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Low-lying electron energy levels in three-particle electron-muon ions of Li, Be, and B
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The electronic 2P-2S Lamb shift and the 2S-1S energy interval in muon-electron ions of lithium, beryllium,
and boron with the muon in its ground state are calculated within the framework of perturbation theory in the fine-
structure constant and the electron-muon mass ratio. The corrections of first and second orders of perturbation
theory, which include the effects of vacuum polarization, nuclear structure, and recoil, are taken into account.
The analytical results obtained in perturbation theory are compared with the results of calculations within the
variational approach. The values obtained for the 2P-2S Lamb shift and the 2S-1S interval can be used for
comparison with future experimental data and verification of quantum electrodynamics.
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I. INTRODUCTION

Muon-electron ions of lithium, beryllium, and boron
(μeLi, μeBe, and μeB, respectively) are the simplest three-
particle systems, consisting of a nucleus, a negatively charged
muon, and an electron. The main interaction in this system is
determined by the Coulomb interaction of charged particles.
The masses me, mμ, and M of the electron, muon, and nucleus
in the exotic atom, respectively, satisfy me � mμ � M. As a
result, the muon and the nucleus form a pseudonucleus, and
in the first approximation, the muon-electron ions of lithium,
beryllium, and boron can be considered as two-particle sys-
tems. Such three-particle systems are interesting in that they
allow one to study simultaneously, in the energy spectrum, the
corrections of small distances connected with the motion of
the muon as in muonic two-particle atoms and the corrections
of large distances connected with the motion of an electron as
in electron atoms.

There are two ways to calculate the energy levels in three-
particle muon-electron atoms and ions. The first approach,
used in [1–8], is based on the perturbation theory method for
the Schrödinger equation. In this case, there is an analytical
solution for the three-particle wave function in the initial
approximation, which allows one to take into account various
corrections to energy levels from other interactions according
to perturbation theory. In the other approach, Refs. [9–15]
used a variational method in quantum mechanics to find the
energy levels of three particles. It made it possible to obtain
numerical values of the energy levels of a three-particle sys-
tem with very high accuracy.
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Precision muonic physics has become especially important
since the first experimental results on the measurement of
low-lying energy levels of muonic hydrogen were obtained by
the charge radius experiments with muonic atoms (CREMA)
collaboration [16]. A decade of active work of this collab-
oration produced interesting and unexpected results, related
primarily to the determination of more accurate values of the
charge radii of light nuclei (protons, deuterons, helions, and
α particles). The CREMA experiments have caused a whole
series of new experimental studies of the muonic systems. The
physics of muonic two-particle and three-particle systems re-
mains an urgent problem that requires appropriate theoretical
studies and calculations of the observed quantities with high
accuracy.

The purpose of this work is to calculate the electronic
2S-2P Lamb shift and the 2S-1S energy interval as in the
framework of the first approach from [5–7] for electron-
muonic ions with nuclear charges of 3, 4, and 5 and within the
framework of the variational method. Note that the hyperfine
structure of muonic helium was measured in [17]. New plans
for precision microwave spectroscopy of the J-PARC MUSE
collaboration [18] are related to the measurement of the hy-
perfine structure of the ground state of muonic helium with an
accuracy two orders of magnitude higher than the accuracy of
previous experiments. Measurement of other energy intervals,
such as 2S-1S and 2S-2P, in muon-electron helium or muon-
electron ions of lithium, beryllium, and boron is quite feasible.

II. GENERAL FORMALISM

The Hamiltonian of the three-particle system muon-
electron nucleus has the general structure [5–7]

H = H0 + �H + �Hrec + �HVP + �Hstr, (1)
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H0 = − 1

2Mμ

∇2
μ − 1

2Me
∇2

e − Zα

xμ

− (Z − 1)α

xe
, (2)

�H = α

xμe
− α

xe
,

�Hrec = − 1

M
∇

μ
· ∇e,

where Z is the nuclear charge; xμ and xe are the muon and
electron radius vectors with respect to the nucleus; xμe =
|xμ − xe|; Me = meM/(me + M ) and Mμ = mμM/(mμ + M )
are the reduced masses of electron-nucleus and muon-nucleus
subsystems, respectively; and α is the fine-structure constant.
We use units h̄ = c = 1. The center of mass of the three
particles is at rest. The Hamiltonian terms �HVP, �Hstr, and
�Hrec determine the vacuum polarization, nuclear structure,
and recoil corrections, respectively. The form of the terms of
the Hamiltonian �Hstr and �HVP and their contribution to the
energy spectrum are discussed in Sec. III. The Hamiltonian
�H contains part of the Coulomb interaction of particles,
which is included in the perturbation operator. In the initial
approximation the wave functions of the three-particle system
with the muon in the ground state and the electron in the 1S,
2S, and 2P states take the form

�1S (xμ, xe) = 1

π
(WμWe)3/2e−Wμxμe−Wexe , (3)

�2S (xμ, xe) = 1

2
√

2π
(WμWe)3/2

(
1 − 1

2
Wexe

)
e−Wμxμe−Wexe/2,

(4)

�2P(xμ, xe) = 1

2
√

6π
(WμWe)3/2Wexe(εn)e−Wμxμe−Wexe/2, (5)

where We = (Z − 1)Meα and Wμ = ZMμα. The wave func-
tion of the 2P state is presented in tensor form and ε is the
polarization vector of the state 2P. The main contribution to
the perturbation operator is determined by the term �H . It
is known that in an electronic hydrogenlike atom the 2S-2P
Lamb shift is a radiation effect of the fifth order in the fine-
structure constant α and in a muonic hydrogenlike atom the
Lamb shift is determined by the effect of vacuum polarization
in the leading order α3. The purely Coulomb interaction of
charged particles does not give a shift between the 2S and
2P levels in two-particle atoms. In three-particle systems, the
electronic Lamb shift in the leading order α2 is determined by
the purely Coulomb interaction.

In the initial approximation, the energy of the system is
equal to the sum of the Coulomb energies of an electron and a
muon of the order of α2. So, for example, if both the electron
and the muon are in the 1S state, then this energy is equal to
[− 1

2 Me(Z − 1)2α2 − 1
2 MμZ2α2]. In what follows, the muon

energy is not of interest to us, since it will cancel out in the
2P-2S and 2S-1S intervals. In the case of the 2P-2S Lamb
shift in the first order of perturbation theory, it is necessary
to calculate two matrix elements of the Coulomb interaction
�H ,

�E (1)(2S) =
〈
�2S

∣∣∣∣
(

α

xμe
− α

xe

)∣∣∣∣�2S

〉
,

�E (1)(2P) =
〈
�2P

∣∣∣∣
(

α

xμe
− α

xe

)∣∣∣∣�2P

〉
,

(6)

where the superscript (1) is used to denote the contribution of
first-order perturbation theory. For the 2S electronic state the
matrix element has the form

�E (1)(2S) = (WeWμ)3

8π2

∫
dxedxμ

(
1 − 1

2
Wexe

)2

e−2Wμxμe−Wexe

(
α

|xμ − xe| − α

xe

)

= αWe

[
−1

4
+ 8 + a1{20 + a1[12 + a1(10 + a1)]}

(2 + a1)5

]
= Weα

(
−1

4
a2

1 + 5

8
a3

1 − 63

64
a4

1 + O
(
a5

1

))
, (7)

a1 = We

Wμ

= (Z − 1)

Z

Me

Mμ

.

Averaging over the orbital angular momentum projections by means of the relation

1

3

∑
λ

ε
∗(λ)
i ε

(λ)
j = 1

4π
δi j, (8)

the matrix element for the 2P electronic state can be calculated analytically in the same way,

�E (1)(2P) = (WeWμ)3

96π2

∫
dxedxμ(Wexe)2e−2Wμxμe−Wexe

(
α

|xμ − xe| − α

xe

)

= αWe

[
−1

4
+
[
(2 + a1)5 − 6a4

1 − a5
1

]
4(2 + a1)5

]
= Weα

(
− 3

64
a4

1 + 7

64
a5

1 + O
(
a6

1

))
, (9)

and an expansion in a1 converges well, because numerical val-
ues of a1 for muonic ions of lithium, beryllium, and boron are
small: a1(Li) = 0.003 276, a1(Be) = 0.003 673, and a1(B) =
0.003 909. The parameter a1 = (Z − 1)Me/ZMμ determines

the recoil effects in Me/Mμ and acts as a small parameter
used in the framework of perturbation theory for the �H
interaction. In this approach, there are various recoil cor-
rections, which are determined by the parameter a1 and the
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Hamiltonian �Hrec (see Sec. III). We see that the recoil cor-
rections in a1 are smaller for the 2P state than for the 2S state.
The main contribution to the electronic Lamb shift of O(α2)
is obtained from (7) (it is indicated by the index LO):

�E (1)
LO (2P-2S) ≈ Weα

a2
1

4
= Meα

2

4

(Z − 1)3M2
e

Z2M2
μ

. (10)

Thus, the electronic Lamb shift occurs in such three-particle
systems of O(α2) due to the Coulomb interaction of all parti-
cles. Note that the recoil correction 〈�|�Hrec|�〉 is equal to 0
for both states of the electron. The refinement of the result (10)
is related to the inclusion of corrections in the higher orders
of perturbation theory in α and me/mμ.

In the second order of perturbation theory, the correction to
energy levels is determined by the expression

�E (2) =
∫

ψμ0(xμ)ψe1(xe)

(
α

xμe
− α

xe

)

×
∑
n,n′

ψμn(xμ)ψen′ (xe)ψμn(x′
μ)ψen′ (x′

e)

Eμ0 + Ee1 − Eμn − Een′

× ψμ0(x′
μ)ψe1(x′

e)

(
α

x′
μe

− α

x′
e

)
dxμdx′

μdxedx′
e,

(11)

where ψμ0(xμ) is the muon wave function in the ground state,
ψe1(xe) is the electronic wave function in states 2S and 2P
(or 1S). A superscript (2) is used to denote the contribution
of second-order perturbation theory. The reduced Coulomb
Green’s function entering (11) is determined by the sum over
the excited muonic n and electronic n′ states. When determin-
ing the reduced Green’s function, the initial state in the sum
over n and n′ is excluded. Let us split the complex matrix
element (11) into several simpler ones, highlighting certain
states of the muon. Let the muon be in an intermediate state
n = 0. Then from (11) we get the first part of the correction

�E (2)
1 =

∫
ψμ0(xμ)ψe1(xe)

(
α

xμe
− α

xe

)
ψμ0(xμ)ψμ0(x′

μ)

×
∑

n′

ψen′ (xe)ψen′ (x′
e)

Ee1 − Een′

× ψμ0(x′
μ)ψe1(x′

e)

(
α

x′
μe

− α

x′
e

)
dxμdx′

μdxedx′
e,

(12)

where we use the subscript 1 to denote the contribution with
n = 0.

The reduced Coulomb Green’s function of an electron for
an excited state with n = 2 has two parts. Only the part G̃e

2S
gives a nonzero contribution to this matrix element, which has
the form [19]

G̃e
2S (r1, r2) = − (Z − 1)αM2

e

16πx1x2
e−(x1+x2 )/2g2S (x1, x2),

g2S (x1, x2) = 8x< − 4x2
< + 8x> + 12x<x> − 26x2

<x> + 2x3
<x> − 4x2

> − 26x<x2
> + 23x2

<x2
> − x3

<x2
> + 2x<x3

> − x2
<x3

>

+ 4ex< (1 − x<)(x> − 2)x> + 4(x< − 2)x<(x> − 2)x>[−2γ + Ei(x<) − ln(x<) − ln(x>)], (13)

where x< = min(x1, x2), x> = max(x1, x2), xi = Weri, and γ is the Euler constant. Simple matrix elements over the muon
coordinates are calculated analytically:

Vμ(xe) =
∫

ψμ0(xμ)

(
α

xμe
− α

xe

)
ψμ0(xμ)dxμ = − α

xe
(1 + Wμxe)e−2Wμxe . (14)

The remaining integration over the coordinates of the electron can also be performed analytically, giving the result

�E (2)
1 (2S) =

∫
ψe1(xe)

(
− α

xe

)
(1 + Wμxe)e−2Wμxe dxe

∫
ψe1(x′

e)

(
− α

x′
e

)
(1 + Wμx′

e)e−2Wμx′
e dx′

eG̃e
2S (xe, x′

e)

= −Meα
2

8

[
25

16
a3

1 − a4
1

(
191

32
+ 4 ln a1

)
+ O

(
a5

1

)]
, (15)

where the final answer is presented with the accuracy O(a4
1) in the form of an expansion in powers of the ratio of the effective

masses of particles Me/Mμ.
Similarly, we can consider another contribution when the muon is in excited intermediate states n 
= 0. This contribution can

be represented as

�E (2)
2 (2S) =

∫
ψμ0(xμ)ψe1(xe)

α

|xμ − xe|dxμdxe

∑
n 
=0

ψμn(xμ)ψμn(x′
μ)Ge(xe, x′

e, z)
α

|x′
μ − x′

e|
ψμ0(x′

μ)ψe1(x′
e)dx′

μdx′
e, (16)

where we use the subscript 2 to denote the contribution with n 
= 0.
The Coulomb Green’s function of the electron standing here depends on the parameter z = Eμ0 − Eμn + Ee1. In the leading

order with respect to the particle mass ratio, we approximate Ge(xe, x′
e, z) in the form of the Green’s function of a free electron

[1,2]:

Ge(xe, x′
e, z) = −Me

2π

1

|xe − x′
e|

e−b|xe−x′
e|, b = √

2Me(Eμ0 − Eμn + Ee1). (17)
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As discussed in [1,2], the terms that we neglect in this case in the energy spectrum have, in comparison with the ones left, the
smallness factor O((Me/Mμ)1/2).

Then the second part of the correction in the second order of the perturbation theory takes the form

�E (2)
2 (2S) = −Meα

2

2π

∫
ψμ0(xμ)ψe1(xe)

1

|xμ − xe|dxμdxe

∑
n 
=0

ψμn(xμ)ψμn(x′
μ)

× 1

|xe − x′
e|

e−b|xe−x′
e| 1

|x′
e − x′

μ|ψμ0(x′
μ)ψe1(x′

e)dx′
μdx′

e. (18)

Replacing the value of the electronic wave function ψe1(x′
e) with its value at zero, we first perform integration over x′

e,

I =
∫

dx′
eψe1(x′

e)
1

|xe − x′
e||x′

e − x′
μ|eb|xe−x′

e|

= 4π

b2
ψe1(0)

1

|xe − x′
μ|
(
1 − e−b|xe−x′

μ|)

= 4πψe1(0)

[
1

b
− 1

2
|xe − x′

μ| + b

6
|xe − x′

μ|2 + · · ·
]
, (19)

where we also expanded the function in (19) in b|xe − x′
μ|. The corrections that we neglect using the approximation in (19) are

of order Me/Mμ. The term 1/b in square brackets vanishes due to the orthogonality of the muon wave functions. Leaving the
leading term in square brackets proportional to |xe − x′

μ|, we will use the completeness relation in calculating the integrals over
the coordinates of the particles: ∑

n 
=0

ψμn(x3)ψ∗
μn(x2) = δ(x3 − x2) − ψμ0(x3)ψ∗

μ0(x2). (20)

Direct calculation of integrals with functions from the right-hand side (18) gives the following results corresponding to two
terms in (20) after expansion in a1:

�E (2)
21 (2S) = −16Meα

2, �E (2)
22 (2S) = Meα

2

[
16 + 105

128
a3

1 − 481

512
a4

1 + O(a5
1)

]
. (21)

We denote these contributions by the subscripts 21 and 22.
Let us now calculate the second-order correction of perturbation theory for the 2P state. Let us first choose a muon in an

intermediate state with n = 0. Such a contribution will be determined by the integral

�E (2)
1 (2P) =

∫
ψe1(xe)

(
− α

xe

)
(1 + Wμxe)e−2Wμxe dxe

∫
ψe1(x′

e)

(
− α

x′
e

)
(1 + Wμx′

e)e−2Wμx′
e dx′

eG̃e
2P(xe, x′

e). (22)

The reduced Coulomb Green’s function of the electron for the excited state 2P has the form

G̃(2P) = − Zαμ2

36x2
1x2

2

e−(x1+x2 )/2 3

4π

x1x2

x1x2
g2P(x1, x2),

g2P(x1, x2) = 24x3
< + 36x3

<x> + 36x3
<x2

> + 24x3
> + 36x<x3

> + 36x2
<x3

> + 49x3
<x3

> − 3x4
<x3

> − 12ex< (2 + x< + x2
<)x3

> − 3x3
<x4

>

+ 12x3
<x3

>[−2C + Ei(x<) − ln(x<) − ln(x>)]. (23)

As in the case of the 2S state, all coordinate integrals can be calculated analytically. Expanding the final result in powers of
a1 = We/Wμ with precision O(a6

1), we get

�E (2)(2P) = −Meα
2

[
7

2048
a5

1 − 9

8192
a6

1 + O
(
a7

1

)]
. (24)

As it follows from the expansions (9) and (24), the order of the correction in a1 for the 2P electronic state increases in comparison
with the 2S electronic state and its magnitude decreases significantly. Let us study the second contribution for the 2P state
connected with muonic excitations, which initially can be written in the form

�E (2)
2 (2P) = −Meα

2

8π2

∫
ψμ0(xμ)ψe2P(xe)

dxe

|xμ − xe|dxμ

∑
n 
=0

ψμn(xμ)ψμn(x′
μ)

dx′
e

|x′
μ − x′

e|

× e−b|xe−x′
e| 1

|xe − x′
e|

ψμ0(x′
μ)ψe2P(x′

e). (25)
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After the variable shifts xe → xe + xμ and x′
e → x′

e + x′
μ we can neglect xμ and x′

μ in electronic wave functions and present the
leading-order contribution in the mass ratio Me/Mμ in (25) as follows:

�E (2)
2 (2P) = − Meα

2

192π2
W 5

e

∫
dxe

xe

dx′
e

x′
e

e−Wexe/2e−Wex′
e/2e−b|xe−x′

e| 1

|xe − x′
e|

×
∑
n 
=0

ψμn(xμ)xμψμ0(xμ)ψμn(x′
μ)x′

μψμ0(x′
μ). (26)

Then all integrals over the electronic coordinates can be calculated analytically, giving the result

�E (2)
2 (2P) = −Meα

2(Z − 1)

36Z

W 3
e

W 3
μ

(Sd + Sc) =

⎧⎪⎨
⎪⎩

7
3Liμe, −0.014 GHz
9
4Beμe, −0.023 GHz
11

5Bμe, −0.029 GHz,

Sd =
∞∑

n=2

n2

n2 − 1
|〈ψμ0|Wμxμ|ψμn〉|2 =

∞∑
n=2

28n9(n − 1)2n−6

(n + 1)2n+6
= 2.747 443 . . . , (27)

Sc =
∫ ∞

0
kdk

28

(1 − e−2π/k )

1

(k2 + 1)6

∣∣∣∣
(

1 + ik

1 − ik

)i/k∣∣∣∣
2

= 0.627 556 . . . .

The results obtained show that the expansion parameter, which works in the framework of perturbation theory in �H [Eq. (2)],
is the particle mass ratio Me/Mμ ≈ me/mμ.

Let us conclude this section by calculating the interaction correction �H in the second order of perturbation theory for the
electronic state 1S:

�E (2)(1S) =
∫

ψμ0(xμ)ψe0(xe)

(
α

xμe
− α

xe

)∑
n,n′

ψμn(xμ)ψen′ (xe)ψμn(x′
μ)ψen′ (x′

e)

Eμ0 + Ee0 − Eμn − Een′

× ψμ0(x′
μ)ψe0(x′

e)

(
α

x′
μe

− α

x′
e

)
dxμdx′

μdxedx′
e. (28)

Let us first extract, as before, the contribution of the muon in the ground state n = 0:

�E (2)
1 (1S) =

∫
ψμ0(xμ)ψe0(xe)

(
α

xμe
− α

xe

)
ψμ0(xμ)ψμ0(x′

μ)
∑

n′

ψen′ (xe)ψen′ (x′
e)

Ee0 − Een′

× ψμ0(x′
μ)ψe0(x′

e)

(
α

x′
μe

− α

x′
e

)
dxμdx′

μdxedx′
e. (29)

The reduced Coulomb Green’s function of the electron for the ground state G̃e
1S has the form

G̃e
1S (r1, r2) = − (Z − 1)αM2

e

π
e−(x1+x2 )g1S (x1, x2), (30)

g1S (x1, x2) = 1

2x>

− ln 2x> − ln 2x< + Ei(2x<) + 7

2
− 2γ − (x1 + x2) + 1

2x<

(1 − e2x< ).

As in the case of (16), all integrals are calculated analytically and the result of the calculation is

�E (2)
1 (1S) = −Meα

2

[
25

16
a3

1 + a4
1

(
1

32
− 4 ln 2 − 4 ln a1

)
+ a5

1

(
− 565

32
+ 20 ln 2 + 20 ln a1

)
+ O

(
a6

1

)]
, (31)

which we presented in the form of an expansion in terms of a1. Since the expansion starts from the third power of a1, this
contribution to the 2S-1S interval is numerically small compared to the contribution of the leading order.

When calculating the contribution of muonic intermediate states with n 
= 0, we replace the Green’s function of the electron
by the free Green’s function (17) and use the relation completeness, as in (20). Then the second part of the correction will be
determined by the expression

�E (2)
2 (1S) = Meα

2ψe0(0)
∫

ψμ0(x2)ψe0(x1)
|x1 − y2|
|x1 − x2|dx1dx2ψμ0(y2)dy2[δ(x2 − y2) − ψμ0(x2)ψ∗

μ0(y2)]. (32)
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The δ-function term contributes �E (2)
21 (1S) = 8Meα

2 and the second part in the completeness condition reduces to the integral

�E (2)
22 (1S) = −2Meα

2a3
1

∫ ∞

0
dx e−4x(1+a1/4)(−1 − x + e2x )(−2 − x + 2e2x(1 + x2)]

= −2Meα
2

[
4 + 2a2

1 − 105

32
a3

1 + O
(
a4

1

)]
. (33)

As a result, the second part of the correction in the second order of the perturbation theory for the 1S state takes the form

�E (2)
2 (1S) = �E (2)

21 (1S) + �E (2)
22 (1S) = −2Meα

2

[
2a2

1 − 105

32
a3

1 + O
(
a4

1

)]
. (34)

III. VACUUM POLARIZATION, NUCLEAR STRUCTURE, AND RECOIL CORRECTIONS

The electron vacuum polarization correction �VVP in (1) has three contributions, one for each pair of charged particles. They
are determined by the expressions

�V eN
VP (xe) = α

3π

∫ ∞

1
ρ(ξ )

(
−Zα

xe

)
e−2meξxe dξ, ρ(ξ ) =

√
ξ 2 − 1(2ξ 2 + 1)

ξ 4
, (35)

�V μN
VP (xμ) = α

3π

∫ ∞

1
ρ(ξ )

(
−Zα

xμ

)
e−2meξxμdξ, (36)

�V eμ
VP (|xe − xμ|) = α

3π

∫ ∞

1
ρ(ξ )

α

xeμ
e−2meξxeμdξ . (37)

When studying the energy levels of light two-particle muonic atoms, it was found that the contribution of the electron vacuum
polarization is the main one both for the 2P-2S Lamb shift and for the 2S-1S interval [20,21]. Therefore, we will take into account
the correction for vacuum polarization to the Coulomb potential (36). For any electronic states 1S, 2S, and 2P, this correction
in the energy spectrum is the same; therefore, for the 2P-2S and 2S-1S intervals, the contribution is zero. In the second order of
perturbation theory, the vacuum polarization contribution (36) is determined by the integral expression

�E (2)μN
VP = 2α

3π

∫
ψμ0(xμ)ψe1(xe)

(
−Zα

xμ

)∑
n,n′

ψμn(xμ)ψen′ (xe)ψμn(x′
μ)ψen′ (x′

e)

Eμ0 + Ee1 − Eμn − Een′

× ρ(ξ )e−2meξxμdξψμ0(x′
μ)ψe1(x′

e)

(
α

x′
μe

− α

x′
e

)
dxμdx′

μdxedx′
e. (38)

Taking into account the orthogonality of the electronic wave functions in the initial and intermediate states, it is necessary to
set n′ = nL (1S, 2S, and 2P). Then the difference in the contribution of the muon-nuclear polarization of the vacuum will be
connected with the remaining integral over the coordinates of the electron in this matrix element. For the states 1S, 2S, and 2P
these integrals have the form

J1 =
∫ ∣∣ψe

1S (x′
e)
∣∣2( α

x′
μe

− α

x′
e

)
= 2αWe

e−Wex′
μ

Wex′
μ

[−Wex′
μ cosh(Wex′

μ) + sinh(Wex′
μ)
]
, (39)

J2 =
∫ ∣∣ψe

2S (x′
e)
∣∣2( α

x′
μe

− α

x′
e

)
= αWe

4

1

2Wex′
μ

(8 − 2Wex′
μ + e−Wex′

μ{−8 − Wex′
μ[6 + Wex′

μ(2 + Wex′
μ)]}), (40)

J3 =
∫ ∣∣ψe

2P(x′
e)
∣∣2( α

x′
μe

− α

x′
e

)
= αWe

48

1

Wex′
μ

[−12Wex′
μ − 36Wex′

μe−Wex′
μ

+ 48(1 − e−Wex′
μ ) − 12(Wex′

μ)2e−Wex′
μ − 2(Wex′

μ)3e−Wex′
μ]. (41)

Given the explicit expressions for Ji, it is possible to perform analytical integration over the particle coordinates in (38).
Expanding in the parameter a1 and integrating over the remaining spectral parameter ξ , we obtain the contribution in the form

�E (2)μN
VP (1S) = 64α2Wμ

3π

∫
ρ(ξ )dξ

∫ ∞

0
xμdxμ

∫ ∞

0
x′
μdx′

μg1S (xμ, x′
μ)e−2xμ(1+a2ξ )e−2x′

μ(1+a1/2)[−a1x′
μ cosh(a1x′

μ) + sinh(a1x′
μ)]

= α2Wμa3
1

432π
(
1 − a2

2

)9/2

{
−8

(
1 − a2

2

)3/2(−152 + 978a2
2 − 2763a4

2 + 2924a6
2 − 1032a8

2 − 516πa3
2 + 1548πa5

2

− 1548πa7
2+516πa9

2

)+ 24
(
48 − 216a2

2 + 948a4
2 − 2285a6

2 + 2709a8
2 − 1548a10

2 + 344a12
2

)
ln

a2

1−
√

1− a2
2

}
,

(42)
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�E (2)μN
VP (2S) = α2Wμa3

1

3456π
(
1 − a2

2

)4

{
−[1216 + a2

2

(−9040 + a2
(
29 928a2 − 45 496a3

2 + 31 648a5
2 − 8256a7

2 + 4128
(
1 − a2

2

)
π
))]

+ 24
√

1 − a2
2

(−48 + 168a2
2 − 780a4

2 + 1505a6
2 − 1204a8

2 + 344a10
2

)
ln

a2

1 +
√

1 − a2
2

}
, (43)

�E (2)μN
VP (2P) = α2Wμa5

1

230 400π
(
1 − a2

2

)11/2

{√
1 − a2

2

(
32 804 − 290 020a2

2 + 1 252 145a4
2 − 2 539 811a6

2

+ 2 636 152a8
2 − 1 368 800a10

2 + 283 200a12
2 + 141 600πa3

2 − 708 000πa5
2 + 14 116 000πa7

2 − 1 416 000πa9
2

+ 708 000πa11
2 − 141 600πa13

2

)+ 15
(−1920 + 10 560a2

2 − 59 010a4
2 + 174 877a6

2 − 273 565a8
2

+ 233 640a10
2 − 103 840a12

2 + 18 880a14
2

)
ln

a2

1 −
√

1 − a2
2

}
, (44)

where the parameter a2 = me/Wμ. We have presented here
only the first terms of the expansions in the parameter a1,
which give the numerical values of the contributions with high
accuracy.

Let us consider the calculation of other corrections for vac-
uum polarization, which are determined by the potentials (35)
and (37) and appear already in the first order of perturbation
theory. In the electron-nucleus interaction, the correction for
vacuum polarization for S states is determined by the expres-
sion

�E (1)eN
VP (nS) = −4α(Zα)me

15π

(We

me

)3

. (45)

To estimate the value of the 2S-1S energy interval, this cor-
rection is not very significant, since it has values of tens of
gigahertz. It is more important for the total value of the 2P-2S

Lamb shift. In the case of the 2P state, the correction for
vacuum polarization has the form

�E (1)eN
VP (2P) = −α(Zα)me

560π

(We

me

)5

(46)

and is very small. Therefore, the value of this correction to the
2P-2S shift is determined by (45):

�E (1)eN
VP (2P − 2S) =

⎧⎪⎨
⎪⎩

7
3Liμe, 0.650 GHz
9
4Beμe, 2.929 GHz
10

5Bμe, 8.680 GHz.

(47)

The correction of the muon-electron vacuum polarization
[the potential (37)] is also important for the 2P-2S shift.
Taking into account the expansion terms a2

1 and a3
1, it takes

the form

�E (1)eμ
VP (2P-2S) = −α2We

3π
a2

1

{
2

5a2
2

+ a1

480a4
2

√
4 − a2

2

[√
4 − a2

2

(−620a4
2 − 120a6

2 − 150πa2 − 270πa3
2 + 135πa5

2 + 30πa7
2

)

+ 30a4
2

(−40 + 5a2
2 + 2a4

2

)
ln

2 −
√

4 − a2
2

a2

]}
=

⎧⎪⎨
⎪⎩

7
3Liμe, −0.212 GHz
9
4Beμe, −0.711 GHz
11

5Bμe, −1.670 GHz.

(48)

Another correction in the energy spectrum that improves
the accuracy of the results is the correction for the structure of
the nucleus. In two-particle muonic atoms, the correction for
the structure of the nucleus is significant, since the muon is
closer to the nucleus than the electron. The interaction poten-
tials of a muon and a nucleus and of an electron and a nucleus,
necessary for calculating the correction, are determined by the
formulas

�V μN
str (xμ) = 2

3
π (Zα)r2

Nδ(xμ),

�V eN
str (xe) = 2

3
π (Zα)r2

Nδ(xe), (49)

respectively, where rN is the nuclear charge radius. The po-
tential �V μN

str (xμ) does not contribute to the 2S-1S and 2P-2S
shifts in the first order of perturbation theory, since it depends
only on the muon coordinate. The �V μN

str (xμ) contribution in
the second order of perturbation theory is expressed in terms
of the reduced Coulomb Green’s function of the muon 1S state
with one zero argument, which has the form

G̃μ
1S (r) = ZαM2

μ

4π

e−x

x
g1S (x),

g1S (x) = [
4x(ln 2x + C) + 4x2 − 10x − 2

]
. (50)
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The different kind of correction for the electronic states
1S, 2S, and 2P is determined by the same functions Ji

[Eqs. (39)–(41)] as for vacuum polarization. The initial inte-
gral expression for this correction is presented as

�E (2)μN
str (nL)

= 4

3
(Zα)r2

NW 3
μ

∫
G̃μ

1S (xμ)Ji(xμ)e−Wμxμdxμ. (51)

For all electronic states, coordinate integration is performed
analytically and the results can be presented as

�E (2)μN
str (1S)

= 8

3
α(Zα)r2

NW 2
μ Mμa3

1

[
−11

6
+ 155

24
a1 + O

(
a2

1

)]
, (52)

�E (2),μN
str (2S)

= 1

3
α(Zα)r2

NW 2
μ Mμa3

1

[
−11

6
+ 155

24
a1 + O

(
a2

1

)]
, (53)

�E (2)μN
str (2P)

= − 1

2880
α(Zα)r2

NW 2
μ Mμa5

1

[
591 − 1659a1 + O

(
a2

1

)]
.

(54)

The high degree of a1 in (54) for the 2P state makes this
correction in the Lamb shift negligible. The second potential
from (49) gives a known contribution already in the first order
of perturbation theory:

�E (1),eN
str (nS) = 2

3n3
(Zα)4r2

N M3
e δl0. (55)

The numerical values of the corrections (53) and (55) are
important to refine the results on the Lamb shift, since they
are tenths of a gigahertz.

The nuclear recoil contribution is determined by the Hamil-
tonian �Hrec. In the first-order perturbation theory the recoil
correction is equal to zero due to the vanishing of the integral
over the angular variables. For the same reason, the state of the
muon with n = 0 in the second order of perturbation theory
does not contribute. The muon contribution with n 
= 0 can be
written in the second-order perturbation theory as

�E (2)
rec (2S)=−MeW 2

μW 2
e

8πm2
N

∫
ψμ0(xμ)

∂

∂x′
e

ψe2S (xe)
xμxe

xμxe
dxμdxe

∑
n 
=0

ψμn(xμ)ψ∗
μn(x′

μ)
e−b|xe−x′

e|

|xe − x′
e|

x′
μx′

e

x′
μx′

e

ψμ0(x′
μ)

∂

∂x′
e

ψe2S (x′
e)dx′

μdx′
e.

(56)

In this expression, the integral symmetric tensor in the coordinates of the electron can be distinguished

Ji j =
∫

dxedx′
e

xe
ix′

e
j

xex′
e

e−b|xe−x′
e|

|xe − x′
e|

∂

∂x′
e

ψe2S (xe)
∂

∂x′
e

ψe2S (x′
e) = δi jA, (57)

where the value of the integral is found after convolution with the tensor δi j :

A = π

3W 2
e

(4b2
1 − 13b4

1), b2
1 = Me

Mμ

(Z − 1)2

Z2

n2

n2 − 1
. (58)

A similar calculation for the 2P state gives a factor 4b2
1 − 7

3 b4
1 in the corresponding integral for the 2P state. In the difference,

the first terms cancel out and the final result has the form

�E (2)
rec (2P-2S) = −16

9

Meα
2M2

e (Z − 1)4

Z2m2
N

∫
dxμ

∫
dx′

μ

∑
n 
=0

ψ∗
μ0(xμ)

xμ

xμ

ψμn(xμ)ψ∗
μ0(x′

μ)
x′

μ

x′
μ

ψμn(x′
μ)

n4

(n2 − 1)2
. (59)

The square of the radial integral for the 1S → nP transition has the form

(
InP
1S

)2 = 4

n(n2 − 1)

[
1 − (5n2 − 1)

(n2 − 1)

(n − 1)n

(n + 1)n

]2

, InP
1S =

∫ ∞

0
R10(r)Rn1(r)r dr. (60)

Then the contributions of discrete and continuous spectra in (59) are determined by the expressions

Cd =
∞∑

n=2

4n3

(n2 − 1)3

[
1 − (5n2 − 1)

(n − 1)n−1

(n + 1)n+1

]
= 0.474 899 . . . , (61)

Cc =
∫ ∞

0

4kdk

(k2 + 1)3(1 − e−2π/k )

[
1 − (5 + k2)

(1 + k2)

(
1 + ik

1 − ik

)i/k]2

= 0.129 105 . . . . (62)

As a result, the total value of the correction (59) in the Lamb shift is

�E (2)
rec (2P-2S) = −16

27

Meα
2M2

e (Z − 1)4

Z2m2
N

(Cd + Cc) =

⎧⎪⎨
⎪⎩

7
3Liμe, −0.026 GHz
9
4Beμe, −0.044 GHz
11

5Bμe, −0.060 GHz.

(63)
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TABLE I. Electronic 2S-1S energy interval in gigahertz.

Contribution
(
μe 7

3Li
) (

μe 9
4Be

) (
μe 11

5B
)

Eq. (65) 9.868 999 × 106 22.205 543 × 106 39.476 833 × 106

vacuum polarization correction 2.140 13.418 45.433
nuclear structure correction −0.188 −0.527 −1.286
relativistic correction 481.832 2439.636 7711.943
QED correction −95.367 −420.460 −1189.068
summary 9.8690 × 106 22.2055 × 106 39.4768 × 106

IV. NUMERICAL RESULTS

The total analytical contribution of the perturbation operators �H and �Hrec obtained in the first and second orders of
perturbation theory to the 2P-2S Lamb shift is

�E (2P-2S) = Meα
2
[Z − 1

4
a2

1 − 5Z

8
a3

1 − Z − 1

36Z
a3

1(Sd + Sc) − 16

27

M2
e (Z − 1)4

Z2m2
N

(Cd + Cc) +
(

15Z

16
− 381

512

)
a4

1 − 1

2
a4

1 ln a1

]
.

(64)

Similarly, the 2S-1S energy interval obtained taking into account the recoil effects according to the perturbation theory with the
Hamiltonian �H is

�E (2S-1S) = Meα
2

[
(Z − 1)2

2
+ 7

4 (Z − 1)a2
1 +

(
5 − 25

8
Z

)
a3

1 +
(

513

64
Z − 4203

512

)
a4

1 + 1
2 a4

1 ln a1

]
. (65)

Using the values of the fundamental parameters of the the-
ory, one can obtain from the formulas (64) and (65) numerical
estimates of the electronic Lamb shift and the 2S-1S interval
for muonic lithium (7

3Li), beryllium (9
4Be), and boron (11

5B)
ions, which are presented in Tables I and II. The calculation of
the 2S-1S and 2P-2S energy intervals is also performed by us
within the framework of the variational method formulated in
[14,15] with very high accuracy (see Sec. V). Our analytical
results coincide with numerical calculations of 2S-1S in the
variational approach with an accuracy of 0.0001 GHz. In the
case of the Lamb shift, the difference between the results from
Table II (see row 1) from the variational calculations turns out
to be more significant. Here are the results of the variational
method with an accuracy of 0.001 GHz:

�ELi(2P-2S)7 = 36.568 GHz,

�EBe(2P-2S) = 68.015 GHz, (66)

�EB(2P-2S) = 101.947 GHz.

This difference between (66) and the results in line 1 of
Table II is due to the approximation that we use in analytical
calculations in the second order of perturbation theory. Ex-

TABLE II. Electronic 2P-2S Lamb shift in gigahertz.

Contribution
(
μe 7

3Li
) (

μe 9
4Be

) (
μe 11

5B
)

Eq. (64) 34.837 65.684 99.214
vacuum polarization correction 0.306 1.916 6.491
nuclear structure correction −0.027 −0.075 −0.184
relativistic correction 0 0 0
QED correction −14.257 −63.273 −180.004
summary 20.859 4.252 −74.483

panding in the parameter b [Eq. (19)], we take into account the
leading-order correction in Me/Mμ and therefore neglect the
contributions of O(

√
Me/Mμ) with respect to the contribution

considered.
The corrections for the nuclear structure and vacuum po-

larization calculated in Sec. III are included in Tables I and II
in separate rows. They are important for refining the 2P-2S
Lamb shift. There are two more important corrections that
must be taken into account when obtaining the total numerical
value of the energy interval: the relativistic correction and
the QED correction, which is the main one for obtaining the
Lamb shift in the hydrogen atom. An analytical expression is
known for it, which we represent in the form without vacuum
polarization correction [22]:

�EQED(nS) = α[(Z − 1)α]4

πn3

M3
e

m2
e

[
4

3
ln

me

Me(Z − 1)2α2

− 4

3
ln k0(nS) + 10

9

]
, (67)

�EQED(2P) = α[(Z − 1)α]4

8π

M3
e

m2
e

[
−4

3
ln k0(2P) − me

6Me

]
.

(68)

Relativistic corrections of O(α4) and O(α6) connected with
the motion of the electron are also known in analytical form
[22]. They can be important only for the 2S-1S interval. As
we noted at the beginning of this work, the electronic Lamb
shift in muon-electron ions of lithium, beryllium, and boron
appears already in O(α2) [Eq. (64)], but the main term is
also proportional to a2

1. Thus, Eq. (64) contains two small
expansion parameters. Although the QED corrections (67)
and (68) have a high order of smallness in α, they also depend
on the nuclear charge Z , which leads to an increase in this
correction when passing to ions with large Z . As a result, with
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TABLE III. Various contributions to the �E (2S-1S) and
�E (2P1/2-2S) energy intervals in the (μe 7

3Li) ion (in gigahertz) in
the variational method.

Contribution �E (2S-1S) �E (2P1/2-2S)

ENR 9 869 022.575 36.568
�EBP 482.067 116.833
�Efs(2P1/2) −117.019
�EμN −0.649 −0.056
�EVP 3.038 0.434
�EQED −95.367 −14.257
�EHO-QED −1.56(2) −0.221(2)
Etot 9 869 410.10(2) 22.160(2)

an increase in Z , the effect of compensation for two correc-
tions is observed. If for the lithium ion the value of the 2P-2S
shift is positive, then for the boron ion it becomes negative and
for the beryllium ion the QED correction and (64) are almost
completely canceled. The obtained total values of the 2P-2S
and 2S-1S energy intervals in Tables I and II can serve as a
reference point for comparison with future experimental data.
They are presented with an accuracy of three digits after the
decimal point according to the obtained analytical formulas.

Nevertheless, the calculation accuracy is not so high, since a
number of approximations are used in the work to calculate
the recoil effects Me/Mμ. We can estimate the contribution
of some of the unaccounted for terms to the 2P-2S Lamb
shift connected with this expansion to 0.5 GHz. We have
estimated the uncalculated terms using the main factors α and
Me/Mμ determining the order of the contribution, as well as
the obtained numerical results. It is possible that the exact
calculation of the corresponding coefficients will lead to the
coincidence of the complete variational results and the results
of analytical perturbation theory.

V. EXPLICIT THREE-BODY FORMALISM

The obtained results can be improved using the variational
method in the three-body problem. Numerically, the nonrela-
tivistic Schrödinger solution may be obtained via a variational
approach with almost arbitrary precision [23]. The variational
approach also allows us to calculate different corrections by
the perturbation theory. Let us focus on the calculation of
relativistic corrections which are equal to zero in a two-body
approximation. Relativistic corrections are determined by the
Breit-Pauli Hamiltonian [24,25]

HBP = − p4
e

8m3
+ 1

8m2
4π [Zδ(xe) − δ(xμe)] + Z

2

pi
e

me

(
δi j

r1
+ ri

1r j
1

r3
1

)
P j

N

M
− 1

2

pi
e

me

(
δi j

xμe
+ xi

μex j
μe

x3
μe

)
pj

μ

mμ

, (69)

where PN = −(pμ + pe) and xμe = xe − xμ. For the 2P state we have as well the fine-structure contribution to the Hamiltonian

�Hfs = bfs(se · L), (70)

where L is an operator of the total orbital momentum of the three-body system and bfs is expressed in terms of the reduced
matrix elements of the three-body operators as [23,25]

bfs = (2 Ry)
α2

√
L(L + 1)(2L + 1)

{
Z (1 + 2ae)

2m2
e

〈
L

∥∥∥∥xe × pe

x3
e

∥∥∥∥L

〉
+ Z (1 + ae)

Mme

〈
L

∥∥∥∥xe × PN

x3
e

∥∥∥∥L

〉

−1 + 2ae

2m2
e

〈
L

∥∥∥∥xμe × pe

x3
μe

∥∥∥∥L

〉
− 1 + ae

mμme

〈
L

∥∥∥∥xμe × pμ

x3
μe

∥∥∥∥L

〉}
,

where Ry is the Rydberg constant and ae is the electron
anomalous magnetic moment. The results of numerical com-
putation of relativistic and other corrections for the μe 7

3Li ion
are summarized in Table III.

The largest contribution to the leading-order QED (one-
loop) corrections is the vacuum polarization (36) due to the
small subsystem (μN). For the case of the μe 7

3Li ion �EμN
VP =

−14 814 915 GHz. Still, the total contribution of this leading
vacuum polarization correction to the 2S-1S energy interval
is smaller than 1 GHz, since the wave function of the small
subsystem differs too little between the states under consider-
ation.

The other QED contributions can be calculated using a
simplified two-body approximation with a pseudonucleus μN
by means of the formulas (35) and (37) for the vacuum po-
larization and Eqs. (67) and (68) for the one-loop self-energy.
Higher-order QED contributions are also important and have
to be included. The following one- and two-loop corrections

[26] have been taken into consideration,

�E1-loop(nS) = α(Z∗α)5

πn3

{
4π

(
139

128
− 1

2
ln 2 + 5

192

)

+ (Z∗α)[− ln2(Z∗α)−2

+ A61(nS) ln(Z∗α)−2]

}
+ · · · ,

�E1-loop(2P1/2) = α(Z∗α)6

πn3

[
103

180

]
ln(Z∗α)−2,

�E2-loop(nS) = α2(Z∗α)4

π2n3
[0.538 941], (71)

where Z∗ = Z − 1 is the charge of a pseudonucleus and the
state-dependent coefficient A61(nS) is taken as in [26] [Eq.
(2.5) therein]. For the purposes of our study, the accuracy
that is determined by the formula (71) is sufficient. Numerical

052806-10



LOW-LYING ELECTRON ENERGY LEVELS IN … PHYSICAL REVIEW A 103, 052806 (2021)

TABLE IV. The �E (2S-1S) and �E (2P1/2-2S) energy intervals
for muonic He, Li, Be, and B ions (in gigahertz) in the variational
method.

Muonic ion �E (2S-1S) �E (2P1/2-2S)

(μe 4
2He) 2 467 150.79(1) 9.665(1)

(μe 7
3Li) 9 869 410.10(2) 22.160(2)

(μe 9
4Be) 22 207 596.32(8) 4.022(8)

(μe 11
5B) 39 483 388.3(4) −82.03(4)

calculations of higher-order corrections were performed in
Ref. [27].

The final results of calculations in the three-body formal-
ism are presented in Table IV. The uncertainties indicated
stem from two sources: the uncalculated higher-order contri-
butions and the imperfectness of the pointlike model for the
pseudonucleus.

VI. CONCLUSION

In this work we investigated the energy levels in a muon-
electron-nucleus three-particle system. We calculated the

electronic 2S-1S energy interval and electronic 2P-2S Lamb
shift in electron-muon ions of lithium, beryllium, and boron
using the analytic perturbation theory method and the vari-
ational approach. The results of the calculation in analytic
perturbation theory were presented in Tables I and II. The
results of the calculation on the basis of the variational method
were presented in Tables III and IV. The results obtained
by different methods are in agreement, taking into account
the theoretical errors. We investigated the dependence of the
electronic 2P-2S Lamb shift on the nuclear charge Z . An
interesting effect of 2P and 2S level reorientation was discov-
ered when passing from a beryllium ion to a boron ion. The
extension of studies of the energy levels of electron-muonic
helium in [18] to three-particle systems with other nuclei
could facilitate the experimental study of this issue.
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