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Stochastic modeling is an essential component of the quantitative sciences, with hidden Markov models
(HMMs) often playing a central role. Concurrently, the rise of quantum technologies promises a host of
advantages in computational problems, typically in terms of the scaling of requisite resources such as time
and memory. HMMs are no exception to this, with recent results highlighting quantum implementations of
deterministic HMMs exhibiting superior memory and thermal efficiency relative to their classical counterparts.
In many contexts, however, nondeterministic HMMs are viable alternatives; compared to them, the advantages
of current quantum implementations do not always hold. Here, we provide a systematic prescription for
constructing quantum implementations of nondeterministic HMMs that reestablish the quantum advantages
against this broader class. Crucially, we show that whenever the classical implementation suffers from thermal
dissipation due to its need to process information in a time-local manner, our quantum implementations will both
mitigate some of this dissipation and achieve an advantage in memory compression.
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I. INTRODUCTION

Hidden Markov models (HMMs) provide a powerful rep-
resentative tool for modeling stochastic systems [1]. They are
able to generate a diverse range of complex, non-Markovian
stochastic processes, finding applications in a broad spectrum
of fields, including speech recognition [2], time-series analy-
sis [3,4], cryptanalysis [5], machine learning [6–8], bioinfor-
matics [9–11], economics [12], and statistical physics [13].
Given their near-universal deployment across the quantitative
sciences, they form an essential topic of research in their own
right.

Akin to how quantum mechanics revolutionized physics
in the early 20th century, quantum information processing
promises to do the same for computational science [14].
Technologies based on this paradigm offer a means to
implement better, faster, more efficient algorithms and pro-
tocols [15]. Naturally, this has spurred investigations into
quantum extensions of HMMs, including characterization of
their expressivity [16–21], how they can be inferred [22–24],
and how they can outperform classical automata [25,26].

Two key areas where quantum HMMs manifest advantages
are in stochastic simulation and information engines. Quan-
tum implementations of deterministic HMMs offer memory
compression in the former [27–34] and greater thermal ef-
ficiency in the latter [35], compared to the corresponding
classical implementations. The restriction of determinism is
sometimes a necessity: nondeterministic consumers of in-
formation reservoirs have been shown to be capable of
violating the second law of information thermodynamics [36];
and adaptive systems must typically act in a causal man-
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ner [37,38]. In many other contexts, however, the broader
class of nondeterministic HMMs can be employed, against
which the current quantum advantages do not hold. Here, we
generalize quantum implementations to encompass them and
recover the advantages.

We introduce a systematic approach to constructing quan-
tum implementations of nondeterministic HMMs, showing
that memory and thermodynamical advantages arise for
almost any HMM. Our findings strengthen, extend, and super-
sede analogous prior results [33,35,39], which were limited in
scope by considering an incomplete suite of possible quantum
implementations.

II. PROCESSES, GENERATORS,
AND IMPLEMENTATIONS

A bi-infinite, discrete-time, discrete-event stochastic pro-
cess [40] is characterized by a sequence of random variables
Xt taking on values xt ∈ X , with the index labeling the time
step t ∈ Z. Throughout, we will use uppercase to denote ran-
dom variables and lowercase for the corresponding variates.
A contiguous block of the sequence of length L is denoted
Xt :t+L := Xt . . . Xt+L−1; a process P is then defined by the
distribution P(X−∞:∞). We restrict our attention to stationary
stochastic processes, wherein P(X0:L ) = P(Xt :t+L )∀L, t ∈ Z.
We take the index t = 0 to represent the present time step,
such that X−∞:0 is the past of the process and X0:∞ is its future.

We consider HMMs [41] that give rise to such processes.
Here we will focus on edge-emitting (or Mealy) HMMs,
while noting that our results can be readily adapted to state-
emitting (or Moore) HMMs [42]. An edge-emitting HMM
(S,X , {T x

s′s}) consists of a (potentially infinite) set of states
s ∈ S , an alphabet of symbols X , and a transition structure
{T x

s′s := P(s′, x|s)} describing the probability of a system in
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state s transitioning to state s′ while emitting symbol x. We
deal with irreducible HMMs, such that any state s′ ∈ S can
be reached by any state s ∈ S with nonzero probability after
a sufficient number of transitions; this can be diagnosed by
verifying that the matrix Ts′s = ∑

x T x
s′s is irreducible. An irre-

ducible HMM has a unique stationary state π (s).
The emitted symbols of a HMM generate a stochastic pro-

cess, described by the distribution

P(x0:L ) :=
∑

s0...sL

T xL−1
sLsL−1

. . . T x0
s1s0

π (s0). (1)

We refer to the HMM as a generator of the process. An
important class of generators are for deterministic (sometimes
referred to as unifilar) HMMs [42], for which the end state
of a transition is uniquely determined by the start state and
emitted symbol, i.e., for any given s and x, T x

s′s is nonzero
for, at most, one s′. When the HMM is deterministic, we say
that the generator is predictive. The counterparts to this are
co-unifilar HMMs and retrodictive generators, for which the
start state is uniquely determined by the end state and emitted
symbol [43].

With classical information processing, a physical instantia-
tion of a HMM must encode {s} as distinguishable states {|s〉}
of a system, while with quantum information processing, we
can map them to (generally) nonorthogonal quantum states
{s} → {|σs〉} [33].

Definition 1. (Quantum implementations). A quantum im-
plementation ({|σs〉},�) of a generator (S,X , {T x

s′s}) is a set
of quantum states {|σs〉} and a quantum channel � which
satisfy

�(|σs〉〈σs|) =
∑
s′x

T x
s′s|σs′ 〉〈σs′ | ⊗ |x〉〈x|. (2)

Being defined with respect to a generator [35], this is a
subtly different notion to that of a quantum model [27], which
is defined with respect to a process, though a quantum im-
plementation also represents a quantum model of the process
generated by the generator it implements.

III. MEMORY COMPRESSION

One way the performance of a generator and its implemen-
tation can be evaluated is in terms of the amount of memory
it requires. Two key quantifiers of this are the size of the
memory state space and the amount of information it stores.
With respect to a generator g, we denote [33,44–46]

Dg := log2[rank(ρ)],

Cg := −Tr(ρ log2[ρ]), (3)

where ρ = ∑
s π (s)|σs〉〈σs| is the stationary state of the

memory. For classical implementations, these reduce to the
(logarithm of) the number of states and the Shannon entropy
of the stationary distribution π (s), respectively.

A particular privileged generator of a process is the ε-
machine of computational mechanics [42,44,47], representing
the predictive generator that can be classically implemented
with the minimal amount of memory according to both mea-
sures of Eq. (3). The corresponding measures Dμ and Cμ

are known as the topological and statistical complexity. Re-

cently, a growing body of work has established that quantum
implementations of ε-machines (with memory costs Dq and
Cq) can generally undercut this minimality [27–34]: Dq � Dμ

and Cq � Cμ, with the compression advantage sometimes able
to grow unboundedly large [30,32,46,48–51]. The present
state-of-the-art quantum implementations [33] are defined im-
plicitly through a unitary interaction,

U |σs〉|0〉 =
∑

x

√
P(x|s)eiϕsx |σλ(s,x)〉|x〉, (4)

where {ϕsx ∈ R} are free parameters (to be optimized over)
and λ(s, x) is the predictive update rule that determines the
subsequent memory state. Decoherence of the output register
in the computational basis (by, e.g., a nonselective measure-
ment or coupling to an external ancilla) results in a channel of
the form of Eq. (2). However, this construction is valid only
for predictive generators.

While there are many scenarios where one would require
predictive behavior, such a restriction is not necessary when
one is purely concerned with generating a stochastic process.
Pertinently, for some processes, generators based on nonde-
terministic HMMs can be classically implemented with less
memory than the ε-machine [3,45,52]: Dg < Dμ and Cg < Cμ.
It behooves us to ask whether analogous quantum imple-
mentations of nonpredictive generators can be constructed
and whether they exhibit similar memory compression advan-
tages. We now answer both these questions in the affirmative.

We begin by assuming that preprocessing has been per-
formed on the classical generator to prune any redundancy due
to states with equivalent future morphs. That is, if two states
s, s′ ∈ S satisfy P(X0:∞|S0 = s) = P(X0:∞|S0 = s′), then we
merge one of the states into the other. This is repeated until
each of the remaining states possesses unique conditional
future distributions. Such redundancies are fully classical in
nature and can readily be remedied by such classical means.

The next step is to consider why the construction given by
Eq. (4) does not work for nonpredictive generators. Simply re-
placing the predictive update rule with a sum over all possible
end states weighted by their conditional probabilities will not
yield the correct statistics. This is due to the lack of decoher-
ence between different memory states in the outcome of the
interaction: while the output register undergoes decoherence,
superpositions of different end memory states given this out-
put and the initial memory state are preserved; this leads to
interference between the amplitudes of their future morphs, in
turn corrupting the statistics. To remedy this defect, we must
introduce a mechanism to break the coherence.

This can be achieved through the introduction of an auxil-
iary system that is imprinted with information about the end
state into which the system transitions and is subsequently dis-
carded into the environment. The information to be encoded
into this system has some freedom, and different encodings
will yield different levels of memory compression. Here we
will take a direct approach and encode the label of the end
memory state; we discuss other possibilities later. The analog
of the interaction given by Eq. (4) for our implementation
becomes

U |σs〉|0〉|0〉 =
∑
s′x

√
T x

s′s|σs′ 〉|x〉|s′〉, (5)
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where we have set all {ϕ} to zero. After discarding the aux-
iliary space and decohering the output space, we obtain a
channel of the form Eq. (2). We emphasize that while the
information discarded into the auxiliary system is classical,
the system itself must nevertheless be quantum, as it becomes
entangled with the memory states. Intuitively, one can under-
stand why the introduction of this system works by analogy
with purification [14]; the evolution essentially creates the
purified form of the target memory state distribution, such that
when the auxiliary system is traced out, the corresponding
marginal in the memory system is as desired. That is, the
auxiliary system provides a precise mechanism for breaking
apart superpositions of memory states.

We can express the channel �qg in terms of Kraus opera-
tors [14] {Lx

s },
�qg(ρ) :=

∑
s′x

Lx
s′ρLx

s′
†
, (6)

where Lx
s′ |σs〉 := √

T x
s′s|σs′ 〉|x〉. We can also break this down

into a set of Kraus operators {Kx
s } acting purely on the mem-

ory subspace, defined through Lx
s := Kx

s ⊗ |x〉. Armed with a
viable quantum implementation of a nondeterministic HMM,
we can now evaluate its memory compression advantage. We
use Cqg and Dqg to represent the memory cost of the quantum
implementation of a generator g, and, similarly, Ccg and Dcg

for the classical implementation.
Theorem 1. (Memory compression advantage). The quan-

tum implementation ({|σs〉},�qg) of Eq. (6) achieves a
memory compression advantage relative to the classical im-
plementation Cqg < Ccg whenever the generator (S,X , {T x

s′s})
is nonretrodictive.

From Eq. (5), we can use the unitarity of U to find the
overlaps of the quantum memory states,

〈σ j |σk〉 = 〈σ j |U †U |σk〉
=

∑
j′k′xy

√
T x

j′ jT
y

k′k〈σ j′ |σk′ 〉〈x|y〉〈 j′|k′〉

=
∑

j′x

√
T x

j′ jT
x
j′k . (7)

Thus, there is a nonzero overlap between any pair of quan-
tum states iff both states have at least one possible outgoing
transition for which the symbol and end state are identical.
With these overlaps, we can then use the Gram matrix [53]
of the stationary state to determine the memory costs of the
implementation. The Gram matrix of the stationary state ρ is
given by ρG := ∑

ss′
√

π (s)π (s′)〈σs|σs′ 〉|s〉〈s′| and possesses
the same spectrum as ρ. Thus, by determining the spectrum of
ρG, we are able to calculate the memory costs given by Eq. (3).
Further, it is evident that the diagonal elements of ρG are
given by π (s), and so the classical stationary state is obtained
from the Gram matrix by a projection in the classical memory
state basis. Since projective measurements can never de-
crease any Rényi entropy [54], we can immediately conclude
that Dqg � Dcg and Cqg � Ccg: the quantum implementation
never performs worse than the classical in terms of memory
compression.

Moreover, for any Rényi entropy other than α = 0 (corre-
sponding to Dg), projective measurements strictly increase the

entropy unless the projection leaves the state unchanged. Such
a projection will preserve the state iff the off-diagonals in the
projection basis are all zero. Thus, for the stationary states
of our quantum implementations, there is a strict memory
compression advantage Cqg < Ccg iff there is at least one pair
of states (s, s′ �= s) ∈ S2 for which 〈σs|σs′ 〉 �= 0. For no such
pair to exist, there must be no two states in the generator
that share a common transition in which the symbol and end
state are the same. If there are no such states, then, given the
symbol and end state of a transition, it is possible to specify
the start state with certainty; this is precisely the definition of a
retrodictive generator. Thus, there is no memory compression
advantage to a quantum implementation of a generator iff it is
retrodictive.

From the overlaps given by Eq. (7), it is possible to
decompose the quantum memory states {|σs〉} and U into
an orthogonal basis through a reverse Gram-Schmidt proce-
dure [55], analogous to methods in the case of deterministic
generators [31].

IV. THERMAL EFFICIENCY

There is a deep physical connection between information
theory and thermodynamics [56], first hinted at by Maxwell’s
demon [57] and Szilard’s engine [58], and captured more
formally by Landauer’s work on the dissipative costs of ir-
reversible computation [59]. Central to this is the information
processing second law [60,61], which—mirroring its thermo-
dynamical namesake—places bounds on the entropic costs
of changing a system’s configuration. In the present context,
the structured pattern produced by a generator outputting a
stochastic process forms an information reservoir that can be
harvested as a work source [62–64]. The work cost involved in
producing the pattern depends on the generator and its imple-
mentation; we now show that our quantum implementations
can also offer enhanced thermal efficiency. This complements
and extends recent results on the thermodynamics of quantum
implementations of predictive generators [35,39].

Fundamentally, the information processing second law
mandates that the work cost for any generator to produce
a pattern is bounded by the entropy of the pattern. That
is, no generator can achieve a work cost W < Wmin :=
−kBT ln[2]hμ, where hμ := limt→∞ H (X0:t )/t is the process’
entropy rate. However, typical generators incur additional dis-
sipative costs beyond this bound—a so-called modularity or
locality dissipation—due to the generator acting in a time-
local manner to produce the pattern [65]. An implementation
of a generator is said to be thermally inefficient if this addi-
tional cost is nonzero [39].

In Appendix A, we show that results previously de-
rived for the cost of quantum implementations of predictive
generators [35] can be directly applied to our quantum im-
plementations of general generators. In particular, for an
asymptotically large ensemble of identical implementations
of a generator g acting independently in parallel, the average
work cost per time step per implementation is given by

Wqg = kBT ln[2][I (S′; X ) − H (X )], (8)

where I (S′; X ) is the (quantum) mutual information between
the two subspaces of the state,

∑
s,s′,x π (s)T x

s′s|σs′ 〉〈σs′ | ⊗
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|x〉〈x|. An equivalent expression holds for the work cost Wcg

of the classical implementation. With this, we are able to es-
tablish a clear link between memory compression and thermal
efficiency.

Theorem 2. (Thermal inefficiency allows quantum ad-
vantages). Iff the classical implementation of a generator
(S,X , {T x

s′s}) is thermally inefficient, the quantum implemen-
tation ({|σs〉},�qg) of Eq. (6) will both exhibit a memory
compression advantage Cqg < Ccg and mitigate at least some
of the thermal inefficiency, Wqg < Wcg.

For both the classical and quantum implementations, the
second term of Eq. (8) is identical, as it is a function of the
process only. Thus, any thermodynamical advantage must be
found by a reduction in the first term alone. The data pro-
cessing inequality [66] informs us that the mutual information
between two variables is nonincreasing under local trans-
formations of one of the variables, and leaves it unchanged
iff the transformation is reversible. The mutual information
terms of the two implementations are linked by the mapping
{|s〉 → |σs〉} on the memory subsystem; crucially, this map-
ping is reversible iff the quantum memory states are all
mutually orthogonal—i.e., they are all nonoverlapping. This
is identical to the condition for when memory compression
cannot be achieved. Thus, iff Cqg = Ccg, then Wqg = Wcg, and

Cqg < Ccg ⇔ Wqg < Wcg. (9)

Finally, it has previously been shown that a classical im-
plementation has no thermal inefficiency iff the generator is
retrodictive [36,39,65]. Since the quantum implementation of
any nonretrodictive generator achieves memory compression,
they must also reduce the thermal inefficiency, by Eq. (9).

It is natural to then ask whether quantum implementations
can bypass the locality dissipation entirely and, if so, under
what conditions. The answer provides a complementary view
to the previous theorem.

Theorem 3. (Noneradication of dissipation). A quantum
implementation ({|σs〉},�qg) of a generator (S,X , {T x

s′s}) that
operates with no locality dissipation can be simulated by a
classical implementation at no additional memory cost. Any
reduction of thermal inefficiency by a quantum implementa-
tion is only mitigation, not eradication; any thermally efficient
quantum implementation yields no memory compression
advantage.

The proof is given in Appendix B; it utilizes a frame-
work developed in proving a similar statement for quantum
implementations of predictive generators [39], effectively
condensing and generalizing this earlier derivation. The crux
of this generalized theorem is that no quantum implementa-
tion of any generator can simultaneously achieve an advantage
in memory compression and perfect thermal efficiency. This
highlights that optimizing efficiency in the modeling of
stochastic processes involves a trade-off: generators with min-
imally dissipative classical implementations are often not the
most memory efficient—this frustration extends into the quan-
tum domain.

V. EXAMPLE: SIMPLE NONUNIFILAR SOURCE

As an example, we consider the so-called simple nonunifi-
lar source (SNS) process, which allows us to compare and

FIG. 1. Different possible HMM generators of the Simple
Nonunifilar Source process. (a) Two state nondeterministic gener-
ator, (b) minimal memory predictive generator, and (c) minimal
retrodictive generator. Notation x|p denotes that with probability
p the indicated transition occurs accompanied by the emission of
symbol x.

contrast memory and work costs of classical and quantum
implementation deterministic and nondeterministic genera-
tors, and explore some of these trade-offs between thermal
efficiency and compression. Depicted in Fig. 1, we will look
at (A) a two-state nondeterministic generator of the process,
(B) the minimal memory predictive generator (i.e., the ε-
machine), and (C) the minimal retrodictive generator. As a
measure of memory, we will consider the Shannon–von Neu-
mann entropy of the steady state, which we denote by CMG,
where G = {A, B, C} indicates which generator the measure
is with respect to, and M = {c, q} indicates whether the imple-
mentation is classical or quantum. We will also consider the
dimension of the implementations’ memories and the work
costs WMG. We will predominantly focus on the case where
p = 1/2, and later remark on the general case.

For the two-state generator A, it is clear from inspection
that the two memory states have equal steady-state occupation
probabilities. Thus, we can immediately conclude CcA = 1.
For the quantum implementation, we have

U |σ0〉|0〉|0〉 = 1√
2
|σ0〉|0〉|0〉 + 1√

2
|σ1〉|0〉|1〉,

U |σ1〉|0〉|0〉 = 1√
2
|σ0〉|1〉|0〉 + 1√

2
|σ1〉|0〉|1〉. (10)

We can use that U †U = 1 to determine that 〈σ0|σ1〉 = 1/2.
Without loss of generality, we can then assign |σ0〉 = |0〉
and |σ1〉 = (1/2)|0〉 + (

√
3/2)|1〉. The steady state of the

memory is given by (1/2)(|σ0〉〈σ0| + |σ1〉〈σ1|), from which
we determine CqA = 0.811, yielding a quantum compression
advantage. Note that here and throughout the example, all
numerical values are given to three significant figures.

From Eq. (A4), the work cost is given by W = H (S′) −
H (S′X ), where X is the emitted symbol, S′ is the state of the
system after emission, and we have normalized kBT ln[2] = 1.
The first term corresponds to the entropic memory C, and
so we need only calculate the entropy of the combined final
state of a transition with the output. For generator A, it can
be straightforwardly deduced that P(0, σ0) = 1/4, P(1, σ0) =
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1/4, and P(0, σ1) = 1/2. This allows us to calculate that
WcA = −0.5 and WqA = −0.558, thus also yielding a quantum
thermal advantage. Note that the work costs are negative as we
are transforming a blank tape containing no information to a
stochastic pattern with nonzero entropy.

Next, we look at the minimal memory predictive generator
B. Let us first remark on the drastic difference in the number
of states in the model—an infinite number—compared to the
two of the nondeterministic generator A. This emphasizes
the potential power of turning to nondeterministic generators
generally for compressing the memory dimension. To aid us
in calculating the memory and work costs of generator B,
we note that the SNS is a renewal process, allowing results
from Refs. [30,67] to be put to use. Let us introduce some
quantities from the modeling of renewal processes. The wait-
time distribution φ(n) is defined as the probability that after
a 1 is seen, there are n consecutive 0’s before the next 1.
The survival probability �(n) := ∑∞

n′=n φ(n′) describes the
probability that the number of 0’s between a consecutive pair
of 1’s is at least n. Finally, the mean firing rate is defined
as μ := 1/

∑∞
n=0 �(n). In previous works, it has been es-

tablished that the steady-state probability distribution of the
states σn is given by P(σn) = μ�(n), and that the states of the
corresponding quantum implementation can be encoded as

|σn〉 =
∞∑

n′=0

√
φ(n′ + n)√

�(n)
|n′〉.

Moreover, it has been shown that for the SNS,
φ(n) = npn−1(1 − p)2.

With all this at hand, we can calculate CcB = 2.71 and
CqB = 0.386. We observe that this quantum implementation
has a lower entropic memory cost than that of generator A, ex-
emplifying that different quantum implementations would be
favored depending on whether the dimension or the entropic
cost of memory is prioritized [33]. To calculate the work cost,
we use that P(1, σ0) = ∑

n P(σn)P(1, σ0|σn) = μ
∑

n φ(n) =
μ and P(0, σn) = P(σn−1)P(0|σn−1) = μ�(n) for n = 1 : ∞.
Then, WcB = 0 and WqB = −0.468. Thus, while the quan-
tum implementation of B has a lower entropic cost than the
implementations of A, it has a higher work cost than both—
highlighting that though quantum compression and thermal
advantages go hand in hand relative to a classical implementa-
tion of the same generator, there is no such definitive hierarchy
between quantum implementations of different generators.

Finally, for completeness, we consider the retrodictive gen-
erator C, which should exhibit no locality dissipation. As the
SNS is a renewal process, the classical implementation of
generator C bears the same entropic memory cost as that of the
minimal deterministic generator B [67]. Moreover, Theorem
1 tells us that there is no quantum compression advantage for
a retrodictive generator. Thus, CcC = CqC = 2.71. From The-
orems 2 and 3, we can also deduce WqC = WcC; we now only
need to calculate this latter quantity. We have that P(1, σn) =
P(σn|1)P(1) = μφ(n) and P(0, σn) = P(σn+1) = μ�(n + 1).
Thus, we find WcC = WqC = −0.678. We can verify that this
saturates the bound set by the information processing second
law by checking that it is equal to the (negative of the) entropy
rate of the process. This can be calculated from the determin-
istic generator B through hμ = ∑

n P(σn)H[P(X |σn)], which

TABLE I. Summary of memory and thermal costs of classical
and quantum implementations of different generators of the simple
nonunifilar source process.

c q

A CcA = 1, WcA = −0.5 CqA = 0.811, WqA = −0.558
B CcB = 2.71, WcB = 0 CqB = 0.386, WqB = −0.468
C CcC = 2.71, WcC = −0.678 CqC = 2.71, WqC = −0.678

indeed yields hμ = 0.678. Thus, we see that this example
also highlights the general trade-off between compression and
work cost, as the implementations with the lowest work cost
are not those that achieve the best compression, by either mea-
sure of memory. That is, the efficient retrodictive generator C
requires an infinite number of states and has a higher entropic
cost than generator A, which may be compressed down to
two dimensions, at the cost of some additional dissipation. We
summarize these results in Table I.

Finally, let us discuss the case where p �= 1/2. By varying
p, the trade-off between thermal efficiency and compression
can become even more marked. As p → 1, the entropic cost
of implementing the thermally efficient generator CcC (and
CqC) will diverge. Meanwhile, both the classical and quantum
implementations of A have entropic costs bounded from above
by 1. Indeed, a more detailed calculation finds that CqA → 1.
Moreover, for all generators and implementations considered,
it can be seen that the work costs all tend to 0 in this limit.
That is, as p → 1, the increased compression offered by the
two-state nondeterministic generator implementations grows
while their thermal inefficiency diminishes.

VI. DISCUSSION

Our work extends a series of results on the power and
limitations of using quantum technologies to implement gen-
erators of stochastic processes by generalizing to a much
broader class of HMMs. At the core of this, we have shown
that if a classical generator of a stochastic process has any
thermal inefficiency due to its time-local operative nature,
then it can be implemented with greater thermal and memory
efficiency by a quantum device. We also provided a systematic
method for determining the architecture of such an implemen-
tation. When perfect thermal efficiency is required, however,
the best classical and quantum implementations are one and
the same.

To achieve the necessary decoherence required to break
apart superpositions of memory states for nonpredictive gen-
erators, we introduced an additional auxiliary system that
carries information about the transition. To provide a uni-
versal, systematic protocol, we set this information to be the
end state of the transition. This choice is not unique; for any
transition s to s′ with emitted symbol x, any state |ψ (s, s′, x)〉
will suffice, provided

〈ψ (s, s′, x)|ψ (s, s′′, x)〉 = δs′s′′ (11)

for all pairs of possible transitions. The choice of
{|ψ (s, s′, x)〉} affects the overlaps of the quantum memory
states through Eq. (7), potentially allowing for further ther-
mal and memory advantages. Particularly, for generators of
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highly non-Markovian processes in which most transitions
have only a small number of possible end states given the
initial state and symbol, setting |ψ (s, s′, x)〉 = |s′〉 will likely
be rather inefficient [28,31,50]. We leave the optimization of
this freedom to future work. The use of complex phases to
improve memory efficiency in quantum implementations of
predictive generators [33] is a special case of this auxiliary
space, restricted to one dimension. The theorems above hold
for any choice of {|ψ (s, s′, x)〉}, provided that they satisfy
Eq. (11) and do not remove all possible nonorthogonalities
that can be engineered between quantum memory states. We
also remark that the structure of this additional system corrob-
orates the interpretation that nonpredictive generators contain
“sideband” information about the future of the process they
generate [36]: were an external party to retrieve this system
from the environment after it is discarded, they would be able
to better anticipate the future of the process than they could
from observing its past alone.

As with quantum implementations of predictive gen-
erators, proof-of-principle demonstrations of these advan-
tages are within reach of current experiments [68–70].
In taking quantum memory and thermodynamical advan-
tages in stochastic modeling to a more general medium,
we open up a number of future research avenues, some
paralleling developments in quantum implementations of
predictive generators and some unique to the wider spec-
trum. For example, our results can be further extended to
encompass input-output [37,38] and continuous-time pro-
cesses [30,32,50,51,67,71,72] as well as inference proto-
cols [24], and the trade-off between memory efficiency and
thermal efficiency can be explored to determine the gener-
ator that best compromises the two—and whether classical
and quantum implementations agree on which generator this
should be. This latter direction will also require developments
even in the purely classical setting: while the optimal predic-
tive generators can be systematically found, this remains an
open question across all generators in general. Nevertheless,
our results show that no matter how good a classical imple-
mentation is, a quantum counterpart is almost certainly better.
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APPENDIX A: WORK COST FOR QUANTUM
IMPLEMENTATIONS

In Ref. [35], it was shown that for N independent copies
of a system R and blank ancilla undergoing unitary evolutions
to correlated states of the joint system ancillas R′A, there is a
procedure of erasing the A to obtain R′ alone that is successful
with probability 1 − 2−√

N , bearing a work cost per copy
W of

W

kBT ln[2]
= H (R) − H (R′), (A1)

as N → ∞, where H (·) is the von Neumann entropy [14]. We
do not reproduce this derivation here and refer the interested
reader to Ref. [35]. We will, however, show how it can be
deployed in our context.

Recall from the main text that we have the evolution

U |σs〉|0〉|0〉 =
∑
s′x

√
T x

s′s|σs′ 〉|x〉|s′〉. (A2)

With a further unitary step that copies the output onto another
auxiliary space such that we obtain a final state,

∑
s′x

√
T x

s′s|σs′ 〉|x〉|s′〉|x〉, (A3)

we can then trace out the two auxiliary spaces to obtain the
desired evolution according to Eq. (2). In terms of Eq. (A1),
the initial system state corresponds to the initial memory
state S, the final system state is the combined final memory
state and output S′X , and the ancillae to be reset are the two
auxiliary spaces. Thus, the work cost for our evolution is
given by

Wqg

kBT ln[2]
= H (S) − H (S′X ), (A4)

where here, for shorthand, we use S and S′ to represent the
states corresponding to the initial and final memory states.
Noting that H (S) = H (S′) for a memory initialized in the
stationary state of the evolution, we can recast this as

Wqg = kBT ln[2][I (S′; X ) − H (X )], (A5)

as given in the main text. This matches the result for quantum
implementations of deterministic generators, as the principal
difference is the extra auxiliary space added to the ancilla—
which does not appear directly in the work cost given by
Eq. (A1). Moreover, by including a further auxiliary space
as part of the ancilla that after the evolution also outputs the
initial memory state, we recover the classical implementation
where all memory states are orthogonal—and, therefore, see
that Eq. (A4) similarly holds classically. Note that these work
costs are negative; positive work can be extracted by the
generator implementations [35].

APPENDIX B: PROOF OF THEOREM 3

In Ref. [39], it was shown that a quantum implementation
of a deterministic generator can operate with zero modularity
cost only if the generator is also retrodictive, and hence does
not allow for any quantum memory advantage. Theorem 3
declares that this result holds for quantum implementations
in general. Our proof mirrors many aspects of that for the de-
terministic case [39], with appropriate generalization. Before
proceeding with our proof, we introduce a definition and result
involved in the proof of the deterministic case.

Definition 2. (Maximal local commuting measure-
ment) [39]. Given a bipartite state ρAB, a maximal local
commuting measurement (MLCM) of A for B is a local
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measurement X on A such that

ρAB =
⊕

x

P(x)ρx
AB, (B1)

where ρx
AB := (x

X ⊗ IB)ρAB(x
X ⊗ IB) and x

X are the pro-
jection operators corresponding to the measurement, and no
further nontrivial local measurement Y on A can be performed
without disturbing {ρx

AB}.
The MLCM is proven to be unique [39].
Proposition 1. (Reversible local operations) [39]. Given a

bipartite state ρAB and a local operation �A on A such that
ρCB := (�A ⊗ IB)[ρAB], let X be the MLCM of A for B, and Y
the MLCM of C for B. Then, I (A; B) = I (C; B) iff �A can be
expressed by Kraus operators {Kα} of the form

Kα =
⊕

xy

eiϕxyα
√

P(y, α|x)U y|x, (B2)

where {ϕxyα ∈ R} are arbitrary and P(Y, α|X ) is a stochastic
channel that is nonzero only when ρx

AB and ρ
y
CB are equivalent

up to a local unitary operation U y|x.
The proof is given in Ref. [39].
We are now in a position to prove Theorem 3, repeated here

for convenience.
Theorem 3. (Noneradication of dissipation). A quantum

implementation ({|σs〉},�qg) of a generator (S,X , {T x
s′s}) op-

erates with no locality dissipation iff it can be simulated by a
classical implementation at no additional memory cost. Any
reduction of thermal inefficiency by a quantum implementa-
tion is only mitigation, not eradication; any thermally efficient
quantum implementation yields no memory compression
advantage.

Define ρg(t ) be the combined state of the system X0:t St

formed from the memory state and previous t outputs. Let �

be the MLCM of St for X0:t such that ρg(t ) = ⊕
θ P(θ )ρθ

g (t ),
where ρθ

g (t ) := (IX0:t ⊗ θ )ρg(t )(IX0:t ⊗ θ ), and, similarly,
let �′ be the MLCM of St+1 for X0:t+1.

Recall from Eq. (6) that we have

�qg(ρ) :=
∑
s′x

Lx
s′ρLx

s′
†
, (B3)

where we can further decompose Lx
s := Kx

s ⊗ |x〉 to obtain
Kraus operators {Kx

s } acting on the memory space alone. From
Proposition 1, if there is to be no locality dissipation, we
require these to take the form

Kx
s′ =

⊕
θθ ′

√
P(s′, x, θ ′|θ )U θ ′x|θ . (B4)

Consider now that a further unitary operation is used to
imprint the label of the end state of the transition as an
additional subspace of the output pattern. The implementa-
tion is now of the generator ({θ},SX , {T sx

θ ′θ }) that produces a
joint stochastic process combining the outputs of the original
stochastic process and the trajectory of future memory states.
Crucially though, this shares the same memory cost as the
implementation of the original generator and has the same
form for the {Kx

s } as Eq. (B4). However, for Eq. (B4) to hold,
the new generator must be retrodictive, i.e., given (x, s′, θ ′),
θ is uniquely determined [39]. Since the generator is retro-
dictive, the quantum implementation achieves no memory
compression relative to a classical implementation of the same
generator. Therefore, there exists a classical implementation
of the retrodictive generator of the joint process that bears
the same memory cost as the quantum implementation of
the original generator. This classical implementation can then
be used to generate the process associated with the original
generator by coarse graining its output to discard the parts
associated with the memory state trajectory.

Thus, whenever a quantum implementation of a generator
achieves no locality dissipation, a classical implementation of
the same process can be constructed that has the same memory
cost. This yields the content of Theorem 3.

[1] L. Rabiner and B. Juang, An introduction to hidden Markov
models, IEEE Acoust. Speech Signal Proc. 3, 4 (1986).

[2] L. R. Rabiner, A tutorial on hidden Markov models and selected
applications in speech recognition, Proc. IEEE 77, 257 (1989).

[3] J. P. Crutchfield, The calculi of emergence: Computation, dy-
namics and induction, Physica D 75, 11 (1994).

[4] C. Yang, F. C. Binder, M. Gu, and T. J. Elliott, Measures of
distinguishability between stochastic processes, Phys. Rev. E
101, 062137 (2020).

[5] C. Karlof and D. Wagner, Hidden Markov model cryptanalysis,
in International Workshop on Cryptographic Hardware and
Embedded Systems, edited by C. D. Walter, Ç K. Koç, and C.
Paar (Springer, Berlin, Heidelberg, 2003), pp. 17–34.

[6] Z. Ghahramani and M. I. Jordan, Factorial hidden Markov
models, in Advances in Neural Information Processing Systems,
edited by D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo
(MIT Press, Cambridge, MA, 1996), pp. 472–478.

[7] S. Fine, Y. Singer, and N. Tishby, The hierarchical hidden
Markov model: Analysis and applications, Mach. Learn. 32, 41
(1998).

[8] K. Seymore, A. McCallum, and R. Rosenfeld, Learning hidden
Markov model structure for information extraction, in AAAI-
99 Workshop on Machine Learning for Information Extraction,
edited by M. E. Califf (AAAI, Menlo Park, California, 1999),
pp. 37–42.

[9] P. Baldi, Y. Chauvin, T. Hunkapiller, and M. A. McClure,
Hidden Markov models of biological primary sequence infor-
mation., Proc. Natl. Acad. Sci. USA 91, 1059 (1994).

[10] A. Krogh, B. Larsson, G. Von Heijne, and E. L. Sonnhammer,
Predicting transmembrane protein topology with a hidden
Markov model: Application to complete genomes, J. Mol. Biol.
305, 567 (2001).

[11] M. Stanke and S. Waack, Gene prediction with a hidden Markov
model and a new intron submodel, Bioinformatics 19, ii215
(2003).

[12] R. Bhar and S. Hamori, Hidden Markov Models: Applications
to Financial Economics (Springer Science & Business Media,
New York, 2004), Vol. 40.

[13] S. Gammelmark, K. Mølmer, W. Alt, T. Kampschulte, and D.
Meschede, Hidden Markov model of atomic quantum jump

052615-7

https://doi.org/10.1109/5.18626
https://doi.org/10.1016/0167-2789(94)90273-9
https://doi.org/10.1103/PhysRevE.101.062137
https://doi.org/10.1023/A:1007469218079
https://doi.org/10.1073/pnas.91.3.1059
https://doi.org/10.1006/jmbi.2000.4315
https://doi.org/10.1093/bioinformatics/btg1080


THOMAS J. ELLIOTT PHYSICAL REVIEW A 103, 052615 (2021)

dynamics in an optically probed cavity, Phys. Rev. A 89, 043839
(2014).

[14] M. A. Nielsen and I. Chuang, Quantum Computation and Quan-
tum Information (Cambridge Universty Press, Cambridge UK,
2000).

[15] A. Montanaro, Quantum algorithms: An overview, npj
Quantum Inf. 2, 15023 (2016).

[16] K. Wiesner and J. P. Crutchfield, Computation in finitary
stochastic and quantum processes, Physica D 237, 1173 (2008).

[17] A. Monras, A. Beige, and K. Wiesner, Hidden quantum Markov
models and nonadaptive read-out of many-body states, Appl.
Math. Comput. Sci. 3, 93 (2011).

[18] B. O’Neill, T. M. Barlow, D. Šafránek, and A. Beige, Hidden
Quantum Markov Models with One Qubit, AIP Conference
Proceedings Vol. 1479 (American Institute of Physics, Melville,
New York, 2012), pp. 667–669.

[19] L. A. Clark, W. Huang, T. M. Barlow, and A. Beige, Hid-
den quantum Markov models and open quantum systems
with instantaneous feedback, in ISCS 2014: Interdisciplinary
Symposium on Complex Systems, edited by A. Sanayei,
O. E. Rössler, and I. Zelinka (Springer, Switzerland, 2015),
pp. 143–151.

[20] M. Cholewa, P. Gawron, P. Głomb, and D. Kurzyk, Quantum
hidden Markov models based on transition operation matrices,
Quantum Inf. Proc. 16, 101 (2017).

[21] S. Adhikary, S. Srinivasan, G. Gordon, and B. Boots, Expres-
siveness and learning of hidden quantum Markov models, in
International Conference on Artificial Intelligence and Statistics
(PMLR, 2020), pp. 4151–4161.

[22] A. Monras and A. Winter, Quantum learning of classical
stochastic processes: The completely positive realization prob-
lem, J. Math. Phys. 57, 015219 (2016).

[23] S. Srinivasan, G. Gordon, and B. Boots, Learning hidden quan-
tum Markov models, in International Conference on Artificial
Intelligence and Statistics (PMLR, 2018), pp. 1979–1987.

[24] M. Ho, M. Gu, and T. J. Elliott, Robust inference of memory
structure for efficient quantum modeling of stochastic pro-
cesses, Phys. Rev. A 101, 032327 (2020).

[25] J. Gruska, D. Qiu, and S. Zheng, Potential of quantum finite
automata with exact acceptance, Intl. J. Foundations Comput.
Sci. 26, 381 (2015).

[26] Y. Tian, T. Feng, M. Luo, S. Zheng, and X. Zhou, Experimental
demonstration of quantum finite automaton, npj Quantum Inf.
5, 56 (2019).

[27] M. Gu, K. Wiesner, E. Rieper, and V. Vedral, Quantum me-
chanics can reduce the complexity of classical models, Nat.
Commun. 3, 762 (2012).

[28] J. R. Mahoney, C. Aghamohammadi, and J. P. Crutchfield, Oc-
cam’s quantum strop: Synchronizing and compressing classical
cryptic processes via a quantum channel, Sci. Rep. 6, 20495
(2016).

[29] C. Aghamohammadi, S. P. Loomis, J. R. Mahoney, and J. P.
Crutchfield, Extreme Quantum Memory Advantage for Rare-
Event Sampling, Phys. Rev. X 8, 011025 (2018).

[30] T. J. Elliott and M. Gu, Superior memory efficiency of quantum
devices for the simulation of continuous-time stochastic pro-
cesses, npj Quantum Inf. 4, 18 (2018).

[31] F. C. Binder, J. Thompson, and M. Gu, Practical Unitary Sim-
ulator for Non-Markovian Complex Processes, Phys. Rev. Lett.
120, 240502 (2018).

[32] T. J. Elliott, A. J. P. Garner, and M. Gu, Memory-efficient track-
ing of complex temporal and symbolic dynamics with quantum
simulators, New J. Phys. 21, 013021 (2019).

[33] Q. Liu, T. J. Elliott, F. C. Binder, C. D. Franco, and M. Gu,
Optimal stochastic modeling with unitary quantum dynamics,
Phys. Rev. A 99, 062110 (2019).

[34] S. P. Loomis and J. P. Crutchfield, Strong and weak optimiza-
tions in classical and quantum models of stochastic processes,
J. Stat. Phys. 176, 1317 (2019).

[35] S. P. Loomis and J. P. Crutchfield, Thermal Efficiency of
Quantum Memory Compression, Phys. Rev. Lett. 125, 020601
(2020).

[36] A. J. P. Garner, Oracular information and the second law of
thermodynamics, arXiv:1912.03217.

[37] N. Barnett and J. P. Crutchfield, Computational mechanics of
input–output processes: Structured transformations and the ε-
transducer, J. Stat. Phys. 161, 404 (2015).

[38] J. Thompson, A. J. P. Garner, V. Vedral, and M. Gu, Using quan-
tum theory to simplify input-output processes, npj Quantum Inf.
3, 6 (2017).

[39] S. P. Loomis and J. P. Crutchfield, Thermodynamically efficient
local computation and the inefficiency of quantum memory
compression, Phys. Rev. Research 2, 023039 (2020).

[40] A. Khintchine, Correlation theory of stationary stochastic pro-
cesses, Math. Ann. 109, 604 (1934).

[41] D. R. Upper, Theory and algorithms for hidden Markov models
and generalized hidden Markov models, Ph.D. thesis, Univer-
sity of California, Berkeley, 1997.

[42] C. R. Shalizi and J. P. Crutchfield, Computational mechanics:
Pattern and prediction, structure and simplicity, J. Stat. Phys.
104, 817 (2001).

[43] J. P. Crutchfield, C. J. Ellison, and J. R. Mahoney, Time’s
Barbed Arrow: Irreversibility, Crypticity, and Stored Informa-
tion, Phys. Rev. Lett. 103, 094101 (2009).

[44] J. P. Crutchfield and K. Young, Inferring Statistical Complexity,
Phys. Rev. Lett. 63, 105 (1989).

[45] J. B. Ruebeck, R. G. James, J. R. Mahoney, and J. P. Crutchfield,
Prediction and generation of binary Markov processes: Can
a finite-state fox catch a Markov mouse?, Chaos: Interdis. J.
Nonlin. Sci. 28, 013109 (2018).

[46] J. Thompson, A. J. P. Garner, J. R. Mahoney, J. P. Crutchfield,
V. Vedral, and M. Gu, Causal Asymmetry in a Quantum World,
Phys. Rev. X 8, 031013 (2018).

[47] J. P. Crutchfield, Between order and chaos, Nat. Phys. 8, 17
(2012).

[48] C. Aghamohammadi, J. R. Mahoney, and J. P. Crutchfield,
Extreme quantum advantage when simulating classical systems
with long-range interaction, Sci. Rep. 7, 6735 (2017).

[49] A. J. P. Garner, Q. Liu, J. Thompson, V. Vedral et al.,
Provably unbounded memory advantage in stochastic simu-
lation using quantum mechanics, New J. Phys. 19, 103009
(2017).

[50] T. J. Elliott, C. Yang, F. C. Binder, A. J. P. Garner, J. Thompson,
and M. Gu, Extreme Dimensionality Reduction With Quantum
Modeling, Phys. Rev. Lett. 125, 260501 (2020).

[51] T. J. Elliott, Quantum coarse-graining for extreme dimension
reduction in modelling stochastic temporal dynamics, PRX
Quantum (to be published) [arXiv:2105.06831].

[52] W. Löhr and N. Ay, Non-sufficient memories that are suffi-
cient for prediction, in International Conference on Complex

052615-8

https://doi.org/10.1103/PhysRevA.89.043839
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1016/j.physd.2008.01.021
https://doi.org/10.1007/s11128-017-1544-8
https://doi.org/10.1063/1.4936935
https://doi.org/10.1103/PhysRevA.101.032327
https://doi.org/10.1142/S0129054115500215
https://doi.org/10.1038/s41534-019-0163-x
https://doi.org/10.1038/ncomms1761
https://doi.org/10.1038/srep20495
https://doi.org/10.1103/PhysRevX.8.011025
https://doi.org/10.1038/s41534-018-0064-4
https://doi.org/10.1103/PhysRevLett.120.240502
https://doi.org/10.1088/1367-2630/aaf824
https://doi.org/10.1103/PhysRevA.99.062110
https://doi.org/10.1007/s10955-019-02344-x
https://doi.org/10.1103/PhysRevLett.125.020601
http://arxiv.org/abs/arXiv:1912.03217
https://doi.org/10.1007/s10955-015-1327-5
https://doi.org/10.1038/s41534-016-0001-3
https://doi.org/10.1103/PhysRevResearch.2.023039
https://doi.org/10.1007/BF01449156
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1103/PhysRevLett.103.094101
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1063/1.5003041
https://doi.org/10.1103/PhysRevX.8.031013
https://doi.org/10.1038/nphys2190
https://doi.org/10.1038/s41598-017-04928-7
https://doi.org/10.1088/1367-2630/aa82df
https://doi.org/10.1103/PhysRevLett.125.260501
http://arxiv.org/abs/arXiv:2105.06831


MEMORY COMPRESSION AND THERMAL EFFICIENCY OF … PHYSICAL REVIEW A 103, 052615 (2021)

Sciences, edited by J. Zhou (Springer, Berlin, Heidelberg,
2009), pp. 265–276.

[53] R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge
University Press, Cambridge, 1990).

[54] This follows from the Schur-Horn theorem (that the spectrum
of a Hermitian matrix majorizes its diagonal elements [73]) and
the Schur concavity of Rényi entropies [74].

[55] P. Dennery and A. Krzywicki, Mathematics for Physicists,
Dover Books on Physics Series (Dover, New York, 1996).

[56] H. Leff and A. F. Rex, Maxwell’s Demon 2 Entropy, Classical
and Quantum Information, Computing (CRC Press, Boca Raton,
FL, 2002).

[57] J. C. Maxwell, Theory of Heat (Longmans, Green, London,
1872).

[58] L. Szilard, On the decrease in entropy in a thermodynamic sys-
tem when intelligent beings intervene, Z. Phys. 53, 840 (1929).

[59] R. Landauer, Irreversibility and heat generation in the comput-
ing process, IBM J. Res. Dev. 5, 183 (1961).

[60] S. Deffner and C. Jarzynski, Information Processing and the
Second Law of Thermodynamics: An Inclusive, Hamiltonian
Approach, Phys. Rev. X 3, 041003 (2013).

[61] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, Thermody-
namics of information, Nat. Phys. 11, 131 (2015).

[62] D. Mandal and C. Jarzynskib, Work and information processing
in a solvable model of Maxwell’s demon, Proc. Natl. Acad. Sci.
USA 109, 11641 (2012).

[63] A. J. P. Garner, J. Thompson, V. Vedral, and M. Gu, Thermo-
dynamics of complexity and pattern manipulation, Phys. Rev. E
95, 042140 (2017).

[64] A. B. Boyd, D. Mandal, and J. P. Crutchfield, Leveraging
environmental correlations: The thermodynamics of requisite
variety, J. Stat. Phys. 167, 1555 (2017).

[65] A. B. Boyd, D. Mandal, and J. P. Crutchfield, Thermodynamics
of Modularity: Structural Costs Beyond the Landauer Bound,
Phys. Rev. X 8, 031036 (2018).

[66] T. M. Cover and J. A. Thomas, Elements of Information Theory
(Wiley, New York, 2012).

[67] S. E. Marzen and J. P. Crutchfield, Informational and causal
architecture of discrete-time renewal processes, Entropy 17,
4891 (2015).

[68] M. S. Palsson, M. Gu, J. Ho, H. M. Wiseman, and G. J. Pryde,
Experimentally modeling stochastic processes with less mem-
ory by the use of a quantum processor, Sci. Adv. 3, e1601302
(2017).

[69] F. Ghafari, N. Tischler, J. Thompson, M. Gu, L. K. Shalm,
V. B. Verma, S. W. Nam, R. B. Patel, H. M. Wiseman, and
G. J. Pryde, Dimensional Quantum Memory Advantage in the
Simulation of Stochastic Processes, Phys. Rev. X 9, 041013
(2019).

[70] F. Ghafari, N. Tischler, C. Di Franco, J. Thompson, M.
Gu, and G. J. Pryde, Interfering trajectories in experimental
quantum-enhanced stochastic simulation, Nat. Commun. 10,
1630 (2019).

[71] S. Marzen and J. P. Crutchfield, Informational and causal archi-
tecture of continuous-time renewal processes, J. Stat. Phys. 168,
109 (2017).

[72] S. E. Marzen and J. P. Crutchfield, Structure and randomness
of continuous-time, discrete-event processes, J. Stat. Phys. 169,
303 (2017).

[73] M. A. Nielsen, Characterizing mixing and measurement in
quantum mechanics, Phys. Rev. A 63, 022114 (2001).

[74] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: The-
ory of Majorization and its Applications (Springer, New York,
1979), Vol. 143.

052615-9

https://doi.org/10.1007/BF01341281
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1103/PhysRevX.3.041003
https://doi.org/10.1038/nphys3230
https://doi.org/10.1073/pnas.1204263109
https://doi.org/10.1103/PhysRevE.95.042140
https://doi.org/10.1007/s10955-017-1776-0
https://doi.org/10.1103/PhysRevX.8.031036
https://doi.org/10.3390/e17074891
https://doi.org/10.1126/sciadv.1601302
https://doi.org/10.1103/PhysRevX.9.041013
https://doi.org/10.1038/s41467-019-08951-2
https://doi.org/10.1007/s10955-017-1793-z
https://doi.org/10.1007/s10955-017-1859-y
https://doi.org/10.1103/PhysRevA.63.022114

