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Quantum data locking is a quantum communication primitive that allows the use of a short secret key
to encrypt a much longer message. It guarantees information-theoretical security against an adversary with
limited quantum memory. Here we present a quantum data locking protocol that employs pseudorandom circuits
consisting of Clifford gates only, which are much easier to implement fault tolerantly than universal gates.
We show that information can be encrypted into n-qubit code words using order n − Hmin(X) secret bits, where
Hmin(X) is the min-entropy of the plain text, and a min-entropy smaller than n accounts for information leakage to
the adversary. As an application, we discuss an efficient method for encrypting the output of a quantum computer.
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I. INTRODUCTION

Quantum data locking (QDL) is a quantum phenomenon
that allows us to encrypt a long message using a much shorter
secret key with information theoretic security. This yields one
of the strongest violations of classical information theory in
quantum physics. In fact, a classic result by Shannon [1],
which is at the root of the one-time pad encryption, establishes
that information theoretic encryption of a message of n bits
requires a private key of no less than n bits.

The first QDL protocol was introduced by DiVincenzo
et al. [2] who showed that a single secret bit is sufficient
to obfuscate half of the information contained in n bits, for
any n. This was obtained by encoding n bits of classical
information into n qubits, where the one bit of information
determines which of two mutually unbiased bases is used. Any
attempt to measure the n-qubit cipher text without knowledge
of the basis allows one to obtain at most n/2 bits of infor-
mation. Further works have strengthened this seminal result
[3–8]. The strongest QDL protocols can encrypt n bits of
information using an exponentially small private key, with
the guarantee that no more than εn bits will leak to the
adversary. QDL was discussed in the context of quantum
communications in Refs. [9–11], applications to secret key
expansion and direct secret communication were introduced
in Refs. [12–14], and proof-of-principle demonstrations were
presented in Refs. [15,16].

In a typical QDL protocol, a short private key is used to
secretly agree on a code, for example a set of basis vectors,
to encode classical information into a quantum system. To
encrypt information, the sender (Alice) applies a unitary trans-
formation to map the computational basis into the chosen
basis. To decrypt, the legitimate receiver (Bob) applies the
inverse transformation, followed by a measurement in the
computational basis. This is schematically shown in Fig. 1.
To achieve secure encryption, we require that only a negli-
gible amount of information is obtained by a unauthorized
user (Eve) who attempts to measure the quantum cipher text
without knowing the private key. The security of QDL holds

independently of the computational capacity of Eve, who
may have unlimited computational power, as long as they
have limited quantum memory. For example, Eve may have
no quantum memory, or a quantum memory with bounded
storage time [10,12,17]. For applications in quantum cryptog-
raphy, this puts QDL in the framework of bounded quantum
storage [18].

We show that pseudorandom circuits can be used to build
QDL protocols that are fault tolerant and robust against in-
formation leakage. In particular, we show that QDL can be
realized efficiently using only Clifford gates, which can be
made fault tolerant much more easily than the full universal
gate set [19]. We assume that the users have the ability to
apply the nonuniversal set of Clifford gates in a fault-tolerant
way. We also assume that the sender can prepare states in the
computational basis of n qubits, and the receiver can apply
projective measurements in the computational basis. As an
application, we argue that our QDL scheme can be used to
encrypt the output of a quantum computer, in such a way that
it is accessible only by authorized users. This encryption is
secure in a scenario where quantum computing is a mature
technology but quantum memories are not yet perfect.

The structure of the paper follows: In Sec. II we will review
the framework of quantum data locking and introduce our
protocol. In Sec. III we discuss the properties of random qubit
circuits. We present our security analysis in Sec. IV, which
is followed by our results in Sec. V. We discuss in detail
the application of QDL to securing the output of a quantum
computation in Sec. VI.

II. QUANTUM DATA LOCKING

Our scheme develops along the lines of previous QDL
protocols. The protocol involves the legitimate sender Alice
and the receiver Bob. The adversary is called Eve. In QDL,
one may distinguish two security scenarios. In weak QDL,
one assumes that Alice and Bob communicate through a noisy
quantum channel, and Eve measures the environment of the
channel. This is formally described by saying that Eve has
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access to the output of the conjugate channel of the channel
from Alice to Bob. In strong QDL, one instead assumes that
Eve can access the output of both the channel from Alice
to Bob and its conjugate. Here we work in the strong QDL
scenario. Furthermore, we consider the case when the chan-
nel from Alice to Bob is noiseless. The extension to noisy
channels is still an open problem in the general case, with
the exception of a handful of examples of noisy channels,
including the erasure channel and the loss channel [11–14].

The QDL protocol is as follows:
(1) Alice and Bob share a unconditionally secure secret

key of log K bits.
(2) They publicly agree upon a set of K n-qubit circuits,

{Ck}k=1,...,K . These circuits are composed of Clifford gates
only.

(3) Alice encodes the n-bit message x into the quantum
state |x〉, which belongs to the n-qubit computational basis.

(4) She then encrypts the code word and sends it to Bob.
The encryption is realized by applying the Clifford circuit
corresponding to the unique unitary Ck associated with the
private key. Thus, the encrypted code word is Ck|x〉.

(5) Bob, who knows the private key, applies C−1
k , decrypts

the code word Ck|x〉, and measures in the computational basis.
Alice can chose one among M = 2n possible code words.

If they have same prior probability, then the code book has
maximal entropy of exactly n bits. If the code words do not
have equal probabilities, then it is convenient to quantify the
entropy of the code book using the min-entropy [20]

Hmin(X) = − log2 pmax. (1)

where pmax := maxx pX(x). A min-entropy smaller than n also
describes a situation where some information about the plain
text has leaked to Eve.

The security of QDL is established in a specific setting
where the adversary has limited quantum storage capability.
For example, Eve may have no reliable quantum memory and
thus she is forced to measure the quantum state as soon as
she obtains it [10]. QDL may also be secure if Eve can store
quantum information reliably for a limited time, and Alice and
Bob have an upper bound on her memory time [12,17].1

A number of QDL protocols and security proofs have been
discussed in the literature. Some of them, however, would
be limited to the case where Hmin(X) = n [3,5,6,12,13]. For
example, Fawzi et al. [5,6] showed an explicit and efficient
construction that can encrypt n bits of information using a
key of O(log2 (n) log2 (n/ε)) bits, with a leakage of no more
than εn bits. However, this construction cannot be made fault
tolerant [5]. The approach of Dupuis et al. [7] can instead
account for nonmaximal min-entropy and would yield results
similar to this work but it relies on sampling unitaries from

1If Eve has a memory with a finite time, this weakens the secu-
rity of the protocol, as she may obtain side information during the
storage time, and then leverage it to gain more knowledge about the
encrypted computation. Past works have addressed this issue in a
quantitative way, assuming a model of quantum memory as a noisy
channel that decoheres in time [22]. This approach may be used to
quantify the security as a function of the time elapsed between when
Eve receives the quantum state and when she measures it.

TABLE I. Summary of key size and circuit requirement for dif-
ferent schemes for encrypting the information encoded in n qubits.

Iacc Key size Circuit class

Quantum
one-time 0 2n Pauli
pad [23]

Approx.
quantum

εn n + log2 n + log2(1/ε2) Pauli
one-time
pad [3]

Ref. [3] εn + 3 3 log2 n Haar

Ref. [6] εn O(log2(n/ε) log2 n) universal

n − Hmin(X)+
This paper εn Clifford

O(log2 n) + O(log2(1/ε))

the Haar distribution, which requires an exponential number
of gates [21]. In contrast, here we are using an approximate
2-design, which can be sampled using Clifford gates only.
Finally, the analysis of partial information leakage was also
considered in Refs. [22] as well as in Ref. [7], however the
scheme of Ref. [22] may be hard to realize in a fault-tolerant
way.

Table I shows a summary of some previously known QDL
protocol, compared with the contribution of this paper, the
quantum one-time pad [23], and the approximate quantum
one-time pad [3].

III. PSEUDORANDOM QUANTUM CIRCUITS

Unlike other works, which have considered the uniform en-
semble of random unitaries induced by the Haar measure (see,
e.g., Refs. [3,5,6]), here we apply pseudorandom unitaries
from an approximate 2-design. This ensemble of unitaries has
also been used in other applications related to information
obfuscation, most notably system decoupling [24]. Using gen-
uine Haar-random unitaries provides slightly more efficient
security. However, as pointed out in Ref. [25], using unitaries
from the Haar measure is prohibitively inefficient for large
systems due to the exponential number of two-qubit gates and
random bits required.

Recall that, given a Hilbert space of dimensions d and
δ > 0, a δ-approximate t-design is an ensemble of unitary
operators C such that [25–27]

(1 − δ)M� � E[| 〈α|C|β〉 |2�] � (1 + δ)M�, (2)

for all unit vectors |α〉 and |β〉 in d dimensions and � � t ,
where E denotes the expectation value over the t design, and

M� = �!(d − 1)!

(� + d − 1)!
(3)

is the �th moment of the uniform distribution induced by the
Haar measure, i.e., M� = EHaar[| 〈α|C|β〉 |2�].

Given an n-qubit circuit, a δ-approximate 2-design can
be achieved with O(n(n + log2 1/δ)) two-qubit Clifford gates
[28], or O(n log2

2 n) random U (4) gates [21]. There are known
codes that implement the Clifford group in a fault-tolerant
manner [19,29], whereas supplementing the Clifford group
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with fault tolerant gates into a universal set of gates is highly
nontrivial [30].

The first two moments of the pseudorandom unitaries
play an important role in this work, i.e., the first moment
E[| 〈α|C|β〉 |2], and the second moment E[| 〈α|C|β〉 |4]. The
ratio

γ := E[| 〈α|C|β〉 |4]

E[| 〈α|C|β〉 |2]2 (4)

quantifies the spread of the random variable | 〈α|C|β〉 |2
around its average. For δ-approximate 2-designs we can
bound γ from above as

γ � 2d (1 + δ)

(d + 1)(1 − δ)2 � 2
1 + δ

(1 − δ)2 . (5)

This coefficient will play a fundamental role in our analysis
of QDL. We use the above bound on γ to estimate the length
of the private key.

IV. SECURITY ANALYSIS

Our security analysis builds on, improves, and generalizes
techniques previously applied in Refs. [12,13,31].

Different code words correspond to different quantum
states that Alice can prepare, denoted as |x〉 (with x =
1, . . . , M). These vectors are mutually orthogonal. For ex-
ample, these states can be the vectors in the n-qubit
computational basis. Different code words may have different
prior probabilities, denoted pX(x). Therefore, the prior uncer-
tainty in the code words is well quantified by the min-entropy
Hmin(X) = − log2 maxx pX(x).

From the point of view of the legitimate receiver Bob, who
knows the private key, the a priori description of the output of
the computation is given by the statistical mixture

ρB =
M∑

x=1

pX(x) |x〉 〈x| . (6)

The description of this state is different for Eve, who does not
know the private key,

ρE = 1

K

K∑
k=1

M∑
x=1

pX(x)Ck |x〉 〈x|C†
k . (7)

Below we show that, if K is large enough, then Eve can obtain
only a negligible amount of information about the code words
by measuring ρE .

Like other works on QDL [2,3,10,12,13,22,31], we use
the accessible information Iacc(X; E ) to quantify the potential
information leakage to Eve. This quantity represents the max-
imum number of bits of information about the input variable X
that can be obtained from a measurement of the state ρE . We
anticipate that similar results could be obtained using other
metrics, see, e.g., Refs. [5,6,8].

A measurement is a map ME→Y that takes the quantum
system E as input and has the classical variable Y as output.
For any given measurement, one can consider the mutual
information I (X; Y) between the input message and the mea-
surement output. Recall that the mutual information between
two random variables X and Y is I (X; Y) = H (Y) − H (Y|X),
where H (Y|X) is the conditional Shannon entropy. The mu-
tual information vanishes when X and Y are statistically
independent and reaches its maximum when they are perfectly
correlated. The accessible information is defined as the maxi-
mum mutual information,

Iacc(X; E ) = max
ME→Y

I (X; Y), (8)

where the maximization is over all possible measurements
ME→Y. We require that the accessible information is suf-
ficiently small, i.e., that the information leaking to Eve is
negligible not just for one particular measurement, but for all
possible measurements she can perform.

The security analysis of the protocol relies on showing
that Iacc(X; E ) can be made arbitrarily small if K is large
enough. This also allows us to quantify the minimal length
of the private key to ensure secure encryption. To show this,
we first write the accessible information as the difference of
two entropies,

Iacc(X; E ) = max
ME→Y

H (Y) − H (Y|X), (9)

and then show that H (Y) � H (Y|X) for all measurements
ME→Y. The proof shows that, for a random choice of K
unitaries and for K large enough, one obtains Iacc(X; E ) � 2nε

with probability arbitrarily close to 1.
In general, the measurement map ME→Y is characterized

by POVM elements 	y, such that 	y � 0,
∑

y 	y = I. It is
known that the optimal measurement has unit rank [2], i.e., the
POVM elements take the form 	y = αy|φy〉〈φy|, where φy are
unit vectors, and αy are positive numbers such that

∑
y αy =

2n.
The outcomes of the measurement are distributed accord-

ing to the probability distribution

pY(y) = αy 〈φy|ρE |φy〉 , (10)

with ρE as given in Eq. (7). For given x, the conditional
probability of a measurement outcome is

pY|X=x(y) = αy 〈φy|ρx
E |φy〉 , (11)

with

ρx
E = 1

K

K∑
k=1

Ck|x〉〈x|C†
k . (12)

The accessible information in Eq. (9) is then given by

Iacc(X; E ) = max
ME→Y

{
−

∑
y

pY(y) log2 pY(y) +
∑

xy

pX(x)pY|X=x(y) log2 pY|X=x(y)

}

= max
ME→Y

∑
y

αy

{
−〈φy|ρE |φy〉 log2 〈φy|ρE |φy〉 +

∑
x

pX(x)〈φy|ρx
E |φy〉 log2 〈φy|ρx

E |φy〉
}

. (13)
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The security proof proceeds by showing that, by increasing
K , both pY and pY|X=x concentrate towards their common
expectation value, and that the probability of a deviation larger
than ε is exponentially suppressed. Therefore both the entropy
H (Y) and the conditional entropy H (Y|X) will approach the
same value. We show that both terms in the curly brackets in
Eq. (13) are arbitrarily close to

〈φy|ρ̄E |φy〉 log2 〈φy|ρ̄E |φy〉 (14)

for all vectors φy, where

ρ̄E := 2−nI (15)

is the n-qubit maximally mixed state. The relative minus sign
between the terms then implies that I (X; Y) can be made
arbitrarily small.

First, we show using the matrix Chernoff bound [32] that
ρE is close to the n-qubit maximally mixed state ρ̄E := 2−nI.
Assuming K is large enough, with near unit probability we
have

ρE � (1 + ε)ρ̄E = (1 + ε)2−nI. (16)

From this inequality we find that 〈φ|ρE |φ〉 � (1 + ε)2−n

uniformly in φ. For a random choice of the unitaries, the
probability that this inequality is violated is smaller than (see
Appendix A for details)

P1 := exp

{
n ln 2 − K

ε2

4

2−n

pmax

}
. (17)

Next, we apply a tail bound due to Maurer [33]. We show
that, for given φ and x,

〈φ|ρx
E |φ〉 � (1 − ε)〈φ|ρ̄E |φ〉. (18)

This inequality needs to be extended to all code words and
to (almost) all values of x. In this way we obtain that, for a
random choice of the unitaries, the inequality is verified up to
a probability smaller than

P2 := exp

[
2d ln

(
20 × 2n

ε

)
+ ε ln M

4pmax
− Kε3

128γ pmax

]
,

(19)

where γ has been defined in Eq. (4) (see Appendix B for
details).

Putting these two results together, we obtain

I (X; Y) � 2ε
∑

y

αy2−nn. (20)

Since
∑

y αy2−n = 1, we finally find

I (X; Y) � 2εn. (21)

This bound on the accessible information holds probabilis-
tically, but the likelihood of failure can be made arbitrary
small for large enough K . Specifically, the probability of fail-
ure is no larger than P1 + P2. Therefore, it can be bounded
away from 1 by choosing K such that

K > max

{
4n×2n pmax ln 2

ε2 ,

128γ

ε3

[
2n+1 pmax ln

(
20×2n

ε

) + ε ln M
4

]
.

(22)

Ck
-1

Measurement

| 1

| 0 

Communication

channelAlice Bob

| 0 

| 1

| 0 
| 0 

| Ck

FIG. 1. Circuit layout for the encryption protocol. A useful state
|x〉 is concatenated with the encryption, a pseudorandom quan-
tum circuit Ck . The authorized user applies the unitary c−1

k and
correctly decrypts the encryption. An unauthorized user or adver-
sary can attempt to extract information by performing an arbitrary
measurement.

V. RESULTS

We have shown that for a random choice of K unitary
transformations, the accessible information is upper bounded
by a negligible number of bits 2nε,

Iacc(X; E ) � 2nε. (23)

From Eq. (22), this holds for a private key of length

log2 K = log2 γ + n − Hmin(X) + O(log2 n) + O(log2 1/ε).
(24)

Note that the secret key length depends on the coefficient γ

introduced in Eq. (4). For an approximate 2-design using the
bound in Eq. (5), we obtain

log2 K � n − Hmin(X) + log2
1 + δ

(1 − δ)2

+O(log2 n) + O(log2 1/ε).

(25)

In conclusions, we have shown that QDL achieves se-
cure encryption using order n − Hmin(X) secret bits, where
Hmin(X) is the min-entropy of the code words sent by Alice.
We plot Eq. (25) in Fig. 2, where the exact value of K is given
by Eq. (22), for ε = 10−8 and different values of Hmin. In the
figure, we also compare our protocol with other private-key
cryptography methods based on the quantum one-time pad as
well as its approximate version [3]. Our protocol is more effi-
cient, in terms of the length of the private key, when n � 50,
and the advantage increases with increasing n.

VI. APPLICATION: SECURING THE OUTPUT
OF A QUANTUM COMPUTER

Applications of QDL have been mostly focused on quan-
tum communication. Previous works have applied QDL, for
example, to communication through a wiretapped channel.
Here, we propose the use of pseudorandom quantum circuits
as efficient encryption devices for protecting the output of
a quantum computer. This application assumes a scenario
where quantum computing is a mature technology but quan-
tum memories are not yet perfect.
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FIG. 2. Number of secret bits [log2 K in Eq. (22)] required to
lock an n-qubit output of a quantum computer, for ε = 10−8 and
different values of Hmin: Hmin = n (red solid line), 0.8n (green dotted-
dashed line), and 0.6n (blue dotted line). For comparison, we plot the
approximate state-randomization in Ref. [3] (purple dashed line with
circles), and the quantum one-time pad [3] (black line with stars).

We imagine quantum computers as devices servicing many
distributed users, where the latter may have limited computing
capability, or may not know the algorithm that is realized by
the server. In this scenario, we anticipate the need to encrypt
the output of a quantum computer. To realize this task, we con-
sider a protocol for private-key encryption between a quantum
computer and its authorized user. This is schematically shown
in Fig. 3. Unlike blind quantum computation [34–37], which
is concerned with untrusted hardware and verification, our
goal is to prevent unauthorized users from gaining access to
the quantum computer’s output.

Otherwise, one could encrypt the quantum state |ψ〉 be-
fore the measurement. Perfect encryption obtained with the
quantum one-time pad would require a secret key of 2n bits
[3]. Approximate encryption, one that encrypts the quantum
state up to ε probability of failure, would instead require a
secret key of O(n) + O(log2 1/ε) bits [3,4]. These protocols
require that the encrypted state be virtually indistinguishable

C

Measurement

| 1
| 0 

V            

| 0 

| 1
| 0 
| 0 

Q
u
b
it

s

U

Computation Encryption 
Decryption by legitimate 

or unauthorized user  

FIG. 3. Circuit layout for the encryption protocol. A useful com-
putation U is concatenated with the encryption, a pseudorandom
quantum circuit C. The authorized user applies the unitary V = C†

and correctly decrypts the encryption. An unauthorized user or ad-
versary can attempt to extract information by performing an arbitrary
measurement.

from the maximally mixed state. Expressed in terms of the
trace norm, ‖ρ − 2−n1‖ � ε, for some small ε. However,
the output of a quantum computation typically contains the
answer to a meaningful question. For our purposes, we may
simply require that an unauthorized user does not obtain the
correct answer. This opens the possibility of performing the
encryption in a much more efficient way.

Suppose the quantum computer is used to solve a particular
problem whose solution space has cardinality M. Different
outputs of the quantum computation correspond to different
quantum states, denoted |x〉 (with x = 1, . . . , M). We develop
our analysis within the subspace of fault-tolerant computation
that incorporates quantum error correction [38,39]. Therefore,
the states |x〉 are assumed to be quantum error corrected. For
example, during transmission of the quantum state, channel
loss will erase a subset of the transmitted qubits. Our protocol
allows us to include a redundant encoding to mitigate these
losses. As long as the error correction is successful, we know
that there is no quantum information leakage, and our protocol
remains secure.

We further assume that different outputs are associated
with a prior probability pX(x), and that the output states |x〉
are mutually orthogonal. Therefore, the uncertainty in the
measurement outcome is well quantified by the min-entropy
Hmin(X) = − log2 maxx pX(x). Note that this is the prior dis-
tribution of the expected outcome of the computation. The
value of the min-entropy depends on the particular compu-
tation performed by the quantum computer, and it is easy to
find examples where Hmin is low and where it is high. For
example, a parity calculation may have a min-entropy as low
as 1, whereas a Grover search may have a min-entropy that is
close to maximal.

QDL is particularly efficient when Hmin(X) ≈ n, this cor-
responds to the setting when one has little information about
the outcome of the computation. In this case n − Hmin(X) can
be substantially smaller than n, suggesting that the encryption
can be implemented much more efficiently than previously
thought.

VII. CONCLUSIONS

QDL is a communication primitive that allows us to en-
crypt, with information theoretic security, a long message with
a much shorter private key. This is impossible in classical
information theory, where the key needs to be at least as
long as the message. When classical information is encoded
in a quantum system, the phenomenon of QDL allows for
secure encryption against an adversary with limited quantum
memory, but unbounded computational power.

In this paper, we have presented a scheme for QDL that
employs pseudorandom unitaries for information scrambling.
These unitary transformations belong to an approximate uni-
tary 2-design. In particular, the unitaries can be obtained by
combining Clifford gates. This is an improvement with respect
to previous QDL schemes because fault-tolerant Clifford gates
require orders of magnitude fewer physical qubits than univer-
sal fault-tolerant quantum computing [30,40]. Furthermore,
our QDL protocol allows for partial information leakage to
the eavesdropper. This is modeled by the code words having a
nonmaximal min-entropy.
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We discuss an application of our QDL protocol as a way to
encrypt the output of a quantum computer. Unlike blind quan-
tum computation, which is concerned with untrusted hardware
and verification, we focus on preventing unauthorized users
from gaining access to the output of a quantum algorithm. We
have considered a scenario where a server can realize fault-
tolerant universal quantum computing, the user is capable
only of implementing fault-tolerant Clifford gates and mea-
surements in the computational basis, and the eavesdropper
has limited quantum memory.
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APPENDIX A: APPLICATION OF THE MATRIX
CHERNOFF BOUND

The matrix Chernoff bound states the following (which can
be obtained directly from Theorem 19 of Ref. [32]):

Theorem 1. Let {Xt }t=1,...,K be K independently and iden-
tically distributed d-dimensional Hermitian-matrix-valued
random variables, with Xt ≈ X , 0 � X � R, and E[X ] =
2−nI. Then, for any ε � 0,

Pr

{
1

K

K∑
t=1

Xt �� (1 + ε)E[X ]

}

� d exp

{
−KD

[
(1 + ε)

2−n

R

∥∥∥∥2−n

R

]}
, (A1)

where Pr{x} denotes the probability that the proposition x is
true, and D[u‖v] = u ln (u/v) − (1 − u) ln [(1 − u)/(1 − v)].
Note that, for ε < 1,

D

[
(1 + ε)

2−n

R

∥∥∥∥2−n

R

]
� ε2

4

2−n

R
. (A2)

We apply the Chernoff bound to the K independent random
variables

Xk ≡ Ck

M∑
x=1

pX(x)|ψx〉〈ψx|C†
k . (A3)

Note that these operators satisfy 0 � Xk � pmax :=
maxx pX(x). Therefore, R ≡ pmax. Also note that

1

K

K∑
k=1

Xk = 1

K

K∑
k=1

Ck

M∑
x=1

pX(x)|ψx〉〈ψx|C†
k = ρU′ , (A4)

and E[X ] = ρ̄U′ = 2−nI. By applying the Chernoff bound we
then obtain

Pr{ρU′ �� (1 + ε)2−n} � 2n exp

{
−K

ε2

4

2−n

pmax

}
(A5)

= exp

{
n ln 2 − K

ε2

4

2−n

pmax

}
. (A6)

In conclusion, we have obtained that, up to a probability
smaller than

P1 := exp

{
n ln 2 − K

ε2

4

2−n

pmax

}
, (A7)

the following matrix inequality holds:

ρU′ � (1 + ε)2−n. (A8)

APPENDIX B: APPLICATION OF THE MAURER BOUND

We apply a concentration inequality obtained by Maurer in
Ref. [33]:

Theorem 2. Let {Xk}k=1,...,K be K independent and
identically distributed non-negative real-valued random vari-
ables, with Xk ≈ X and finite first and second moments,
E[X ],E[X 2] < ∞. Then, for any τ > 0 we have that

Pr

{
1

K

K∑
k=1

Xk < (1 − τ )E[X ]

}
� exp

(
−Kτ 2E[X ]2

2E[X 2]

)
.

(B1)

For any given x and φ, we apply this bound to the random
variables

Xk ≡ |〈φ|Ck|ψx〉|2. (B2)

Note that

1

K

K∑
k=1

Xk = 〈φ|ρx
U′ |φ〉, (B3)

and

E[X ] = ρ̄U′ = 2−nI. (B4)

The application of the Maurer tail bound then yields

Pr{〈φ|ρx
U′ |φ〉 < (1 − τ )2−n} � exp

(
−Kτ 2

2γ

)
, (B5)

with γ as defined in Eq. (4).
The probability bound in Eq. (B5) refers to one given value

of x. Here we extend it to � < M distinct values x1, x2, . . . , x�.
We have

Pr
{∀ x = x1, x2, . . . x�, 〈φ|ρx

U′ |φ〉 < (1 − τ )2−n
}

� exp

(
−�Kτ 2

2γ

)
. (B6)

This follows from two observations. First, for different val-
ues of x, the random variables 〈φ|ρx

U′ |φ〉 are identically
distributed. Second, these variables are not statistically inde-
pendent because they obey the subnormalization constraint∑

x〈φ|ρx
U′ |φ〉 = c � 1. If the � random variables x1, x2, . . . ,

x� were statistically independent, then Eq. (B6) would hold.
However, Eq. (B6) still holds because the normalization con-
straint implies that the variables are anticorrelated. Therefore,
the probability that they are all small is smaller than if they
were statistically independent.
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We now extend the concentration inequality to all possible choices of � values of x. This amount to a total of
(M

�

)
events.

Applying the union bound we obtain

Pr
{∃ x1, x2, . . . x�, |∀ x = x1, x2, . . . x�, 〈φ|ρx

U′ |φ〉 < (1 − τ )2−n
}
�

(
M

�

)
exp

(
−�Kτ 2

2γ

)
. (B7)

This implies that up to a probability smaller than
(M

�

)
exp (− �Kτ 2

2γ
), 〈φ|ρx

U′ |φ〉 � (1 − τ )2−n for at least M − � values of x, which
yields

M∑
x=1

pX(x)〈φ|ρx
U′ |φ〉 log2 〈φ|ρx

U′ |φ〉 �
( ∑

x∈SM−�

pX(x)

)
(1 − τ )2−n log2 (1 − τ )2−n, (B8)

where SM−� denotes the set of M − � least likely values of x. Note that∑
x∈SM−�

pX(x) = 1 −
∑
x∈L�

pX(x) � 1 − �pmax, (B9)

where L� is the subset of the � most likely values of x, and pmax = maxx pX(x). Putting this into Eq. (B8) yields

M∑
x=1

pX(x)〈φ|ρx
U′ |φ〉 log2 〈φ|ρx

U′ |φ〉 � (1 − � pmax)(1 − τ )2−n log2 (1 − τ )2−n

� −(1 − � pmax)(1 − τ )2−nn. (B10)

Finally, putting � = τ/pmax we obtain

M∑
x=1

pX(x)〈φ|ρx
U′ |φ〉 log2 〈φ|ρx

U′ |φ〉 � (1 − τ )22−nn = (1 − 2τ )2−nn + O
(
τ 2

)
. (B11)

To extend to all vectors φ, we exploit the notion of δ net and closely follows Ref. [3]. In this way we obtain

Pr
{∀ φ ∃ x1, x2, . . . x�, |∀ x = x1, x2, . . . x�, 〈φ|ρx

U′ |φ〉 < (1 − 2τ )2−n
}

(B12)

�
(

5 × 2n

τ

)2d(M

�

)
exp

(
−�Kτ 2

2γ

)
.
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