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Calculation of spin-polarized positronium-helium (2 3S) and electron-helium (2 3S) scattering
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Low-energy properties of spin-polarized electron-helium (2 3S) and spin-polarized positronium-helium (2 3S)
scattering are calculated using the modified confined variational method. To take the van der Waals interaction
into consideration, the van der Waals coefficient between positronium and helium (2 3S) is calculated using the
explicitly correlated Gaussian basis. Compared with the ground state noble gases, the larger scattering length
and zero pickoff annihilation rate indicates that He(2 3S) may be a more suitable cooling gas. In the energy
range we considered, no similarity is found for the S-wave cross sections between these two scatterings. A
Ramsauer-Townsend minimum is observed in spin-polarized electron-helium(2 3S) scattering due to the large
polarization of metastable helium. This may open a new way to find and study the Ramsauer-Townsend effect.
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I. INTRODUCTION

The positronium (Ps) “atom” is a hydrogenlike bound sys-
tem of an electron and a positron. This special leptonic atom
is suitable for testing the theory of quantum electrodynamics
and exploring physics beyond the standard model [1–7]. Since
the projectile has a composite structure, Ps scattering is sup-
posed to be different from bare electron scattering. However,
similarities of the total cross sections between Ps and electron
scattering by He, Ar, Kr, Xe, H2, N2, O2, and SF6 have been
observed [8,9], which suggests that the contribution of the
electron is dominant in Ps scattering at intermediate energies.
Moreover, extremely small cross sections were observed in
the scattering of slow Ps by Ar and Xe, which approach those
of the Ramsauer-Townsend minima for electron projectiles
[10,11].

Helium (He) is the lightest rare gas atom, and the scat-
tering properties of electron-He (e-He) [12–19] and Ps-He
[20–27] have been extensively studied both theoretically and
experimentally. However, few works have focused on e or
Ps scattering by excited He(2 3S) [28–34]. In this work, we
carried out calculations on the low-energy properties of spin-
polarized electron-He∗ (sp-e-He∗) and spin-polarized Ps-He∗

(sp-Ps-He∗) scattering, where He∗ denotes He(2 3S). Here,
sp-Ps-He∗ means that the spins of the positron and three
electrons have the same orientation, and similarly for sp-e-He∗

[35,36]. Due to the same spin alignment, the pickoff an-
nihilation rate of sp-Ps-He∗ scattering is zero. The pickoff
annihilation rate represents the probability that the positron
in Ps annihilates with an electron in the atom (the positron-
electron pair should be in a spin singlet state) during the
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scattering process [24,25]. This rate is essential for under-
standing the complex processes involved in the thermalization
of Ps in gases. It is noted that the fully spin-polarized en-
semble of Ps [35], spin-polarized He∗ [37], high-density Ps
gas [38], and tunable Ps beam [39–41] have already been
achieved experimentally. Thus, the zero pickoff annihilation
rate could enable the utilization of sp-Ps-He∗ scattering in
future experiments. However, to the best of our knowledge, no
theoretical study has been reported for this system. Addition-
ally, the Ramsauer-Townsend effect could occur in sp-e-He∗

and sp-Ps-He∗ scattering due to the large polarization of He∗,
though it has not been found in e-He and Ps-He scattering
[10,11,27]. In addition, the similarities of the total cross sec-
tions between sp-e-He∗ scattering and sp-Ps-He∗ scattering is
an interesting topic and deserves additional research [8,42].

The confined variational method (CVM) proposed by
Mitroy et al. [14] and further developed by Zhang et al. [43] is
an ab initio method for studying low-energy elastic scattering
problems. It has been successfully applied to investigate many
few-body elastic scattering problems, including e-H, e+-H,
e-He, e+-He, Ps-H, and Ps-H2 [14,43–45]. Contrary to the
original CVM, we recently developed a strategy that can ef-
fectively eliminate unphysical confinement effects and greatly
reduce the computational cost [46]. A smaller confining radius
R0 is used, which can extend the CVM to non-S partial waves
and higher energy scattering.

The purpose of the present work is to apply the modi-
fied CVM to calculate the low-energy phase shifts, scattering
lengths, and cross sections for sp-e-He∗ and sp-Ps-He∗ scat-
tering. Then, the Ramsauer-Townsend effect and similarities
of the S-wave cross sections between these two systems are
investigated. This paper is organized as follows. In Sec. II,
the modified CVM is introduced. Our results are presented in
Sec. III, where the van der Waals coefficient for sp-Ps-He∗
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is given in Sec. III A, the S-wave phase shifts are given in
Sec. III B, the S-wave scattering lengths are given in Sec. III C,
and the S-wave cross sections are given in Sec. III D. Finally,
Sec. IV provides a conclusion. Phase shifts are expressed in
radians, and atomic units (a.u.) are used throughout unless
otherwise stated.

II. THEORY

Here we give a brief introduction to the modified CVM.
More details could be found in Refs. [14,43,44,46]. Take the
calculations of the phase shifts of sp-Ps-He∗ scattering as an
example. In this work, we only consider the infinite nuclear
mass case, i.e., the mass of the He nucleus is infinite. Thus,
the reduced mass is 2. The potential between Ps and He∗ is
supposed to be V1(ρ), where ρ is the distance between the
He nucleus and the center of mass of Ps. For this many-body
scattering problem, we do not know the explicit form of V1(ρ).
The key idea of the CVM is to find a proper model potential V2

that has the same phase shift as V1. Thus the phase shift of the
sp-Ps-He∗ scattering can be obtained from the scattering equa-
tion of V2 instead of V1. The one-dimension representation of
the CVM calculation can by described by the following four
Schrödinger equations:

(
−1

4

d2

dρ2
+ L2 + L

4ρ2
+ V1(ρ) + vcp(ρ)

)
φ1 = Esφ1, (1)

(
−1

4

d2

dρ2
+ L2 + L

4ρ2
+ V2(ρ) + vcp(ρ)

)
φ2 = Esφ2, (2)

(
−1

4

d2

dρ2
+ L2 + L

4ρ2
+ V1(ρ)

)
φ′

1 = Esφ′
1, (3)

(
−1

4

d2

dρ2
+ L2 + L

4ρ2
+ V2(ρ)

)
φ′

2 = Esφ′
2, (4)

where Es = k2/4 is the scattering energy and k is the mo-
mentum of the Ps. φ1 is the bound state wave function of the
real potential V1 (between Ps and He∗) under the confining
potential vcp. φ2 is the bound state wave function of the model
potential V2 under the confining potential. φ′

1 is the scattering
wave function of V1, and φ′

2 is the one of V2. The adjustable
model potential V2 has the form

V2(ρ) = λe−αρ − C6

ρ6
(1 − e−(ρ/β )6

), (5)

where λ, α, and β are adjustable parameters. Usually, α and β

are fixed (in present work, α = 0.5 and β = 5.0); thus, only
λ is adjustable. −C6/(ρ6) is the long-range van der Waals
potential between Ps and He∗, and C6 is the van der Waals
coefficient between them, which has not been reported. The
confining potential vcp has the form

vcp(ρ) = 0, ρ < R0,

vcp(ρ) = G(ρ − R0)2, ρ � R0,
(6)

where G is a tunable positive number. R0 is chosen to ensure
that the complicated short-range interaction between Ps and
He∗ can be ignored outside the sphere of radius R0. To achieve
continuity of the four wave functions φ1, φ2, φ′

1 and φ′
2, their

logarithmic derivatives

�X (R0) ≡ 1

X (R0)

dX

dρ

∣∣∣∣
R0

(7)

must be the same at energy Es and radius R0 [14], i.e.,

�φ1 (R0) = �φ2 (R0) = �φ′
1
(R0) = �φ′

2
(R0). (8)

This implies that the phase shift, as a function of �X (R0), is
exactly the same for Eqs. (3) and (4) at Es.

To obtain the k− and L − dependent vcp and V2 (or G and
λ), we carry out the following many-body calculations using
the explicitly correlated Gaussian (ECG) basis [47]. First, the
confining potential Vcp is added to the Hamiltonian of the
sp-Ps-He∗ system so that it becomes a bound-state eigenvalue
problem:

(H + Vcp)�(r, s) = E�(r, s), (9)

H = −1

2

4∑
i=1

∇2
i +

4∑
i=1

Qqi

ri
+

4∑
i, j = 1
i < j

qi q j

|r j − ri| , (10)

where r1, r2, r3, and r4 are the position vectors of the three
electrons and the positron relative to the fixed nucleus, r de-
notes (r1, r2, r3, r4) collectively, and s denotes (s1, s2, s3, s4),
the spins of the three electrons and the positron. Additionally,
qi is the charge of the i-th lepton, and Q is the charge of
the He nucleus. �(r, s) is the eigenfunction of H + Vcp cor-
responding to E , where E is the total energy of the original
scattering system, including the ground state energy of He∗,
the ground state energy of Ps, and the kinetic energy of Ps.
This means that E = −2.175229378 − 0.25 + Es. The eigen-
function �(r, s) can be expanded in terms of the ECG basis:

ϕn(r, s) = |v|2K+L exp
(− 1

2 rTAnr
)
YLM (v)χ (s), (11)

where v = uTr, with uT = (u1, u2, u3) being a global vector,
χ (s) is the spin function, K is set to be less than or equal to the
number of nodes of the wave function, An is a parameter ma-
trix, L and M are the total orbital angular momentum and its z
component, respectively, and YLM is the spherical harmonics.

The confining potential used in the original CVM is

Vcp =
3∑

i=1

vcp(ρi ), (12)

where ρi = |ri + r4|/2 is the distance between the He nucleus
and the center of mass of Ps. To eliminate unphysical confine-
ment effects, we define the following judgment index between
two basis functions ϕn and ϕm [46]:

snm
i = 〈ϕn|�(ri4 − R1)(ri4 − R1)2|ϕm〉

〈ϕn|�(ρi − R0)(ρi − R0)2|ϕm〉 , (13)

where ri4 = |ri − r4| is the distance between the i-th electron
and positron in a confined Ps, R1 is an adjustable number
greater than 2a0, with a0 being the Bohr radius, and � is the
Heaviside step function. If the confining potential acts on the
pseudo-Ps formed by the positron and the electron of He∗,
then ri4 will be much larger than the characteristic size 2a0 of
Ps. This means that snm

i will be a large number when R1 is set
to 2a0 or slightly larger. We discard 〈ϕn|Vcp(ρi )|ϕm〉 when snm

i
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exceeds a specific threshold. In this work, R1 is set equal to
R0, and thus, the specific threshold for snm

i is set to 1.0.
The CVM calculation contains the following three main

steps. Firstly, the confining potential Vcp is added to the
Hamiltonian of the original scattering problem [see Eq. (9)].
Parameter G is tuned to ensure a specific momentum k. For
example, if we want to calculate the phase shift at k = 0.1, the
scattering energy is 0.12/(2 · 2) = 0.0025, which means the
total energy E should be tuned to be −2.175229378 − 0.25 +
0.12/(2 · 2) = −2.422729378. Then G is obtained. Secondly,
we solve Eq. (2) to find the appropriate model potential V2

[Eq. (5)]. In this step, there is an adjustable parameter: λ (α
and β are fixed). In this paper, for simplicity, α and β are fixed.
For α, we checked the range [0.4, 1.0], which gives the same
phase shift. For β, we checked the range [4, 10], which also
gives the same phase shift. Since G has been obtained in the
first step, only λ is tuned to ensure the same momentum k as
in step one. Then λ is obtained, which means the appropriate
model potential V2 is found. At last, we calculate the exact
phase shift of Ps-He∗ scattering δk

L from the model potential V2

instead of V1. This is done by solving the scattering equation
of V2 (Eq. (4)), i.e., by applying an integration procedure and
a least-squares fit between φ′

2(ρ) and A sin(kρ − Lπ/2 + δk
L )

for ρ → ∞.

III. RESULTS

A. Van der Waals coefficient between Ps and He∗

When the distance between Ps and He∗ is large enough,
the complicated short-range interaction will be negligibly
small; then, the long-range van der Waals interaction will
be dominant. The van der Waals interaction represents the
interaction between two electrically neutral but polarizable
systems, which can be denoted as V (ρ) ≈ −C6/ρ

6. The van
der Waals coefficient C6 between Ps and He∗ is needed in
model potential V2 [see Eq. (5)], but it has not been reported.
Thus, we perform a calculation to estimate C6 using the oscil-
lator strength sum rule [49]:

C6 = 3

2

∑
i j

f A
0i f B

0 j

εA
0iε

B
0 j

(
εA

0i + εB
0 j

) , (14)

where εA
0i is the transition energy between the i-th excited

state and the ground state of atom A, and atoms A and B
represent Ps and He∗, respectively. f A

0i is the corresponding
21-pole oscillator strength and is defined by

f A
0i = 8π

3
εA

0i|〈ψA
0

∣∣∣∣∣
∑

n

r̂nP1(cosθn)
∣∣ψA

i

〉∣∣∣∣∣, (15)

where ψA
0 and ψA

i are the wave functions of the ground state
and the i-th excited state of atom A, respectively. P1(cosθn) is
the Legendre polynomial.

In this work, the energy εA
i and wave function ψA

i are
calculated using the ECG basis combined with the stochas-
tic variational method (SVM) [47]. Then, the calculations of
oscillator strength f A

0i can be easily generalized for an N-body
system since the matrix elements in Eq. (15) are calculated
analytically using the ECG basis. Note that the summation in
Eq. (14) should include all bound and continuum states. To

TABLE I. Convergence test of the van der Waals coefficient C6

(in a.u.) for Ps-He and sp-Ps-He∗ scattering as the size of the He or
He∗ basis set N increases.

N C6(Ps-He) C6(Ps-He∗)

1500 13.3657399 632.742736
1600 13.3657403 632.742409
1800 13.3657408 632.743022
2000 13.3657409 632.743219
2200 13.3657410 632.743236
2500 13.3657411 632.743238

13.365741777 [48]

examine the accuracy of our calculated energies, wave func-
tions and oscillator strengths, we calculate the polarization of
Ps and He∗ in advance. The polarization can also be calculated
using the oscillator strength sum rule:

αA =
∑

i

f A
0i(

εA
0i

)2 . (16)

The maximum numbers of basis functions used for the ex-
pansion of Ps and He∗ are 50 and 2500, respectively. The
calculated polarization of Ps is 36.0000000001, which agrees
well with the exact value 36. The calculated polarization of
He∗ is 315.631470, which agrees well with the calculated
value of Yan et al. of 315.631468 [50]. These results show
that the energies, wave functions, and oscillator strengths
we calculated are of high quality and are suitable for C6

calculation.
Table I shows the convergence tests for C6 of Ps-He and

sp-Ps-He∗ as the size of the basis set N increases. N refers to
the basis size of He and He∗ for Ps-He and sp-Ps-He∗, respec-
tively. The basis size used for Ps is 50. C6 converges smoothly
as N increases, and both values have eight significant digits.
The van der Waals coefficient of Ps-He calculated by Kar and
Ho using the Hylleraas basis is 13.365741777, which is in
good agreement with our value. Thus, the C6 we calculated
for sp-Ps-He∗ is precise enough to be used in the following
scattering calculations.

B. Phase shifts for sp-e-He∗ and sp-Ps-He∗ scattering

The CVM has been used to study various few-body elastic
scatterings, including e-H, e+-H, e-He, e+-He, Ps-H, Ps-He,
and Ps-H2 [14,24,43–45], which all have a small polarization
or van der Waals coefficient. In our calculations, R0 should
be large enough to ensure that the van der Waals potential
−C6/ρ

6 or the polarization potential −α/(2ρ4) is dominant.
However, a larger R0 will entail higher computational costs.
Since the polarization of He∗ is large, the confining potential
range R0 and the size of the ECG basis N should be chosen
carefully. Thus, convergence tests of the phase shifts with
respect to R0 and N are performed in advance, and the results
are shown in Tables II and III, respectively. According to
Table II, the phase shifts converge smoothly as R0 increases.
R0 = 25 gives three convergent digits for the δ0.05

0 of sp-e-He∗

scattering and δ0.1
0 of sp-Ps-He∗ scattering. Thus, R0 = 25 is

used for the calculations of sp-e-He∗ scattering and sp-Ps-He∗
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TABLE II. Convergence test of the scattering phase shifts (δk
L ,

in radians) for sp-e-He∗ and sp-Ps-He∗ scattering as the confining
radius R0 increases.

R0 δ0.05
0 (sp-e-He∗) δ0.1

0 (sp-Ps-He∗)

23 0.19164 −0.35430
24 0.19137 −0.35444
25 0.19123 −0.35452

scattering. According to Table III, N = 2400 gives three con-
vergent digits for the δ0.05

0 of sp-e-He∗ scattering and δ0.1
0

of sp-Ps-He∗ scattering; thus, N = 2400 is used for all our
calculations.

The calculated phase shifts for k = 0.04 − 0.12 of
sp-e-He∗ scattering and a comparison with the e-He scattering
phase shifts [13] are shown in Table IV. The calculated phase
shifts for k = 0.06 − 0.12 of sp-Ps-He∗ scattering and a com-
parison with the Ps-He scattering phase shifts [25] are shown
in Table V. According to Table IV, the phase shift of sp-e-He∗

scattering changes sign from positive at k = 0.08 to negative
at k = 0.09, while the phase shifts of e-He scattering are all
negative. The positive phase shifts mean that for k � 0.08,
the interaction between electron and He∗ is attractive, which
is due to the large polarization of He∗. For k � 0.1, the phase
shift of sp-e-He∗ scattering decreases more quickly than that
of e-He scattering. According to Table V, the phase shifts of
sp-Ps-He∗ scattering are smaller than those of Ps-He scatter-
ing. Comparing the phase shifts in Table IV with those in
Table V, we can infer that electron scattering is not dominant
in Ps for sp-Ps-He∗ and Ps-He scattering at k < 0.12.

C. Scattering lengths for sp-e-He∗ and sp-Ps-He∗ scattering

The S-wave scattering length A0 can be obtained by fitting
the calculated phase shift δk

L at low k to the effective range
expansion

k cot δk
0 = − 1

A0
+ Rek2

2
, (17)

where Re is the corresponding effective range. When the long-
range polarization potential is taken into consideration, the
modified effective range expansion [51] for sp-e-He∗ scatter-
ing is

tan δk
0 = −A0k

[
1 + 4αk2

3
ln(k)

]
− παk2

3
+ Dk3 + Fk4,

(18)

TABLE III. Convergence test of the scattering phase shifts (δk
L ,

in radians) for sp-e-He∗ and sp-Ps-He∗ scattering as the size of the
basis set N increases.

N δ0.05
0 (sp-e-He∗) δ0.1

0 (sp-Ps-He∗)

2000 0.19148 −0.35424
2200 0.19134 −0.35442
2400 0.19123 −0.35452

TABLE IV. Phase shifts (δk
L , in radians) of sp-e-He∗ scattering

calculated with the present CVM, and comparison with those of e-He
scattering. ab abbreviates a × 10b.

k(a.u.) δk
0(sp-e-He∗) δk

0(e-He) [13]

0.04 2.355−1 −4.926−2

0.05 1.912−1 −6.207−2

0.06 1.360−1 −7.503−2

0.07 7.460−2 −8.815−2

0.08 9.784−3 −1.014−1

0.09 −5.694−2 −1.147−1

0.1 −1.246−1 −1.282−1

0.12 −2.619−1 −1.554−1

where α = 315.631470 is the polarization of He∗, and D
and F are additional fitting parameters. Similarly, when the
long-range van der Waals potential is taken into consideration,
the modified effective range expansion [51] for sp-Ps-He∗

scattering is

k cot δk
0 = − 1

A0
+ Rek2

2
− 4πC6k3

15(A0)2
− 16C6

15A0
k4 ln k, (19)

where C6 = 632.743238 is the calculated van der Waals coef-
ficient in Table I.

The obtained scattering lengths of sp-e-He∗ and sp-Ps-He∗

scattering are shown in Table VI. For sp-e-He∗ scattering, the
scattering lengths obtained with Eqs. (17) and (18) at k =
0.04 − 0.07 are 4.65 and −21.77, respectively. This shows
that the addition of the long-range polarization potential effect
has a very large effect on the scattering length due to the
large polarization of He∗. When the fitting range becomes
0.04 − 0.12, the obtained scattering length is −26.95. Since
the effective range expansions are more suitable for low k,
our recommended value for the scattering length of sp-e-He∗

scattering is −21.77. The scattering length of e-He scattering
is 1.1835 [13], whose absolute value is smaller than that of
sp-e-He∗ scattering.

For sp-Ps-He∗ scattering, the scattering lengths obtained
with Eqs. (17) and (19) at k = 0.06 − 0.12 are 3.47 and 3.56,
respectively. Although sp-Ps-He∗ scattering has a large C6,
the effect of the van der Waals potential on the scattering
length is smaller than the effect of the polarization poten-
tial on the scattering length of sp-e-He∗ scattering. This can
be explained by (α)1/4 > (C6)1/6. For example, at R0 = 25,
α/254 > C6/256, indicating that the polarization interaction
is stronger. Our recommended value for the scattering length
of sp-Ps-He∗ scattering is 3.56. The scattering lengths for Ps

TABLE V. Phase shifts (δk
L , in radians) of sp-Ps-He∗ scattering

calculated with the present CVM, and comparison with those of Ps-
He scattering. ab abbreviates a × 10b.

k(a.u.) δk
0(sp-Ps-He∗) δk

0(Ps-He) [25]

0.06 −2.101−1 −1.019−1

0.08 −2.812−1 −1.357−1

0.1 −3.545−1 −1.693−1

0.12 −4.286−1 −2.028−1
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TABLE VI. Extracted S-wave scattering lengths (A0, in a.u.) of
sp-e-He∗ and sp-Ps-He∗ scattering.

k(a.u.) A0

sp-e-He∗ Eq. (17) 0.04–0.07 4.65
sp-e-He∗ Eq. (18) 0.04–0.07 −21.77
sp-e-He∗ Eq. (18) 0.04–0.12 −26.95
sp-Ps-He∗ Eq. (17) 0.06–0.12 3.47
sp-Ps-He∗ Eq. (19) 0.06–0.12 3.56

scattering by He, Ne, Ar, Kr, and Xe are 1.566 [24], 1.65, 2.0,
2.3, and 2.6 [26], respectively, which are all smaller than that
of sp-Ps-He∗ scattering. In addition, the pickoff annihilation
rate of sp-Ps-He∗ scattering is zero. Thus, He(2 3S) may be
a more suitable cooling gas compared with the ground state
noble gases.

D. S-wave cross-sections for sp-e-He∗ and sp-Ps-He∗ scattering

The S-wave cross sections of sp-e-He∗ and sp-Ps-He∗ scat-
tering are presented in Fig. 1. The S-wave cross sections of
sp-Ps-He∗ are approximately 48πa2

0 in the Ps momentum
range of 0.06−0.12, where a0 is the Bohr radius. No sim-
ilarity is found between sp-e-He∗ and sp-Ps-He∗ scattering,
regardless of whether the momentum or velocity is taken
as the X axis [8]. The S-wave cross sections of sp-e-He∗

have a minimum around k = 0.08, which seems to be “tar-
get transparency” [10]. This phenomenon has been observed
in electron scattering by heavy atoms Ar, Kr, and Xe and
in positron scattering by He and Ne, which is now re-
ferred to as the Ramsauer-Townsend effect [9–11,27,52–54].
A Ramsauer-Townsend minimum of 0.016a2

0 was found in the
electron scattering by beryllium at 0.0029 eV [54]. Extremely
small cross sections were observed in the scattering of slow
Ps by Ar and Xe, which approach those of the Ramsauer-
Townsend minima for electron projectiles [10]. For e-He and
Ps-He scattering, no Ramsauer-Townsend minima have been
observed due to their positive scattering lengths and similarly
for sp-Ps-He∗ scattering, which has a scattering length of 3.56.
The total cross section can be calculated by summing over
all partial-wave contributions as

∑
L 4π (2L + 1) sin2 δL/k2.

Although we only calculated the S-wave phase shifts, the S-
wave scattering is known to dominate in the low energy range.
Since the S-wave phase shift goes through zero between k =
0.08 and 0.09, the Ramsauer-Townsend minimum occurs for
sp-e-He∗ scattering. Our present work provides evidence that
the Ramsauer-Townsend minimum can occur for the scat-
tering of electrons by light atoms. Since He∗ in sp-e-He∗

scattering has a large polarization of α = 315.63147, which is
larger than the polarizations of Ne (αNe = 2.669), Ar (αAr =
11.08), Kr (αKr = 16.79) and Xe (αXe = 27.16) [55], the
scattering of electron by excited atoms with large polarization
could give rise to the Ramsauer-Townsend effect.

FIG. 1. S-wave cross sections of sp-e-He∗ and sp-Ps-He∗ scatter-
ing. The momentum refers to the momentum of an electron or Ps,
respectively.

IV. CONCLUSION

The low-energy phase shifts, scattering lengths, and elas-
tic cross sections of sp-e-He∗ and sp-Ps-He∗ scattering are
calculated using the modified CVM combined with the ECG
basis. The van der Waals coefficient between Ps and He∗

we calculated is 632.743238. The S-wave phase shift of
sp-e-He∗ scattering goes through zero between k = 0.08 and
0.09. Using the modified effective range expansion, the ex-
tracted scattering lengths are −26.95 and 3.56 for sp-e-He∗

and sp-Ps-He∗, respectively. Compared with the ground state
noble gases, the larger scattering length and zero pickoff
annihilation rate indicates that He(2 3S) may be a more suit-
able cooling gas. No similarity of the S-wave cross sections
between these two scatterings has been found at k < 1.2. A
Ramsauer-Townsend minimum is observed between k = 0.08
and 0.09 in sp-e-He∗ scattering due to the large polarization of
He∗. Our present work provides evidence that the Ramsauer-
Townsend effect can occur for the scattering of electrons by
light atoms, which may open a new way to find and study this
effect.
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