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Optimal control for quantum metrology via Pontryagin’s principle
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Quantum metrology comprises a set of techniques and protocols that utilize quantum features for parameter
estimation which can in principle outperform any procedure based on classical physics. We formulate the
quantum metrology in terms of an optimal control problem and apply Pontryagin’s maximum principle to
determine the optimal protocol that maximizes the quantum Fisher information for a given evolution time. As
the quantum Fisher information involves a derivative with respect to the parameter which one wants to estimate,
we devise an augmented dynamical system that explicitly includes gradients of the quantum Fisher information.
The necessary conditions derived from Pontryagin’s maximum principle are used to quantify the quality of the
numerical solution. The proposed formalism is generalized to problems with control constraints, and can also be
used to maximize the classical Fisher information for a chosen measurement.
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I. INTRODUCTION

Modern quantum technology [1–6] requires manipulat-
ing the wave function to achieve performance beyond the
scope of classical physics. A typical quantum task starts
from an easily prepared initial state, undergoes a designed
control protocol, and hopefully ends up with a state suf-
ficiently close to the target state. When the closeness to
the target state can be quantified by a scalar metric (a
terminal cost function), the quantum task can be formu-
lated as an optimal control problem—one tries to find the
best control protocol that maximizes the performance met-
ric for given resources. Many quantum applications (or at
least an intermediate step of the application) fit this descrip-
tion. Important examples include quantum state preparation
[7–13], where the cost function is the overlap to the known
target state, the “continuous-time” variation-principle based
quantum computation [14–18], where the cost function is
the ground-state energy, and quantum parameter estima-
tion (quantum metrology) [19–33], where the cost function
is the Fisher information. Maximal Fisher information has
been used for optimal estimation of Hamiltonian parameters
[34–37]. Numerically, the Fisher information can be opti-
mized by, e.g., GRAPE (GRadient Ascent Pulse Engineering
[38]) both for single and multiple parameter estimations in
the presence of noise [39–42]. The Fisher information has
also been used to quantify the precision to which certain
parameters of external signals (external to the sensing qubit)
can be measured [43–45]. For quantum metrology applica-
tion, optimal control has been applied to the preparation of
entangled superposition states that are required for optimal
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measurement, e.g., squeezed spin states [13,46] or Ramsey
interferometry with BEC on atom chips [47,48].

Pontryagin’s maximum principle (PMP) [49–52] is a pow-
erful tool in classical control theory, and it has been applied
to quantum state preparation [7,53] and nonadiabatic quantum
computation [54,55]. In essence, PMP adopts the variational
principle to derive a set of necessary conditions for the optimal
control. In particular, it provides an efficient way to compute
the gradient of the cost function with respect to the control
field as well as the evolution time by introducing an auxil-
iary system (described by costate variables) that follows the
dynamics similar to the original problem. When the system
degrees of freedom are small (such as a single qubit), these
necessary conditions are very restrictive and analytical solu-
tions can sometimes be constructed [7,53,55]. For systems of
higher dimensions, these necessary conditions become less
informative but the efficient procedure of computing gradi-
ent is still useful for numerical solutions. Moreover, PMP
optimality conditions are valuable in quantifying the quality
of a numerical solution and can be done with almost no
extra computational overhead. In this work, we extend PMP
to quantum metrology applications where the natural choice
of the terminal cost function is the quantum or classical
Fisher information (QFI or CFI). The fact that QFI and CFI
involve a derivative with respect to the external parameter
causes some nontrivial complications. To properly use PMP,
we devise an augmented dynamical system that involves the
variables appearing in QFI, based on which switching func-
tions can be stably and efficiently obtained. With the provided
formalism, we are able to numerically demonstrate that the
optimal control indeed satisfies all the necessary conditions
of PMP.

The rest of the paper is organized as follows. First we
describe the concrete problem and review the necessary
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background of PMP. We then introduce the augmented dy-
namics that is designed for QFI and CFI. The formalism
will be applied to a few problems, including maximizing QFI
within a given control constraint and maximizing CFI for a
given measurement basis. A short conclusion is provided in
the end.

II. PROBLEM AND AUGMENTED DYNAMICS FOR PMP

The concrete problem we consider is the “twist and turn”
Hamiltonian [27,36,56]

H (t ) = χ Ĵ2
z + ωĴz + �(t )Ĵx, (1)

with [Ĵi, Ĵ j] = i εi jk Ĵk (i = x, y, z) and the initial state the
nonentangled maximum-eigenvalue state of Ĵx, denoted as
|�coh-x〉. The potential physical realizations include interact-
ing (generalized) spins [28,35], the two-arm interferometer
[57,58], and superradiance [59,60]. The goal of the control
is to efficiently estimate the parameter ω (around zero) in
Eq. (1), i.e., to produce a final state |ψ (T )〉 over the total
evolution time T that is as sensitive as possible to the change
of the parameter ω around zero. The quantitative metric is
QFI:

FQ(|ψ (T )〉) = 4[〈∂ωψ (T )|∂ωψ (T )〉 − |〈ψ (T )|∂ωψ (T )〉|2].

(2)

In Eq. (1), Ĵ2
z is the source of entanglement and referred to

as a “twist” term; Ĵx is the external control and referred to
as a “turn” term. For eigenstates of Ĵz, denoted as |m〉z, Ĵ2

z
determines their relative phases but not amplitudes, whereas
Ĵx determines their relative amplitudes but not phases. The
optimal control problem is to find an �(t ) that steers |ψ (0)〉 =
|�coh-x〉 to a final state |ψ (T )〉 that maximizes QFI at a given
terminal time T . Using the terminology of control theory,
Eq. (1) is control affine, as it depends linearly on the control
�(t ), and is time invariant, as the time dependence of H (t ) is
exclusively through the control �(t ).

Hamiltonian (1) represents a set of N all-to-all interact-
ing spins where Ĵi = ∑N

n=1
σi
2 (i = x, y, z and σ ’s are Pauli

matrices). For a system composed of N spins, QFI(t ) = Nt2

is referred to as the “shot-noise” limit (SNL), which can be
achieved without any quantum entanglement, and QFI(t ) =
N2t2 as the Heisenberg’s limit (HL), which is the upper
bound of QFI and is achieved by preparing the initial state
as |�HL〉 = (|M〉z + | − M〉z )/

√
2 with | ± M〉z the largest- or

smallest-eigenvalue eigenstate of Ĵz (the maximum eigenvalue
M = N/2) [21]. A system displays quantum enhancement
when QFI is larger than SNL. One of the key insights from
Haine and Hope in Ref. [36] is that, for a limited evolution
time T , the process of state preparation (i.e., to produce an
entangled state) should also be regarded as a degree of free-
dom to maximize QFI. This becomes essential when T is too
short (small NχT ) to produce a highly entangled state.

To compute QFI we need |∂ωψ (T )〉, which can be ob-
tained by evolving |∂ωψ (t )〉 via the differential equation
∂t |∂ωψ (t )〉 = −iĴz|ψ (t )〉 − iH (ω, t )|∂ωψ (t )〉 and the initial
condition |∂ωψ (t = 0)〉 = 0. To apply PMP, we regard |ψ〉
and |∂ωψ〉 as independent dynamical variables. Denoting |ψ〉

as |ψ0〉 and |∂ωψ〉 as |ψ1〉, the augmented dynamics satisfies

∂t

[|ψ0〉
|ψ1〉

]
=

[−iH (ω) 0
−iĴz −iH (ω)

][|ψ0〉
|ψ1〉

]
. (3)

The initial augmented state is (|ψ0〉, |ψ1〉) = (|�coh-x〉, 0).
The terminal cost function (to minimize) is

CQ = −[〈ψ1(T )|ψ1(T )〉 − |〈ψ1(T )|ψ0(T )〉|2〉], (4)

which, up to a positive factor, is the negative QFI. The sub-
script “Q” indicates the quantum case.

Given a dynamical system Eq. (3), PMP introduces a set of
auxiliary costate variables based on which the switching func-
tion and control Hamiltonian (c-Hamiltonian) are defined.
Following the standard procedure [7,51,53,55], we denote
|π0〉 and |π1〉 as the costate variables (in the form of wave
function) of |ψ0〉 and |ψ1〉, and derive their dynamics as

∂t

[|π0〉
|π1〉

]
=

[−iH (ω) −iĴz

0 −iH (ω)

][|π0〉
|π1〉

]
, (5)

with the costate boundary conditions

|π0(T )〉 = ∂CQ

∂〈ψ0(T )| = +|ψ1(T )〉〈ψ1(T )|ψ0(T )〉,

|π1(T )〉 = ∂CQ

∂〈ψ1(T )| = −|ψ1(T )〉 + |ψ0(T )〉〈ψ0(T )|ψ1(T )〉.
(6)

Note that 〈ψ0(t )|ψ1(t )〉 = 0 when ω = 0. The switching func-
tion �(t ) and c-Hamiltonian Hc(t ) are

�(t ) = Im

{
[〈π0| 〈π1|]

[
Ĵx 0
0 Ĵx

][|ψ0〉
|ψ1〉

]}
,

Hc(t ) = Im

{
[〈π0| 〈π1|]

[
H (ω) 0

Ĵz H (ω)

][|ψ0〉
|ψ1〉

]}
. (7)

According to PMP, �(t ) ∼ δC
δ�(t ) and Hc ∼ ∂C

∂T . The necessary
conditions for an optimal control �(t ) are (i) �(t ) = 0 and
(ii) Hc(t ) is a constant over the entire evolution time T
[51,52]. Condition (i) is general (optimal solution requires a
zero gradient with respect to the cost function), whereas con-
dition (ii) is specific to time-invariant control problems; both
can be served to quantify the control quality. Practically, �(t )
can be used in the gradient-based optimization algorithm [i.e.,
�(t ) → �(t ) − γ�(t ) with a learning rate γ ] for numerical
solutions. The sign of Hc(t ) tells if increasing the evolution
time T reduces [Hc(t ) < 0] or increases [Hc(t ) > 0] the ter-
minal cost function [53]. In all our simulations, Hc(t ) < 0,
meaning increasing the evolution time increases QFI. This
holds for unitary dynamics but is not expected to be the case
in the presence of quantum decoherence.

Three general remarks are pointed out. First, as the dynam-
ics based on the Schrödinger equation [Eq. (1)] is typically
control affine, the optimal control is expected to contain some
“bang” sector(s) [7,53–55]. Based on the control theory, this
expectation requires a terminal cost function that is also linear
in |ψ (T )〉, which is true when using the fidelity as the terminal
cost for a known target state [7,53,55]. As QFI is quadratic
in the final state, the optimal control is not expected to be
bang-bang in general. Second, the augmented dynamics (3) is
nonunitary. This is not essential for the formalism but imposes
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TABLE I. Optimal (maximum) QFI for different number of controls. The subscript denotes the number of controls Nt ; �sd is defined in
Eq. (8). (N, χ ) = (10, 4), (20,1), (20,2), (20,4), (30,1) are considered. For a given (N, χ ), a control resulting in a smaller standard deviation
�sd has a larger QFI.

(N, χ ) QFI8 (�sd) QFI16 (�sd) QFI32 (�sd) QFI64 (�sd)

(10,4) 80.16 (8.96 × 10−1) 87.96 (4.72 × 10−2) 88.15 (3.00 × 10−3) 88.15 (2.10 × 10−3)
(20,1) 270.13 (6.62 × 10−1) 273.19 (4.34 × 10−2) 273.28 (6.10 × 10−3) 273.28 (5.55 × 10−3)
(20,2) 320.38 (1.72) 330.26 (3.00 × 10−1) 331.86 (1.81 × 10−2) 331.88 (1.00 × 10−2)
(20,4) 223.31 (7.95) 341.35 (1.11) 356.37 (3.2 × 10−1) 364.60 (1.08 × 10−2)
(30,1) 648.24 (4.12) 659.27 (4.14 × 10−1) 661.74 (4.04 × 10−2) 661.78 (2.86 × 10−2)

demands on the numerical ODE (ordinary differential equa-
tion) solver. In the implementation we express the dynamics
using real-valued variables and use the explicit Runge-Kutta
method of order 5 as the ODE solver. Finally, the proposed
formalism regards |ψ〉, |∂ωψ〉 as independent dynamical vari-
ables and introduces |λ0〉, |λ1〉 as their corresponding costate
variables. Compared to the GRAPE algorithm where com-
puting the gradient δC

δ�(t ) at each t requires an integration
over time (see the Appendix of Ref. [39]), in the proposed
formalism the gradient δC

δ�(t ) ∼ �(t ) is local in time [Eq. (7)],
greatly reducing the computation complexity. We notice that
the forward augmented dynamics alone [Eq. (3)] can be used
to compute the gradients with respect to multiple control
parameters [61] and has been applied to construct the optimal
gate operations [61,62]. Before moving to concrete examples
we point out that the model considered here [Eq. (1)] contains
three parameters: the number of spins N , the twist strength χ ,
and the total evolution time T . In the following discussions
T = 1 unless assigned specifically. We now apply the formal-
ism to analyze a few interesting cases.

III. APPLICATIONS

A. Convergence of optimal control

The control function �(t ) is typically approximated by a
piecewise constant function, i.e., �(t ) = �i for t ∈ [ti, ti+1),
with the evolution time T divided into Nt equal time intervals
[38]. As the first application, we investigate how the optimal
QFI converges upon increasing Nt to approximate �(t ). The
motivation is to quantify the solution quality from the small-
ness of the switching function, which can be characterized by
a mean and a standard deviation:

�m ≡ 1

T

∫ T

0
dt �(t ),

�sd ≡ 1√
T

[∫ T

0
dt �2(t )

]1/2

. (8)

The normalizations are chosen such that �m and �sd have no
dependence on T . For an optimal control, �(t ) = 0, so both
�m and �sd vanish. When the piecewise constant function is

FIG. 1. Optimal controls using 8 (a), 16 (b), 32 (c), and 64 (d) controls (time intervals) with (N, χ ) = (20, 4). Increasing the number of
controls reduces the magnitudes of the switching function and results in a flatter negative c-Hamiltonian.
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FIG. 2. Optimal controls (blue, left axis), the overlap |〈ψHL|ψ (t )〉| (red dashed, right axis), and QFI/(Nt )2 (red solid, right axis) for (N , χ )
= (20, 0.1) (a) and (20,4) (b). In (a), �(t ) is nonzero during the whole evolution, and the overlap to |ψHL〉 increases to �0.1 around t = 0.96.
In contrast in (b), the optimal control �(t ) vanishes after t � 0.18 around which |〈�HL|ψ (t )〉| is approaching one. 64 controls are used in these
simulations. (c) The dimensionless controls [Eq. (10)] for (N, χ ) = (20, 2), (20,4), (30,1), (30,2), (40,1), and (50,1): they almost collapse to
a single curve. (d) The dimensionless controls using |�HL〉 as the target state for (N, χ, T ) = (20, 2, 1/4), (20,4,1/8), (30,1,1/3), (30,2,1/6),
(40,1,0.26), and (50,1,0.21). All overlaps |〈�HL|ψ (T )〉| are larger than 0.985.

approaching the optimal solution, �m is also close to zero and
the value of �sd(> 0) can be used to characterize how good a
solution is.

Table I summarizes the optimal QFI’s for (N, χ ) = (10, 4),
(20,1), (20,2), (20,4), and (30,1) using different numbers of
controls and their corresponding �sd’s. As expected, the con-
trol that results in a smaller �sd gives a larger QFI. Figure 1
plots the optimal �(t ) and the corresponding �(t ) and Hc(t )
for (N, χ ) = (20, 4) using 8, 16, 32, and 64 controls. The
optimal control using more time intervals gives a smaller
switching function and a flatter (negative) c-Hamiltonian.

B. Strong twist limit

When Nχ is large, the optimal control appears to be strong
during early evolution and vanish after a certain amount of
time (the same observation is also pointed out in Ref. [36]).
This behavior can be understood by invoking the state that
achieves HL. If preparing |ψHL〉 takes only a small fraction
of the total evolution time T , one way to maximize QFI is to
first produce |�HL〉 and then let the system interact freely with
the environment. The resulting QFI is roughly N2(T − tprep)2,
which approaches the HL N2T 2 when T 	 tprep (tprep is time
to produce |ψHL〉). To see what the optimal control does,
Figs. 2(a) and 2(b) contrast the optimal controls for χ = 0.1
and 4 using N = 20. For χ = 0.1, �(t ) is nonzero over the
entire T ; for χ = 4, �(t ) vanishes around t = 0.18. The
overlap |〈ψHL|ψ (t )〉| and the normalized QFI/(Nt )2 are also
provided. As Ĵx is the only term in Eq. (1) capable of changing

the |m〉z population, �(t ) has to be nonzero to change the
overlap; once �(t ) is zero the value of |〈ψHL|ψ (t )〉| is fixed.
For χ = 0.1, where the entanglement source is too weak to
bring the state close to |ψHL〉, the control is always nonzero
and |〈ψHL|ψ (t )〉| gradually increases to �0.1. For χ = 4,
where the entanglement source is strong, the control steers
the state close to |ψHL〉 during t � 0.18 and then is turned off;
QFI is maximized via steering the state to |ψHL〉 fast. This
behavior appears to be general once Nχ is sufficiently large
[Fig. 2(c)].

One can further analyze the optimal control by expressing
Eq. (1) at ω = 0 as

i∂t |ψ〉 = Nχ

[
Ĵ2

z

N
+ �(t )

Nχ
Ĵx

]
|ψ〉

⇒ i
∂|ψ〉

∂ (Nχt )
=

[
Ĵ2

z

N
+

(
�(t )

Nχ

)
Ĵx

]
|ψ〉, (9)

with the given initial state |�coh-x〉. The additional information
in the strong Nχ limit is that the target state is also known,
at least approximately, to be |�HL〉. The second expression
of Eq. (9) is scaled such that the spectral ranges of Ĵ2

z /N
and Ĵx are comparable for all N and therefore �(t )/(Nχ )
represents the N-independent strength ratio between the twist
and turn. Equation (9) also introduces a dimensionless time
Nχt . Denoting �Nχ (t ) to be the optimal control for a given
(N, χ, T = 1), we define the corresponding dimensionless
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FIG. 3. Optimal control of N = 100, χ = 0.1 using 100 time intervals. (a) No constraint on the control. (b)–(d) Optimal controls with
�(t ) < umax: (b) umax = 6; (c) umax = 4; (d) umax = 2. When the optimal control takes one of the extreme values, �(t ) has an opposite
sign.

control as

�̄Nχ (t ) ≡ �Nχ (Nχt )

Nχ
. (10)

Because of similar structures of the initial and target states for
all N (i.e., |�coh-x〉 is peaked at |m = 0〉z and is monotonously
decreased as |m| increases; |�HL〉 is only nonzero at |m =
±N/2〉z), the dimensionless control �̄Nχ (t ) is expected to
be only weakly dependent on Nχ . Figure 2(c) gives �̄Nχ (t )
for (N, χ ) = (20, 2), (20,4), (30,1), (30,2), (40,1), and (50,1):
their optimal dimensionless controls [Eq. (10)] to a good ap-
proximation collapse to a single curve. A direct consequence
is that the total input energy to maximize QFI, defined by∫ T

0 dt �(t ), is roughly a constant.
To examine this picture more carefully, Fig. 2(d) shows

the dimensionless controls that maximize |〈�HL|ψ (T )〉|2
[53,55] for (N, χ, T ) = (20, 2, 1/4), (20,4,1/8), (30,1,1/3),
(30,2,1/6), (40,1,0.26), and (50,1,0.21). The evolution time T
is chosen to be close to and smaller than the optimal time (i.e.,
a T such that Hc being small and negative) and all overlaps
|〈�HL|ψ (T )〉| are larger than 0.985; note the product NχT ∼
10. The optimal controls based on maximizing |〈�HL|ψ (T )〉|2
[Fig. 2(d)] share the following features: (i) �(t ) has a peak
around Nχ at t ∼ T/3; (ii) �(t ) increases drastically from
� ∼ 0 around t � T . Feature (i) is captured by the optimal
controls that maximize QFI [Fig. 2(c)] but (ii) is not because
maximizing QFI requires turning off � once the state reaches
|�HL〉. Feature (ii) thus highlights the difference between
maximizing |〈�HL|ψ (T )〉|2 (the traditional sensing intuition
that separates the state preparation and the state evolution
[36]) and maximizing QFI in the strong Nχ limit.

C. System with constrained control amplitude

As a second application, we consider N = 100, χ = 0.1.
These parameters are used as an example in Ref. [36]. With
the ability to compute the gradient efficiently, we use 100 time
intervals to approximate �(t ) and the obtained optimal control
is given in Fig. 3(a). We see that the necessary conditions are
to a good approximation satisfied; specifically |�m| � 10−3

and �sd ≈ 0.006.
In practice the control amplitude is bounded, i.e., |�(t )| �

umax, and to obtain the optimal control with amplitude
constraint requires an additional step during the iteration:
�(t ) is taken to be the closest extreme (bang) value when
|�(t )| > umax. The necessary condition is modified: when
�(t ) takes the extreme value, the sign of the switching func-
tion �(t ) is opposite to that of �(t ); otherwise, �(t ) = 0.
Figures 3(b)–3(d) show the results of umax = 6, 4, 2. We see
that the necessary conditions are well satisfied. Imposing
the maximum |�(t )| reduces the optimal QFI from 2895.0
(no constraint), 2869.9 (umax = 6), and 2431.1 (umax = 4),
to 1347.5 (umax = 2). Consistent with the intuition, the bang
control appears when |�∗(t )| > umax with �∗(t ) the optimal
control without constraints.

D. Classical Fisher Information

As a final application, we use PMP to maximize CFI de-
fined as

FC =
∑

m

(∂ωPm)2

Pm
. (11)
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FIG. 4. (a) Optimal control for N = 4, χ = 1 using 64 controls to maximize CFI. The optimal CFI is about 8.19 with φ = π/2. (b) Optimal
control for N = 100, χ = 0.1 using 64 controls to maximize CFI. The optimal CFI is about 2867.5 with φ = 0.

Pm = |x〈m|eiφĴz |ψ (T )〉|2 is the probability distribution of Ĵx

measurement (|m〉x,z’s are eigenstates of Ĵx,z). Following
Refs. [36,63] an additional phase offset φ is introduced. The
terminal cost function (to minimize) is chosen to be CC =
−FC (the subscript “C” indicates “classical”), and the most
crucial step is to compute ∂CC

∂〈ψ0,1(T )| to get the boundary condi-
tion for the costates |π0,1(T )〉.

Denoting the solution of Eq. (3) at t = T to be |ψ0(T )〉 =∑
m ᾱm|m〉z and |ψ1(T )〉 = ∑

m β̄m|m〉z, and applying eiĴzφ to
the terminal state leads to

eiĴzφ|ψ0(T )〉 =
∑

m

eiφmᾱm|m〉z =
∑

m

αm|m〉x

=
∑

m

[∑
n

Umnᾱneinφ

]
|m〉x,

eiĴzφ|ψ1(T )〉 =
∑

m

eiφmβ̄m|m〉z =
∑

m

βm|m〉x

=
∑

m

[∑
n

Umnβ̄neinφ

]
|m〉x. (12)

What we have directly from Eq. (3) are ᾱn, β̄n, and Umn

(where each row vector of U is an eigenvector of Ĵx

and U is real valued in z basis), based on which we
get αm = ∑

n′ Umn′ ᾱn′e+in′φ , βm = ∑
n′ Umn′ β̄n′e+in′φ , Pm =

α∗
mαm, ∂ωPm = β∗

mαm + α∗
mβm, and

FC =
∑

m

(β∗
mαm + α∗

mβm)2

α∗
mαm

. (13)

Straightforward derivatives give

∂FC

∂ᾱ∗
n

=
∑

m

−(∂ωPm)2

P2
m

∂Pm

∂ᾱ∗
n

+
∑

m

2(∂ωPm)

Pm

∂ (∂ωPm)

∂ᾱ∗
n

,

∂FC

∂β̄∗
n

=
∑

m

2(∂ωPm)

Pm

∂ (∂ωPm)

∂β̄∗
n

,

∂FC

∂φ
=

∑
m

−(∂ωPm)2

P2
m

∂Pm

∂φ
+

∑
m

2(∂ωPm)

Pm

∂ (∂ωPm)

∂φ
,

(14)

where ∂Pm
∂ᾱ∗

n
= [Umne−inφ]αm, ∂ (∂ωPm )

∂ᾱ∗
n

= [Umne−inφ]βm,
∂ (∂ωPm )

∂β̄∗
n

= [Umne−inφ]αm, and

∂Pm

∂φ
=

[∑
n

Umn(−i · n)e−inφᾱ∗
n

]
αm + c.c.,

∂ (∂ωPm)

∂φ
=

[∑
n

Umn(−i · n)e−inφβ̄∗
n

]
αm

+ β∗
m

[∑
n

Umn(+i · n)e+inφᾱn

]
+ c.c. (15)

The negative of Eq. (14) is used as the terminal boundary
condition of the costate variables |π0(t )〉, |π1(t )〉, i.e.,

|π0(T )〉 =
∑

n

[
−∂FC

∂ᾱ∗
n

]
|n〉z,

|π1(T )〉 =
∑

n

[
−∂FC

∂β̄∗
n

]
|n〉z. (16)

The phase φ is updated by φ → φ + γ ∂FC
∂φ

.
Results of N = 4, χ = 1 and N = 100, χ = 0.1 are pre-

sented in Figs. 4(a) and 4(b). 64 time intervals are used to
approximate �(t ). For N = 4, χ = 1 [Fig. 4(a)], both the
mean and standard deviation are smaller than 10−3. For N =
100, χ = 0.1 [Fig. 4(b)], �(t ) does not converge to zero but
its mean is close to zero. The mean and standard deviation of
� are respectively ∼0.06 and 0.37. Overall, all necessary con-
ditions are approximately satisfied for CFI optimization. As
discussed in Refs. [36,63], the measurement uncertainty can
be taken into account by replacing Pm by P̃m = ∑

m′ �m,m′Pm′

in Eq. (11) (with
∑

m �m,m′ = 1 for all m′). The proposed
method can apply to this problem as well (not shown).

IV. CONCLUSION

To conclude, we apply Pontryagin’s maximum principle
to the quantum parameter estimation in the context of the
“twist and turn” Hamiltonian. What PMP provides are (i) a
formalism to efficiently evaluate the gradient with respect to a
terminal cost function (the switching function) and (ii) a set of
necessary conditions that can be used to quantify the quality of
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an approximate solution. For the quantum metrology applica-
tion, the performance is characterized by a single scalar—the
quantum or classical Fisher information, and the optimal con-
trol finds the control protocol that maximizes QFI or CFI for a
given evolution time. One nontrivial complication pertaining
to quantum metrology is that the cost function involves deriva-
tives with respect to the external parameter which one wants
to estimate, and we overcome this obstacle by designing an
augmented dynamical system where the wave function and
its derivative to the external parameter |ψ〉 and |∂ωψ〉 are
regarded as independent dynamical variables. By introducing
the corresponding costate variables, all PMP quantities, par-
ticularly the switching function, can be stably obtained. The
ability to efficiently compute the gradient greatly accelerates
the optimization process and significantly expands the scope
of problems one can solve. With the developed formalism, we
are able to maximize QFI or CFI with more than 100 control
variables. Moreover, the quality of an obtained control can
be quantified by how well the PMP necessary conditions are
satisfied (this applies to any approximate optimal controls).
As a concrete example, we show how an optimal solution
converges upon increasing the number of controls by corre-

lating the QFI and the smallness of the switching function.
Specific to the twist and turn problem, we explicitly confirm
the “traditional sensing intuition” in the strong twist limit:
the main function of the optimal control is to steer the state
to be close to |ψHL〉 (the state that maximizes QFI) quickly
and then let the system freely interact with the environment.
An important and natural question is the effect of quantum
decoherence, and a quantitative answer requires calculations
using density matrix as dynamical variables with dynamics in-
volving dissipation channel(s). We expect the maximum QFI
to occur at a finite evolution time (as a compromise between
QFI ∼ t2 and decoherence), but the actual behavior should
depend critically on the dissipation channel, especially when
there is decoherence-free subspace [53].
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