI = σ AI

0 /3 and σ PI =
σ PI

0 /3. Further, note that the minimum of zero in Eq. (22)
results from the fact that all population is in S = 2 where
autoionization is forbidden.

We also find that the preparation coefficients (21) fulfill the
following more general conditions:

|a1 + a−1|2 = |b1 + b−1|2 = 1,

a j = eiρ (−1) jb− j, ρ ∈ [0, 2π ),

a j

ak
,

b j

bk
∈ R for j, k = −1, 0, 1. (23)

Note that the optimal preparation coefficients correspond
to eigenstates of the symmetry operator that describe the col-
lision, i.e., the arbitrary rotations around the internuclear axis.
Therefore, from the coefficients defined by Eqs. (19)–(23) we
can generate infinitely many solutions by means of arbitrary
rotations around the internuclear axis, �k, two-fold rotations
perpendicular to �k, and interchange of the nuclei. In addition,
we also find that performing the same rotation in both atoms
does not change the cross section, because the potentials de-
pend on S of the molecular channels, but not on the value of
M, as described in Sec. III B (see also Appendix B). This last
transformation manifests itself as an accidental degeneracy of
the cross section, which is not related to a symmetry oper-
ation. Therefore, it can be used to check the validity of our
model and to experimentally quantify the effect on control of
the various interactions neglected here, such as the spin-orbit
coupling and the magnetic dipole-dipole interaction.

As shown in Appendix C the maxima and the minima
of the ratio σ AI/σ PI are obtained with the same preparation
coefficients that optimize the absolute cross sections. The
coefficients (20) and their transformations give an ionization
ratio:

σ AI

σ PI
= 2σ AI

0 + 3σ AI
1

2σ PI
0 + 3σ PI

1

. (24)

As in the cases considered previously, the set of preparation
coefficients, which results in an optimal cross section (either
maxima or minima) is independent of the collision energy.
This is because the population of the autoionizing molecular
channels depends only on the internal states of each colliding
helium atom since the dynamical reorientation of the atomic
spin of the individual atoms is not allowed in the RAA. On
the other hand, an optimal point would be either a maxi-
mum or a minimum, depending on the cross section of each
molecular channel. In addition the preparation coefficients
that optimize the absolute cross sections and the ionization
ratio are independent of σ0 and σ1, and therefore the optimal
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0.16

0.18

0.2

0.22

0.24

10−6 10−5 10−4 10−3 10−2 10−1 1 10 102

σ
A

I
S σ
P

I
S

E/kB(K)

S = 1
S = 0

FIG. 7. For the He∗(2 3S)-He∗(2 3S) scattering, absolute max-
imum and minimum of the ionization ratio as a function of the
temperature. In accord with the discussion in the text, the controlled
cross section at any temperature lies between the maximum and
minimum values shown here.
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preparation coefficients are the same for associative and Pen-
ning ionization.

Straightforward arithmetic shows that the right-hand side
of Eq. (24) implies that σ AI/σ PI lies between σ AI

1 /σ PI
1 and

σ AI
0 /σ PI

0 at all temperatures. Results for the maximum and
minimum values of σ AI

1 /σ PI
1 and σ AI

0 /σ PI
0 that bound σ AI/σ PI

are shown in Fig. 7.

IV. CONCLUSIONS AND OUTLOOK

In this work, taking the collision of two metastable
4He∗(3S) atoms as a prototypical example, we discussed co-
herent control of ultracold scattering involving two open-shell
metastable atoms. First, it is shown that the interference be-
tween the channels involved in the collision can enhance
or suppress the Penning or associative ionization, which is
especially remarkable in the cold regime where the latter is
more likely. The interference can be manipulated by mod-
ifying the phase between internal states of each individual
atom, allowing us to control the absolute cross section and
ionization ratios. For instance, in the 4He∗(3S)-4He∗(3S) scat-
tering case, we find that by tuning the preparation coefficients
we are able to diminish the ionization ratio from 0.22 to
0.16. Furthermore, we propose a computational method to
maximize and minimize the cross sections and prove that a
given solution can be generalized by rotating the reference
frame of the system. In particular, we find that there is one
absolute maximum value and one absolute minimum value
for the cross sections and that the corresponding preparation
coefficients are independent of the scattering energy.

This study can be useful for future experiments on coherent
control of scattering processes in the ultracold regime and can
be be extended to other systems such as Rb-He∗ or open-shell
molecules colliding with He* atoms. From the theoretical
point of view, it is important to compute the optical and
real potentials in the region close to the nuclei in order to
accurately describe the reactions in the ultracold regime and
possible nonisotropic contributions.
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APPENDIX A: SCATTERING STATES
AND CROSS SECTIONS

Here, we briefly describe the methodology to compute the
total PI and AI cross sections from the scattering states. We
follow the same procedure as in Refs. [14,18–20]. Work is
carried out in the center-of-mass frame (CMF), where the
total linear momentum �K = 0. This assumption can be taken
without loss of generality, because the total cross section is the
same at all inertia frames [14,19,20,44]. The initial relative
momentum in the internuclear axis, �k, is set to define the Z
axis of the laboratory, and k f and kε are the momentum of the
atoms after the collision and the momentum of the Penning
electron with energy ε, respectively. The scattering amplitude
in the Born-Oppenheimer approximation is given by [20]

f (k̂ f , k̂ε; �k) = −2μρ1/2
ε

(4π h̄2)

(
k f

k

)1/2

〈ψv,ε|Vε,k̂ε
|ψd〉, (A1)

where μ = mHe/2 is the reduced mass and ρε is the density of
electronic continuous states. Vε,k̂ε

accounts for the autoioniza-
tion process and may be written as

Vε,k̂ε
( �R) = 4π

∞∑
�=0

�∑
m=−�

(
4π

2� + 1

)1/2

Vε�(R)Y ∗
�μ(k̂ε )Y�μ(R̂),

(A2)
where Vε�(R) ≈ α�max

√
�t (R)/(2π ), �t (R) is the autoioniza-

tion width, and α�max = 1/
√

�max + 1 [45]. Further, ψd ( �R) is
the incoming wave function, which can be expanded as

ψd ( �R) = 4π

∞∑
J∗=0

J∗∑
m=−J∗

il eiδJ∗ ψ
J∗
d (R)

k1/2R
Y ∗

J∗m(k̂)YJ∗m(R̂), (A3)

where δJ∗ is the complex phase and ψ
J∗
d (R) satisfies the

Schrödinger equation

(
− h̄2

2μ

d2

dR2
+ V∗(R) − i

2
�t (R) + h̄2

2μ

J∗(J∗ + 1)

R2
− E∗

)
ψ l

d,E∗ (R) = 0 (A4)

and has the asymptotic behavior

ψ
J∗
d (R)

R→∞−−−→ k−1/2 sin(kR − πJ∗/2 + δJ∗ ). (A5)

The scattering state for the exit channel ψε ( �R) can be written as

ψε ( �R) = 4π

∞∑
J+=0

J+∑
m′=−J+

iJ+e−iδ
J+
f

ψ
J+
ε (R)

k1/2
f R

Y ∗
J+m′ (k̂)YJ+m′ (R̂), (A6)

where ψ
J+
ε (R) fulfills the equation (

− h̄2

2μ

d2

dR2
+ V+(R) + h̄2

2μ

J+(J+ + 1)

R2
− ε

)
ψ

J+
v/ε (R) = 0, (A7)
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where we also include the bound states ψ
J+
v (R). The asymptotic behavior of ψ

J+
ε (R) can be written as

ψJ+
ε (R)

R→∞−−−→ k−1/2
f sin

(
k f R − πJ+/2 + δ

J+
f

)
, (A8)

where δ
J+
f is the real phase shift. Then, assuming �k is parallel to the z axis of the CMF, the scattering amplitudes for a given

entrance and exit channel can be rewritten as [19,20]

f (k, k f , kε ) =
√

π

ik

∑
�,m,J∗,J+

iJ∗−J+ (2J∗ + 1)(2J+ + 1)1/2

(
J+ � J∗
0 0 0

)(
J+ � J∗
−m m 0

)
SJ∗

J+�(ε)YJ+−m(k̂ f )Y�m(k̂ε ), (A9)

where we include the angular momentum (�) and the magnetic
quantum number (m) of the ejected electron. The S matrix is
given in terms of the phase shifts δJ∗ and δ

J+
f [19,20]:

SJ∗
J+,�(ε) = −2i

2μρ1/2
ε

h̄2 ei(δJ∗ +δ
J+
f )〈ψJ+

ε

∣∣Vε�

∣∣ψJ∗
d

〉
, (A10)

for the PI, and

SJ∗
J+,�(ε) = −2i

(
2μρε

h̄2

)1/2

eiδJ
∗
〈
ψJ+

v

∣∣Vε�

∣∣ψJ∗
d

〉
, (A11)

for the AI.

APPENDIX B: CROSS SECTION DEPENDS
ON THE RELATIVE ORIENTATION

Here, we show that the angular dependence of the cross
section in 4He(3S)-4He(3S) scattering only depends on the
relative orientation of their atomic states.

First, we prove that a global rotation of the molecular
channel does not affect the cross section. Let us define the
state in the molecular entrance channel basis as

|�〉 =
∑
SM

cSM |SM〉, (B1)

where |SM〉 denote the molecular entrance channels with J =
0, 1, and 2 (1�+

g , 3�+
u , and 5�+

g , respectively) and M is the
total magnetic quantum number. An arbitrary rotation of |�〉
is given by [39]

|�〉(φ,θ ) = R(φ, θ )|�〉 =
∑
SM

∑
M ′

DS
M ′,M (φ, θ, 0)cSM |SM ′〉,

(B2)

where (φ, θ ) are the Euler angles which define the rotation,
and the expansion coefficients after the rotation are given by

cSM ′ (φ, θ ) =
∑

M

DS
M ′,M (φ, θ, 0)cSM . (B3)

From Eq. (15) we know that the cross section depends on the
population of each molecular entrance channel. Substituting
the expansion coefficients of |�〉(φ,θ ) into Eq. (15), we obtain

σ ({cSM (φ, θ )})(E∗)

=
∑
SM

|cSM (φ, θ )|2σS (E∗)

=
∑
SM

∑
M ′,M ′′

DS
M,M ′ (φ, θ )DS

M,M ′′ (φ, θ )�cSM ′c�
SM ′′σS (E∗)

=
∑
SM

|cSM |2σS (E∗) = σ ({cSM})(E∗), (B4)

where we have used
∑

M DS
M,M ′ (φ, θ )DS

M,M ′′ (φ, θ )� = δM ′,M ′′

[39].
Applying the same rotation to the electronic state of both

He∗ atoms is equivalent to performing a rotation to the internal
state of the whole molecular system. Rotating the He atoms
the same angle does not change the cross section if it depends
only on the total angular momentum of the initial molecular
state; i.e., the cross section is determined by the relative ori-
entation of the atoms and the scattering energy.

APPENDIX C: OPTIMIZATION OF THE CROSS SECTIONS

In this section we derive the conditions that the preparation
coefficients fulfill to maximize (minimize) the cross sections
and the ionization ratio.

Using Lagrange’s multipliers we find that the maxima and
minima fulfill

∂

∂a j

[∑
SM

|cSM |2σSM − λ(|a−1|2 + |a0|2 + |a1|2 − 1)

]
= 0, j = −1, 0, 1, (C1a)

∂

∂b j

[∑
SM

|cSM |2σSM − γ (|b−1|2 + |b0|2 + |b1|2 − 1)

]
= 0, j = −1, 0, 1, (C1b)

|a−1|2 + |a0|2 + |a1|2 = 1, (C1c)

|b−1|2 + |b0|2 + |b1|2 = 1. (C1d)

By taking derivatives aj (b j ) and multiplying by a j (b j ) it is easy to show that

λ = γ =
∑
SM

|cSM |2σJ = σ ({cSM}). (C2)
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Therefore, we obtain

a j =
∑

SM σSMcSM
∂c�

SM
∂a�

j∑
SM |cSM |2σSM

, (C3a)

b j =
∑

SM σSMcSM
∂c�

SM
∂b�

j∑
SM |cSM |2σSM

. (C3b)

On the other hand, to compute the maxima (minima) of the ionization ratio σ AI/σ PI, we have

∂

∂a j

[∑
SM |cSM |2σ AI

SM∑
SM |cSM |2σ PI

SM

− λ(|a−1|2 + |a0|2 + |a1|2 − 1)

]
= 0, j = −1, 0, 1, (C4a)

∂

∂b j

[∑
SM |cSM |2σ AI

SM∑
SM |cSM |2σ PI

SM

− γ (|b−1|2 + |b0|2 + |b1|2 − 1)

]
= 0, j = −1, 0, 1, (C4b)

|a−1|2 + |a0|2 + |a1|2 = 1, (C4c)

|b−1|2 + |b0|2 + |b1|2 = 1. (C4d)

By means of the same procedure used to solve Eqs. (C1a)–
(C1d), we get λ = γ = 0. It is easy to show that the conditions
(C4a)–(C4d) are fulfilled by the coefficients (19)–(21); i.e.,
the ratio σ AI/σ PI has the same critical points as the cross
sections σ AI and σ PI. The numerical computations of the
ionization ratio do confirm that the critical points of the ratio
are the same as those of the absolute cross sections.

To search for additional maxima (or minima) we solve
Eqs. (C3a) and (C3b) [Eqs. (18a) and (18b) in the main text]
by iteration. To explore the preparation coefficients’ space, we
set the seed of the initial iteration by means of the coordinates
ρ, η, ψ , χ , α0, α1, β0, and β1, which define the preparation
coefficients

a0 = eiα0 sin ρ sin η, (C5a)

a1 = eiα1 sin ρ

√
1 − sin2 η, (C5b)

a−1 =
√

1 − |a0|2 − |a1|2, (C5c)

b0 = eiβ0 sin ψ sin χ, (C5d)

b1 = eiβ1 sin ψ

√
1 − sin2 χ, (C5e)

b−1 =
√

1 − |b0|2 − |b1|2, (C5f)

where ρ, η,ψ, χ ∈ [0, π/2) and α0, α1, β0, β1 ∈ [0, 2π ).
Note that a−1 and b−1 may be set to be real and positive to
remove the redundancy in the global phase.
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