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Natural and magnetically induced entanglement of hyperfine-structure states in atomic hydrogen
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The spectrum of atomic hydrogen has long been viewed as a Rosetta stone that bears the key to decode the
writings of quantum mechanics in a vast variety of physical, chemical, and biological systems. Here, we show
that, in addition to its role as a basic model of quantum mechanics, the hydrogen atom provides a fundamental
building block of quantum information. Through its electron- and nuclear-spin degrees of freedom, the hydrogen
atom is shown to lend a physically meaningful frame and a suitable Hilbert space for bipartite entanglement, the
two-qubit concurrence and quantum coherence of which can be expressed in terms of the fundamental physical
constants—the Planck and Boltzmann constants, electron and proton masses, the fine-structure constant, as
well as the Bohr radius and the Bohr magneton. The intrinsic, natural entanglement that the hyperfine-structure
(HFS) states of the H atom store at low temperatures rapidly decreases with a growth in temperature, vanishing
above a τc ≈ 5.35 μeV threshold. An external magnetic field, however, can overcome this thermal loss of HFS
entanglement. As one of the central findings of this paper, we show that an external magnetic field can induce and
sustain an HFS entanglement, against all the odds of thermal effects, at temperatures well above the τc threshold,
thus enabling magnetic-field-assisted entanglement engineering in low-temperature gases and solids.
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I. INTRODUCTION

In its capacity as the simplest of atoms, atomic hydrogen
plays a central role in physics, serving as an ultimate reference
point, a basic model of a bound quantum system, and a source
of closed-form analytical solutions for quantum theories [1,2].
The significance of the H atom for the development of quan-
tum concepts is well documented in the canonical accounts
of the early era of quantum mechanics [2–4]. In a more recent
history, atomic hydrogen has continued to stay one of the most
extensively studied objects of fundamental [5–7] and applied
[8,9] spectroscopy, as well as attosecond physics [10–12],
serving as the basis for understanding the structure of matter
and a highly sensitive probe for experimental tests of the
quantum theory [13,14].

As a fundamental connection to solid-state and low-
temperature physics, recent studies reveal nuclear-polarized
phases of hydrogen atoms embedded in solid H2 films [15,16]
with remarkably large deviations of the low-temperature
nuclear-spin polarization of H atoms from the Boltzmann dis-
tribution [16–18]. This finding raises a number of interesting
and important questions regarding the role of quantum effects
in systems of this class, including the feasibility of quantum
entanglement of H at thermal equilibrium. Important insights
into this question can be found in earlier studies on electron-
spin dynamics in two-electron double-quantum-dot systems
[19,20], which have been shown to offer much promise as

prospective qubits and advantageous building blocks for quan-
tum information technologies [21–23].

In search of insights into these questions, we are led
to revisit the entanglement capacity of the basic building
block of such a hypothetical quantum interface—a sin-
gle hydrogen atom. As we show below in this paper, the
electron- and nuclear-spin degrees of freedom in a hydro-
gen atom provide both a physically meaningful frame and a
suitable Hilbert space for bipartite entanglement. We quan-
tify this entanglement in terms of a two-qubit concurrence
and quantum coherence, revealing a connection of H-atom
entanglement to the fundamental physical constants—the
Planck and Boltzmann constants, electron and proton masses,
the fine-structure constant, as well as the Bohr radius
and the Bohr magneton. The intrinsic, natural entanglement
that the hyperfine-structure (HFS) states of the H atom store
at low temperatures rapidly decreases with a growth in tem-
perature, vanishing above a τc ≈ 5.35 μeV threshold. An
external magnetic field, however, can overcome this thermal
loss of HFS entanglement above τc, enabling magnetic-field-
assisted entanglement engineering in low-temperature gases
and solids.

As one of the prominent earlier efforts to understand
quantum-entanglement properties of the H atom, Tommassini
et al. [24] have analyzed the electron-proton coordinate en-
tanglement, understood as correlations in the electron-proton
motion in the H atom. While the behavior of this electron-
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proton position entanglement as a function of temperature
is yet to be understood, here, we focus on another type of
quantum entanglement built into the H atom—entanglement
related to the nuclear- and electron-spin degrees of freedom.
An illuminating analysis of entanglement of this type has been
earlier presented by Zhu et al. [25], who developed a helpful
formalism for the description of electron- and nuclear-spin
entanglement in the H atom and examined important prop-
erties of that entanglement. Entanglement involving nuclear
degrees of freedom is in no way unique to the H atom. As one
prominent example, nuclear spins in nitrogen-vacancy centers
in diamond have been shown to offer a powerful resource for
quantum information, attracting much interest in the context
of rapidly growing quantum technologies [26–29].

As one of the central findings of our paper, which goes well
beyond the scope of Ref. [25], we demonstrate that an external
magnetic field can induce and sustain an HFS entangle-
ment, against all the odds of thermal effects, at temperatures
well above the τc threshold, thus enabling magnetic-field-
assisted entanglement engineering in low-temperature gases
and solids. Since this in many ways counterintuitive behavior
of entanglement in the H atom is due to the interaction of the
electron and nuclear spins with an external magnetic field, this
effect is not foreseen for the electron-proton coordinate entan-
glement, such as the one studied by Tommassini et al. [24].
Moreover, we extend the analysis of the HFS entanglement
in the H atom to show that the criterion of this entanglement
can be meaningfully expressed in terms of a suitably defined
quantum coherence, providing useful insights into the behav-
ior of the HFS entanglement as a function of temperature and
helping better understand the phenomenon of magnetically
induced entanglement above the τc threshold.

II. THE HAMILTONIAN AND THE HYPERFINE
STRUCTURE OF H

In our analysis of the HFS entanglement of the H atom, we
resort to the standard equation for the spin part of its ground-
state Hamiltonian in an external magnetic field B [30]:

HHF = A(σe · σp) + μBσe · B. (1)

Here, σq = (σ x
q , σ

y
q , σ z

q ) is the vector composed of the Pauli
operators σ x

q , σ
y
q , and σ z

q ; q = e and p for the electron and
proton, respectively; μB = eh̄/2mec is the Bohr magneton;

A = Ah̄2/4 =
[(

2π

3

)(
1

4πε0

)(
h̄2

cπa3
0

)( gee

2me

)(
gpe

2mp

)]

is the HFS constant; e is the electron charge; me and mp are the
electron and proton masses; ge = −γeμB/h̄, gp = γpμN/h̄; γe

and γp are the electron and proton gyromagnetic ratios; μN =
eh̄/2mpc is the nuclear magneton; c is the speed of light in
vacuum; and a0 is the Bohr radius.

The first term in Eq. (1) describes the interaction between
the electron and nuclear spins, Ŝ and Î , H1 = AŜ · Î , with
A = Ah̄2/4. The second term accounts for the interaction
between the electron spin and the external magnetic field B,
H2 = −γeS · B. Interaction between the nuclear spin and B is
much weaker and is neglected.

The energy eigenvalues Eu of the Hamiltonian (1) are
found as solutions to HHF|u〉 = Eu|u〉, yielding [30,31]

FIG. 1. (a) Energy-level diagram of the hyperfine structure of a
ground-state H atom driven by a magnetic field B. (b) The concur-
rence of the HFS states of the H atom as a function of the temperature
T for different values of the normalized magnetic field ξ .

four energy eigenstates [Fig. 1(a)], u = a, b, c, d , with
Ea,c = A(−1 ∓ 2

√
1 + ξ 2) and Eb,d = A(1 ∓ 2ξ ), where

ξ = μBB/(2A), the “–” sign is taken for u = a and b, and
the “+” sign is taken for u = c and d .

The eigenstates of the Hamiltonian (1) can now be repre-
sented as⎛
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|a〉

⎞
⎟⎠ =

⎛
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⎛
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⎞
⎟⎟⎠, (2)

where x± =
√

1+ξ 2±ξ√
1+(

√
1+ξ 2±ξ )2

and y± = ±1√
1+(

√
1+ξ 2±ξ )2

.

To describe the entanglement of the HFS states of the
hydrogen atom, we consider a four-dimensional Hilbert space
with a basis Q(e, p) = {|↑e↑p〉, |↑e↓p〉, |↓e↑p〉, |↓e↓p〉},
where |↑q〉 and |↓q〉 are the electron (q = e) and proton
(q = p) spin-up and spin-down states, |↑e↑p〉 is a state where
both the electron and proton spins are up, |↑e↓p〉 is a state
where the electron spin is up, while the proton spin is down,
|↑e↑p〉 = |↑e〉 ⊗ |↑p〉, and |↑e↓p〉 = |↑e〉 ⊗ |↓p〉. Each state
ket in this four-dimensional space can thus be considered as a
two-qubit state.

III. THE CONCURRENCE

We now consider a hydrogen atom in equilibrium with a
heat reservoir at a temperature τ . Pertinent to the hyperfine
structure of an H atom at such thermal equilibrium is the
density operator ρ(τ ) = 1

Z e−βHHF , where Z = Tr(e−βHHF ) is
the partition function, β = 1/(kBτ ), and kB is the Boltzmann
constant. While quantum entanglement in pure quantum states
is adequately understood in terms of the von Neumann en-
tropy [32,33], a suitable quantifier for the entanglement of
mixed states is much harder to define. Yet, the entanglement
of formation has been shown to satisfactorily address this
problem [34,35], providing a closed-form computable mea-
sure for the entanglement of mixed states, fully applicable to
thermal states as defined by the density operator ρ(τ ) [36,37].
Specifically, given ρ = ρ(τ ), the entanglement of such states
is meaningfully quantified via the concurrence [34,35] C =
max{0, λ1 − λ2 − λ3 − λ4}, where λi, enumerated such that
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FIG. 2. The concurrence of the HFS states of the H atom as a
function of the normalized magnetic field ξ below (a) and above
(b) the critical temperature Tc.

λ1 � λ2 � λ3 � λ4, are the eigenvalues of the Hermitian ma-
trix R = √√

ρρ̃
√

ρ and ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).
With HHF as defined by Eq. (1), the concurrence C becomes

C = 1

Gmax

{
0,

sinh[2βA
√

1 + ξ 2]√
1 + ξ 2

− e−2βA

}
, (3)

where G = e−2βA cosh(2βAξ ) + cosh[2βA
√

1 + ξ 2].
In Fig. 1(b), we plot the concurrence C calculated with

the use of Eq. (3) as a function of temperature T = 1/(βA).
Entanglement is seen to decrease with a rise in T , vanishing
as the temperature is allowed to grow above a critical value
Tc. When no magnetic field is applied, ξ = 0, Eq. (3) yields
Tc = 4/ln3. It is instructive to rewrite this relation as kBτc =
�E/ln3, where �E = Eb,c,d − Ea = 4A is the energy gap
between the highest- and lowest-energy HFS levels at B=0.
To articulate the connection of the critical temperature τc to
the fundamental physical constants, we express it as

τc = 2

3 ln 3

α2h̄2

kBa2
0

gegp

mp
= 4α2 h̄c

3kB ln 3

me

mp
gegpR∞,

where α is the fine-structure constant and R∞ =
mee4/(8ε2

0h3c) is the Rydberg constant.
The HFS entanglement can thus survive only as long as the

thermal energy kBτ is much lower than the HFS splitting �E .
The maximum thermal energy that the natural HFS entangle-
ment (i.e., the HFS entanglement at B = 0) of the H atom can
withstand is kBτc ≈ 5.35 × 10−6 eV, or τc ≈ 6 mK.

The effect of the magnetic field on the concurrence C is
much more complex and much less transparent. At very low
T , where the natural HFS entanglement is high [T � 3 in
Fig. 1(b)], the concurrence C is a rapidly decreasing function
of ξ . However, as T increases, approaching Tc, C(ξ ) gradually
flattens out [Fig. 2(a)], eventually becoming nonmonotonic
[for T � 3.5 in Fig. 2(a)]. This behavior of C(ξ ) is in agree-
ment with the earlier observations by Zhu et al. [25].

It is, however, above the τc threshold that the magnetic
field can have the most dramatic and in many ways counter-
intuitive effect on the HFS entanglement of the H atom. As
one of the central findings of our analysis, which goes well
beyond the scope of Ref. [25], when applied to an H atom at
temperatures T � Tc, an external magnetic field can induce
an entanglement of HFS states against all the odds of thermal
effects, which become strong enough at these temperatures

to completely suppress the entanglement of HFS states in the
B = 0 regime.

This effect is illustrated in Fig. 2(b). Here, the temperature
T is set above the Tc threshold. Thus, as long as B = 0, and
hence ξ = 0, the H atom features no HFS entanglement, C = 0
[see Fig. 1(b)]. Yet, even though all the natural HFS entangle-
ment has been lost at these temperatures, an external magnetic
field can overcome this loss and induce an entanglement in the
HFS manifold. This effect will be referred to hereinafter as
magnetically induced entanglement (MIE). The highest MIE
concurrences C are achieved at temperatures right above Tc

[the solid curve in Fig. 2(b), corresponding to T = 4]. At
higher T , thermal effects, once again, take their toll, reducing
the maximum attainable MIE. Higher T , as can be seen in
Fig. 2(b), require stronger magnetic fields for the onset of
MIE. Finally, in the regime of very strong magnetic fields
[ξ > 25 in Fig. 2(b)], C(ξ ) is seen to display a temperature-
independent asymptotic behavior, with C(ξ ) curves plotted
for different T bunching together as a part of this asymptotic
behavior to a T -independent universal C0(ξ ) curve.

To gain insights into the physics behind this behavior of
the HFS entanglement as a function of the temperature and
the magnetic field, we first examine the concurrence of the
HFS states with no magnetic field applied, B = 0. As one
important finding, we see that, in this case, |c〉 = 1√

2
(|↑e↓p〉 +

|↓e↑p〉) and |a〉 = 1√
2
(|↑e↓p〉 − |↓e↑p〉) are maximally entan-

gled, with their concurrence C = 1. At low temperatures, such
that kBτc << �E = Eb,c,d − Ea, the population of the lower-
energy |a〉 singlet state is much higher than the population of
the |b〉, |c〉, and |d〉 HFS triplet. As the temperature increases,
however, the population of the HFS triplet grows, leading to a
decrease in the HFS entanglement. Eventually, at kBτc ≈ �E ,
the population of the HFS triplet becomes comparable to the
population of the |a〉 state, and the entanglement is completely
lost, C = 0.

An external magnetic field lifts the degeneracy of the
|b〉, |c〉, and |d〉 states, splitting this triplet into three states
with different, B-dependent energies [Fig. 1(a)]. As the mag-
netic field increases, the energy gaps δEc,d = Ec,d − Ea grow.
It is straightforward to see from Eq. (3) that, in the low-
temperature limit, T << 1, the temperature dependence of the
concurrence is suppressed, C ≈ 1/

√
1 + ξ 2, explaining the

low-T plateaus in the C(T ) plots in Fig. 1(b).
When the magnetic field is strong enough to induce

δEc,d � kBτc, the temperature τc is no longer sufficient for
complete entanglement suppression. More rigorously, as can
be seen from Eq. (3), the HFS manifold retains entanglement
as long as

sinh[2βA
√

1 + ξ 2] −
√

1 + ξ 2e−2βA > 0. (4)

Thus, the critical magnetic field, ξc, needed to induce an
HFS entanglement above the τc threshold can be found from

sinh
[
2βA

√
1 + ξ 2

c

] = e−2βA
√

1 + ξ 2
c . (5)

In the T � 1 regime, high magnetic fields are required to in-
duce HFS entanglement, ξc � 1. In this limit, Eq. (5) reduces
to 2βA ≈ ln 2ξc/(ξc + 1).
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FIG. 3. The l1-norm coherence of the HFS states of the H atom
as a function of the temperature T (a) and the normalized magnetic
field ξ (b).

Specifically, with ξc set at ξc ≈ 16.5, this approximation
yields an estimate, T ≈ 10.01, that agrees very well with the
results of numerical simulations presented in Fig. 2(b), where
the dotted line, plotted for T = 10, is seen to take off from the
C = 0 level at precisely ξc ≈ 16.5.

IV. COHERENCE

As a useful insight, the inequality of Eq. (4), which guaran-
tees the existence of HFS entanglement, can be expressed via
the Manhattan-norm coherence, D = ∑

i �= j |ρi, j |, also referred
to as the l1-norm coherence [38]. For the HFS states of the
H atom at thermal equilibrium with a temperature τ , this
coherence is given by

D = sinh[2βA
√

1 + ξ 2]

G
√

1 + ξ 2
. (6)

Equation (4) is thus equivalent to D > e−2βA/G. Figures
3(a) and 3(b) illustrate the behavior of D as a function of
the temperature T and the normalized magnetic field ξ . In
the low-temperature limit, T << 1, D is indistinguishable
from the concurrence, D ≈ C ≈ 1/

√
1 + ξ 2. In this limit,

the temperature dependence of the coherence is suppressed,
leading to well-resolved plateaus in the D(T ) plots at low T
[Fig. 3(a)].

In the limit of a strong magnetic field, ξ � 1, the coherence
can be approximated as D ≈ (1 − e−2βA)/ξ . In this limit,
the D(ξ ) plots bunch together [Fig. 3(b)] as D tends to zero
regardless of T . This behavior of D in the ξ � 1 limit provides
deeper insights into the properties of MIE at high T . Indeed,
since the critical magnetic field ξc needed to induce HFS
entanglement can be found from D(ξc) = e−2βA/G, the max-
imum concurrence attainable in the MIE regime [Fig. 2(b)] is
bound to follow a rapid roll-off of D(ξ ) as a function of ξ [see
Fig. 3(b)].

V. THE PHYSICS BEHIND MAGNETICALLY INDUCED
ENTANGLEMENT OF H

To better connect to the HFS physics behind the properties
of MIE concurrence, it is instructive to examine Eq. (3) for C
jointly with the equations for the energy eigenvalues Eu. When
no magnetic field is applied, ξ = 0, the |a〉 and |c〉 states are
maximally entangled, with their concurrence C = 1. In the
opposite limit of ξ � 1, however, the |a〉 and |c〉 state kets

FIG. 4. The concurrence C quantifying the two-qubit entangle-
ment in a 1D Heisenberg model as a function of the temperature T
(a) and the normalized magnetic field ξ (b).

tend to |c〉≈|↑e↓p〉 and |a〉 ≈ | ↓e↑p〉, with their energy eigen-
values given by Ec ≈ A(−1 + 2ξ ) and Ea ≈ A(−1 − 2ξ ). It
is straightforward to see that the concurrence of these states
tends to zero. Physically, this result is understood in terms
of a strong coupling of electron and nuclear spins to the
external magnetic field, which eventually breaks the spin-spin
electron-nucleus coupling.

We will now benchmark the HFS entanglement of the
H atom against the two-qubit spin-spin entanglement in a
one-dimensional (1D) Heisenberg chain (HC) [36]. To this
end, we consider two spins in a 1D Heisenberg chain driven
by an external magnetic field B governed by an interaction
Hamiltonian

Hs = Jσ1 · σ2 + μBB
(
σ z

1 + σ z
2

)
, (7)

with a coupling constant J < 0 (J > 0) for a ferromagnetic
(antiferromagnetic) system.

Solving Hs|v〉 = Ev|v〉, we find four energy eigen-
states, v = 1, 2, 3, 4, |1〉 = | ↑1↑2〉, |2〉 = | ↓1↓2〉, |3〉 =

1√
2
(| ↑1↓2〉 + | ↓1↑2〉), |4〉 = 1√

2
(| ↑1↓2〉 − | ↓1↑2〉), with

energy eigenvalues E1 = J (1 + 4ξ ), E2 = J (1 − 4ξ ), E3 = J ,
and E4 = −3J , and the normalized magnetic field ξ redefined
as ξ = μBB

2J .
A two-qubit spin-spin entanglement in such a system is

quantified in terms of the concurrence [36]:

C = max

{
0,

e4βJ − 3

1 + e4βJξ + e−4βJξ + e4βJ

}
. (8)

The behavior of this concurrence as a function of the tem-
perature T and the normalized magnetic field ξ is illustrated
in Figs. 4(a) and 4(b). As one of its central properties, readily
seen from Eq. (8), C = 0 for kBτc > 4J/ln3 and C = (e4βJ −
3)/(1 + e4βJξ + e−4βJξ + e4βJ ) for kBτc < 4J/ln3.

The spins thus remain entangled only for temperatures
below τc = 4J/(kBln3).

Similar to the HFS states of the H atom, the 1D Heisenberg
chain is permissive of low-temperature spin-spin entangle-
ment. The key properties of this entanglement, however, are
profoundly different from the properties of HFS entangle-
ment. The origins of these differences trace back to the
physics of hyperfine splitting vis-à-vis the physics embodied
by the 1D Heisenberg chain. Reflecting the difference in the
physical contents of the two systems are the properties of
the eigenfunctions |u〉 and |v〉 as dictated by the respective
Hamiltonians HHF and Hs. When expanded in the basis as
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suitable for the description of spin-spin entanglement, viz.,
the Q(1, 2) basis, the |u〉 eigenkets manifest a strong, ex-
plicit dependence on the magnetic field. By contrast, the |v〉
eigenkets in the same representation are B independent. As
a consequence, at T = 0, the 1D HC concurrence is C =
1 for any ξ < 1 and C = 0 for all ξ > 1 [Fig. 4(a)]. This
property of C is in stark contrast with the low-T behavior of
the HFS concurrence, which decreases monotonically with ξ

at any T << 1, C ≈ 1/
√

1 + ξ 2 [Fig. 2(a)]. When plotted as
a function of the dimensionless magnetic field ξ at T ≈ 0, the
1D HC concurrence displays a steep, almost stepwise change
at ξ = 1 [Fig. 4(b)]. The HFS concurrence, on the other hand,
is always a smooth, well-behaved function of ξ [Figs. 2(a)
and 2(b)].

Because the magnetic field makes no imprint on the ex-
pansion coefficients of the |v〉 eigenkets in the Q(1, 2) basis,
the critical temperature for the 1D HC entanglement, τc =
4J/(kBln3), is independent of the magnetic field. Thus, un-
like the natural HFS entanglement, the critical temperature of
which, i.e., the temperature at which C = 0, is a function of
ξ [Fig. 1(b)], the 1D HC entanglement vanishes at the same
temperature regardless of ξ [Fig. 4(a)]. Importantly, once it
is gone with τ increased above τc, the 1D HC entanglement
never comes back no matter how strong the external magnetic
field is. In this regard, the magnetically induced entanglement
of HFS states of the H atom identified in this paper is funda-
mentally different, as it is induced at temperatures above the
critical point τc, rising from zero [Fig. 2(b)]. Once induced
by a magnetic field with a critical magnitude ξc, the MIE of
HFS states grows with ξ , reaches its temperature-dependent
maximum, then decreases and eventually vanishes [Fig. 2(b)]
as the magnetic field becomes strong enough to break the spin-
spin coupling of the electron and its nucleus in the H atom.

VI. CONCLUSION

To summarize, we have shown that the electron- and
nuclear-spin degrees of freedom in a hydrogen atom provide
a physically meaningful frame and lend a suitable Hilbert
space for bipartite entanglement, the two-qubit concurrence
and quantum coherence of which can be expressed in terms
of the fundamental physical constant. The intrinsic, natural
entanglement that the hyperfine-structure states of the H atom
store at low temperatures is shown to rapidly decrease with a
growth in temperature, vanishing above a critical temperature
of Tc ≈ 5.35 μeV. An external magnetic field, however,
can overcome this thermal loss of HFS entanglement. As
one of the central findings of this paper, an external mag-
netic field can induce and sustain the entanglement of HFS
states, against all the odds of thermal effects, at temperatures
well above the τc threshold, thus enabling magnetic-field-
assisted entanglement engineering in low-temperature gases
and solids. Experiments to isolate spectroscopic signatures of
entanglement in hydrogen and hydrogen-containing systems
are currently in progress as a follow-up to the earlier studies
[16–18].
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