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Adiabatic speedup in cutting a spin chain via zero-area pulse control

Run-Hong He ,1 Rui Wang,1 Feng-Hua Ren,2 Li-Cheng Zhang,1 and Zhao-Ming Wang1,*

1College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China
2College of Information and Control Engineering, Qingdao Technology University, Qingdao 266520, China

(Received 9 March 2020; revised 19 January 2021; accepted 20 April 2021; published 14 May 2021)

The adiabatic quantum information processing task requires that the evolution of a system must be kept in
its instantaneous eigenstate. However, normally the adiabaticity will be ruined due to the interaction between
the system and the noisy environment in its long evolution time. Here, in this paper, we show that zero-area
pulse control can be used to realize the adiabatic process in a nonadiabatic regime. A concrete example is
provided where one spin chain is cut into two chains. The pulse function is applied in the laboratory frame and
suitable pulse conditions are obtained numerically. We find that compared with the pulse conditions obtained in
the adiabatic frame, the results are similar for low-energy-level systems but tend to deviate when the system’s
energy level increases. We then obtain the pulse conditions theoretically by writing the control Hamiltonian in
the adiabatic frame. It is found that a sequence of pulses with intensities tuned by a time-dependent energy
difference is required to guarantee an effective adiabatic speedup.
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I. INTRODUCTION

The adiabatic theorem states that if the Hamiltonian of
a system changes slowly enough, the system prepared in a
nondegenerate eigenstate will remain in that instantaneous
eigenstate [1,2]. The adiabatic theorem shows a wide variety
of applications in performing quantum information process-
ing tasks, such as adiabatic quantum state transfer [3–6],
the adiabatic quantum algorithm [7,8], and adiabatic quan-
tum computation [9–12]. However, theoretically, the quantum
adiabatic process requires an infinite long evolution time.
Inevitably, the interaction between the system and the environ-
ment will cause transitions from one instantaneous eigenstate
to other states [13,14], ruining the adiabaticity. Adiabatic
speedup or a shortcut to adiabaticity [15] is then proposed
to accelerate the adiabatic process, where the evolution of
the system goes along an adiabatic passage in a nonadiabatic
regime [16–18]. Methods used to accelerate the adiabatic pro-
cess mainly include transitionless quantum driving [19–22],
invariant-based inverse engineering [23–25], acceleration of
the adiabatic passage [26,27], superadiabatic driving [28–30],
the fast-forward approach [31,32], Dirac dynamics [33], op-
timal control [34–36] and its comparison with a shortcut to
adiabaticity [37], and classical dissipationless driving [38,39].
Recently, the quantum speed limit in a shortcut to adia-
baticity has been investigated. The effects of decoherence
[40], the Kibble-Zurek mechanism [41], or the link between
the quantum speed limit and energetic cost [42] have been
discussed.

A leakage elimination operator (LEO) can be used to coun-
teract leakage from a subspace which encodes one logical
qubit, or collection of qubits, into the rest of the Hilbert
space [43,44]. Recently, schemes of adiabatic speedup were
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investigated by adding an LEO Hamiltonian to the system’s
Hamiltonian [45]. The LEO Hamiltonian can be realized by a
sequence of pulses. The pulse conditions have been obtained
when the pulse function is constructed in the adiabatic frame
or the laboratory frame, respectively. The pulse intensity and
period must satisfy certain relations to guarantee an effective
adiabatic speedup. These include non-zero-area pulses [46,47]
and zero-area pulses [45,48]. For zero-area pulses, they have
been used to investigate the quantum dynamics of a two-state
system [49–51]. However, for the pulse conditions obtained in
the laboratory frame, only a constant system energy difference
is considered [12]. For most systems, it might not be easy to
design a constant energy difference during the time evolution.
Here, we aim at finding zero-area pulse control conditions for
a time-dependent energy difference when the pulse function
is constructed in the laboratory frame. We use cutting a spin
chain as an example, a model used to illustrate the shortcut
to adiabaticity via non-zero-area pulses [47], zero-area pulse
control [52], or high-fidelity ground-state preparation after a
nonadiabatic process [53]. We first find suitable pulse con-
ditions by numerical calculations. Compared with the pulse
conditions obtained in the adiabatic frame, we find that the
results are similar for a low-level system which is in agree-
ment with the conclusion in Ref. [45], but with an increase
of the system energy level, they tend to deviate. We then
use a two-parametric pulse function to find a more optimal
solution. Then, by writing the Hamiltonian in the adiabatic
frame and letting the off-diagonal elements of the propa-
gator be equal to zero, we obtain the pulse conditions for
the case when the system energy level is time dependent.
The pulse intensity needs to be tuned by the time-dependent
energy difference for an adiabatic speedup. We believe that
although we use cutting a spin chain as an example, this
control scheme can be extended to a variety of quantum
systems.
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FIG. 1. Schematic illustration of cutting off a one-dimensional
spin chain. The nearest-neighbor couplings in the chain are J = −1,
except that Jj, j+1 = J (1 − t/T ) between sites j and j + 1. The chain
will eventually break into two short chains at time t = T .

II. MODEL

We consider a one-dimensional XY spin chain which con-
sists of N spins [47,52–54]. The Hamiltonian of the system
can be written as

H0(t ) =
N−1∑

i=1,i �= j

Ji,i+1(XiXi+1 + YiYi+1)

+ Jj, j+1(t )(XjXj+1 + YjYj+1), (1)

where Xi( j) and Yi( j) are the Pauli matrices σx, σy acting on the
ith (or jth) site. Ji,i+1 is the the coupling strength between two
nearest-neighbor sites. Suppose the coupling between sites j
and j + 1 changes as

Jj, j+1 = J (1 − t/T ). (2)

For all other couplings we take Ji,i+1 = J = −1, which cor-
responds to ferromagnetic couplings. This one-dimensional
(1D) chain can be realized experimentally by an optical lattice
[55,56]. The couplings Jj, j+1 can be tuned individually by
focusing additional laser beams perpendicular to the lattice
direction [55–59]. This cutting, for example, can be used to
investigate an anomaly in quantum phases induced by borders
[60]. From time t = 0 to t = T , one chain has been cut into
two chains (see Fig. 1). Suppose initially the system (one
chain) is in one of its eigenstates |En(t = 0)〉. Our target is
then to drive this system to the state |En(t = T )〉.

For the time-dependent Hamiltonian H0(t ) in Eq. (1),
the instantaneous eigenstates |En(t )〉 and the corresponding
eigenvalues En(t ) can be represented by

H0(t )|En(t )〉 = En(t )|En(t )〉. (3)

At any particular instance these eigenstates constitute an
orthonormal set 〈Em(t )|En(t )〉 = δmn. They provide a gen-
eral solution to the time-dependent Schrödinger equation
id|�(t )〉/dt = H0(t )|�(t )〉. We take h̄ = 1 throughout this
paper.

To describe the adiabaticity, we define the fidelity F (t ) ≡
|〈En(t )|�(t )〉|, which measures the closeness of the nth in-
stantaneous eigenstate |En(t )〉 and the evolution state of the
system |�(t )〉. F (t ) ≈ 1 indicates that the system goes along
an adiabatic passage.

Due to [
∑

i Zi, H0(t )] = 0, the z component of the total
spins is conserved during the time evolution. Here, Zi repre-
sents the Pauli matrix σz acting on the ith site. For simplicity,
we only consider a single-excited subspace, where the total

FIG. 2. The fidelity F as a function of the rescaled time t/T for
different T . The number of sites N = 45, and the position to be cut
j = 15.

spins in the z direction is 1. Then for an N-spin chain, it has
N eigenstates with N eigenvalues. The analytical solution can
be written as [61]

|En〉 =
√

2

N + 1

N∑
l=1

sin(qnl )|l〉, (4)

where qn = nπ
N+1 , n = 1, 2, . . . , N . |l〉 represents the state with

a spin up at the lth site and all other spins down.
Suppose initially the system is at the lowest-energy eigen-

state |E1(0)〉 in the single-excitation subspace. Now if the
system goes along an adiabatic passage |E1(t )〉, then F (t ) =
|〈E1(t )|�(t )〉| ≈ 1, where |E1(t )〉 is the lowest instantaneous
energy eigenstate in the single-excitation subspace of the
Hamiltonian H0(t ). |�(t )〉 is the numerical solution of the
time-dependent Schrödinger equation. In Fig. 2 we plot the
fidelity F (t ) as a function of the rescaled time t/T for different
T in cutting a spin chain. As an example, we take the length
of the chain N = 45 and the position to be cut j = 15. Clearly
the fidelity increases with increasing T . When T > 5000,
F (t ) > 0.999 during the evolution. The system enters into an
adiabatic regime.

III. DYNAMICAL EVOLUTION UNDER
EXTERNAL CONTROL

The time for completing quantum information processing
tasks is always required to be as short as possible to avoid
dissipation and decoherence [12]. However, adiabatic evolu-
tion needs an infinitely long time. An LEO Hamiltonian can
be added to the system Hamiltonian to realize the adiabatic
speedup. The total Hamiltonian can be written as

H (t ) = H0(t ) + HLEO(t ), (5)

where HLEO(t ) is the LEO Hamiltonian. Physically the LEO
Hamiltonian can be implemented by a sequence of pulses.
Define the time-dependent bases |En(t )〉 as adiabatic bases
and the time-independent bases |En(0)〉 as laboratory bases.
Now there are two methods to construct the LEO Hamiltonian.
First, it can be constructed as

Ha
LEO(t ) = c(t )|E1(t )〉〈E1(t )|, (6)

in the adiabatic frame, where c(t ) is the pulse function [8,46].
|E1(t )〉 is the lowest-energy eigenstate in the single-excitation
subspace [47] or an arbitrary target state [48]. It can also be
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constructed as [8,12,46,47]

He
LEO(t ) = c(t )H0(t ), (7)

where the pulse function c(t ) is added globally on the sys-
tem Hamiltonian. In this case we say it is constructed in
the laboratory frame. Correspondingly, the original system’s
Hamiltonian H0(t ) can be viewed as in the adiabatic frame for
Ha

LEO(t ) or the laboratory frame for He
LEO(t ) if not specified.

Here, we use He
LEO(t ) to speed up the adiabatic process.

Specifically zero-area pulses are used to realize Ha
LEO(t ). The

Hamiltonian under control now reads

H (t ) = [1 + c(t )]H0(t ). (8)

The zero-area pulse function c(t ) can be taken as

c(t ) =
{

I f (t ), nτ � t < (n + 1)τ (n is even),
−I f (t ), nτ � t < (n + 1)τ (n is odd), (9)

where f (t ) is an arbitrary non-negative function and I is the
amplitude of the pulse intensity. Clearly in a pulse period 2τ ,∫ 2τ

0 c(t )dt = 0. For example, when f (t ) = 1, they are rectan-
gular pulses. When f (t ) = sin(ωt ), they are sine pulses.

To obtain the effective control, the pulse period and
intensity must satisfy certain conditions when the LEO Hamil-
tonians are constructed in the adiabatic frame and the pulse
function takes the form as in Eq. (9). The pulse conditions
have been explicitly discussed in Refs. [45,62,63]. For exam-
ple, the conditions are

Iτ = 2kπ, k = 1, 2, 3, . . . , rectangular pulses,
J0(Iτ/π ) = 0, sine pulses, (10)

where for sine pulses J0(x) is the zero-order Bessel function
of the first kind. c(t ) = I sin(ωt ) with ωτ = π .

Are the pulse conditions in Eq. (10) still effective for
He

LEO(t )? As an example, we take the rectangular pulses
and let N = 3, j = 1. T = 1.0, which is in a nonadiabatic
regime. We introduce a parameter S = ∫ τ

0 c(t )dt to discuss
the control effects. Then the pulse conditions are S = 2πk,
k = 1, 2, 3, . . . for rectangular pulses as in Eq. (10) when the
LEO Hamiltonian is added in the adiabatic frame. Figure 3(a)
plots the fidelity F (T ) as a function of parameter S for differ-
ent τ . A negative S indicates that the pulse is negative in the
first half of the period and vice versa. From Fig. 3(a) it shows
similar behavior as in Eq. (10). The fidelity F oscillates with
S and for some certain S the fidelity F takes its maximum
value. Figures 3(b) and 3(c) plot the fidelity as a function of
S for different N , and we take τ = T/2. The results show that
with increasing N , there also exists oscillation with respect to

(a) (b)

(c) (d)

FIG. 3. (a) The fidelity F (T ) as a function of the parameter S for
different τ . The parameter S = ∫ τ

0 c(t )dt and it is the integral of c(t )
with respect to time in half a pulse period τ . (b) and (c) The fidelity
F (T ) as a function of different N and j. T = 1 in (a)–(c). (d) The
fidelity F (T ) as a function of the parameter S for rectangular and
sine pulses. T = 10, N = 45, and j = 15 in (d).

S. This oscillation behavior becomes weaker for higher-level
systems. For example, when N = 24 in Fig. 3(c), the oscil-
lation behavior disappears. Compared with Fig. 3(b), a larger
S (higher pulse intensity) is required to obtain the adiabatic
speedup. This is because in the absence of control the required
evolution time T for which the system enters the adiabatic
regime increases with increasing N .

In the above discussions, we only consider a rectangular
pulse. Now we consider other types of pulses. In Fig. 3(d)
we plot the comparison of F (T ) as a function of S be-
tween rectangular and sine pulses. The parameters N = 45,
j = 15, and T = 10 in a nonadiabatic regime. For the sine
pulses, f (t ) = sin(πt/τ ). Figure 3(d) shows that the fidelity
F (T ) increases with increasing parameter S in a regime S ∈
[−100, 100]. However, for the same parameter S, the fidelity
F (T ) of the sine pulses is higher than the rectangular case.
Then not only the integral of c(t ) but also the details of c(t )
determine the control effects. Can we find a way to optimize
the pulse function to obtain a higher fidelity? We then intro-
duce a combinatorial function, which is determined by two
parameters that mark the weight of each factor in the function.
This combinatorial function takes the form

c(t ) =
{

−(a1 + a2) 2t
T + a1

(
2t
T

)2 + a2
(

2t
T

)3
, 0 � t � T

2 ,

−(a1 + a2) 2t−2T
T − a1

(
2t−2T

T

)2 + a2
(

2t−2T
T

)3
, T

2 < t � T .
(11)

Now for a fixed S, the parameters a1 and a2 can be tuned to
obtain the maximum fidelity F (T ). a1 and a2 are taken in
the regime [−100, 100]. Figure 4 plots the fidelity F (T ) as
a function of S for different pulses. For the optimal pulse, the
maximum fidelity F (T ) is obtained in the parameter space of
a1 and a2. N = 45, J15,16 = J (1 − t/T ), τ = T/2 = 5. From

Fig. 4, when |S| is smaller than 85, the fidelity F (T ) of the
optimal control is higher than the other two cases. However,
when |S| > 85, the control effects of the optimal pulse cannot
be kept. The reason is that we limit the range of parameters a1

and a2 in the interval [−100, 100]. We conjecture that it might
obtain a better result if we extend the range of parameters.
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FIG. 4. The fidelity F (T ) as a function of the parameter S for
different types of pulses. For the optimal pulse, the maximum fidelity
F (T ) is obtained in the parameter space of a1 and a2. τ = T/2 = 5,
N = 45, and j = 15.

Then for a zero-area control pulse, even if the integral of the
pulse control in the time domain S is the same, the detail of
the function c(t ) can be optimally chosen to obtain a higher
fidelity. Clearly for the same S, the highest F (T ) is obtained
for the optimal pulse control. The lowest is obtained for the
rectangular pulses and the sine pulses is in the middle.

Now we compare the pulse conditions for two different
cases Ha

LEO(t ) and He
LEO(t ). The parameter S corresponding to

the maximum fidelity (first peak and second peak in Fig. 3) as
a function of the site number N is plotted in Fig. 5. Clearly for
small N , the value of S is similar and with increasing N , they
begin to deviate from each other. This result is in agreement
with Ref. [45], where a counterunitary transformation from
the adiabatic frame to the laboratory frame [47] can be applied
to Ha

LEO(t ), and gives the form of the Hamiltonian in the labo-
ratory frame. For a two-level system, Ha

LEO(t ) is equivalent to
He

LEO(t ) [47]. It does not apply to a high-level system and it
might be difficult to realize He

LEO(t ) in an actual experiment.
A simple rectangular control function in the adiabatic frame
might correspond to a very complex function in the laboratory

FIG. 5. The parameter S corresponding to the first and second
maximum fidelity F (S) as a function of the length N (N energy level)
under zero-area rectangular pulses. T = 1, j = N/3, τ = T/2.

frame for a three-level system [45]. We point out that in
Ref. [52], the pulse conditions have been obtained by numeri-
cal calculations in cutting a closed spin chain. However, in this
paper, we have found that by using a combinatorial function,
optimal pulse conditions can be obtained. Furthermore, we
will derive an analytical result for the pulse conditions next.

In the above discussions, we have numerically found a
sequence of optimal zero-area pulses by numerical calcula-
tions. Now we theoretically analyze the corresponding pulse
control conditions. First, we write the Hamiltonian H (t ) in
Eq. (8) in adiabatic bases |En(t )〉. The matrix elements of the
Hamiltonian read

Hmn(t ) = −i〈Em(t )|Ėn(t )〉 exp(−iCnm(t )), (12)

where Cnm(t ) = ∫ t
0 Enm(s)[1 + c(s)]ds and Enm(t ) = En(t ) −

Em(t ) is the energy difference between the energy levels n
and m. The off-diagonal matrix elements will cause tran-
sitions between different energy levels and consequently
destroy the adiabaticity. The control pulses are then used
to reduce the off-diagonal terms. Now we consider the
propagator from time t = 0 to t = δt , with δt � 1 and
C(t ) 	 1. Keeping the first order of the Magnus expan-
sion, U (δt ) = T exp [−i

∫ δt
0 H (t )dt] ≈ 1 − i

∫ δt
0 H (t )dt [12].

Here, T denotes the time-ordering operator. When δt = τ �
T ,

∫ τ

0 Hmn(s)ds = −i
∫ τ

0 〈Em(s)|Ėn(s)〉 exp(−iCmns)ds. Sup-
posing the control intensity I 	 1, then 〈Em(s)|Ėn(s)〉
varies slowly compared with exp[−iCmn(s)] and the in-
tegrals will be −i〈Em(s)|Ėn(s)〉 ∫ τ

0 exp(−iCmns)ds [48].
Clearly the off-diagonal terms in U (δt ) equal zero when∫ τ

0 exp(−iCmns)ds = 0. Then the pulse control conditions will
be ∫ τ

0
c(s)Emn(s)ds = 2πk, k = ±1,±2, . . . . (13)

In this case, the transition between energy levels n and m is
restrained. Supposing the pulse intensity is time dependent,
c(t ) = I (t ) = ±I0/Emn(t ), then the pulse control conditions
are simplified as I0τ = 2πk, which is in accordance with the
constant energy difference Emn = const [12]. Note that from
Eq. (13) the positive or negative pulses have the same effects.
We then use two consecutive pulses (zero-area pulses) which
take positive and negative values, respectively. This case is
equivalent to the case where all the negative pulses become
positive or vice versa [48]. In our paper, our task is to keep the
system in the state |E1(t )〉 and the pulse is designed to restrain
the transitions from |E1(t )〉 to |Em(t )〉 with m �= 1. However,
by numerical simulations we find that the transition to |E2(t )〉
dominates. Then the pulse function is taken as

c(t ) = I0/E21(t ). (14)

In Fig. 6 we plot the fidelity as a function of the rescaled
time for four cases: free evolution, which is represented by
blue dashed line; with control (k = 1), the sky blue solid line;
with control (k = 2), the red dotted line; and with control
(k = 0.5), the orange dotted dashed line. For cases k = 1 and
k = 2, the pulses we used satisfy the control conditions in
Eqs. (13) and (14). It is worth noting that the pulse control
conditions are not met when k = 0.5. The total evolution time
T = π/3, which is in a nonadiabatic regime as shown in
Fig. 6 for free evolution. The number of sites N = 10, and
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FIG. 6. The fidelity vs the rescaled time t/T for four cases:
free evolution; with control k = 1, 2, 0.5. For k = 1, 2, the pulse
conditions are satisfied while k = 0.5 does not satisfy.

the position to be cut j = 3. The pulse parameters are taken
as I0 = 2πk/τ , τ = T/20. The calculation results support the
theoretical prediction. Once the pulse control conditions are
satisfied, an effective adiabatic speedup can be realized. As
an example, at the lower-left-hand corner in Fig. 6 we plot
the pulses we applied: I vs t/T for the case k = 1. Clearly,
the profile of the pulse intensity is tuned by a time-dependent
energy difference. The pulse area is almost zero in one period
(two consecutive positive and negative pulses).

Dynamical decoupling control [64] can be used to con-
trol a dynamical process, where the pulse intensity is strong
and the pulse duration is short. For our pulse, the pulse in-
tensity and duration are finite and tunable. Experimentally,
time-dependent intensity-modulated [65] continuous dynam-
ical decoupling has been realized to overcome decoherence
against fluctuations in a dense ensemble of a nitrogen-vacancy

center in diamond. The additional Hamiltonian [c(t )H0(t )]
can be generated by a time-dependent modulation of the am-
plitude of the original driving.

IV. CONCLUSIONS

The adiabatic quantum information processing task always
requires that the evolution time is as short as possible due to
the existence of the environment. Adiabatic speedup allows
one to drive a system along an adiabatic passage in a nona-
diabatic regime. In this paper, we investigate the adiabatic
speedup via a zero-area pulse control scheme. While most
works consider the control function in the adiabatic frame,
we discuss the control function in the laboratory frame. We
use cutting a one-dimensional spin chain as an example to
discuss the adiabatic process. We compare the pulse condi-
tions between the adiabatic frame and the laboratory frame.
It shows that the conditions are similar in low-level systems.
With an increasing level of the system, they are inclined to
deviate from each other. We consider different types of pulses
and find that using the method of superimposing functions
of different weights, an optimal pulse with a given evolution
time and integral can be obtained. Furthermore, we obtain
the pulse control conditions when the LEO Hamiltonian is
constructed in the laboratory frame and the energy differences
of the system are time dependent. The calculation results show
that a tuned pulse intensity is required to obtain an effective
adiabatic speedup.
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