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Improving phase estimation using number-conserving operations
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We propose a theoretical scheme to improve the resolution and precision of phase measurement with parity
detection by using a nonclassical state generated by applying a number-conserving generalized superposition
of products (GSP) operation, (saa† + ta†a)m with s2 + t2 = 1, on a two-mode squeezed vacuum (TMSV) state
as the input of Mach-Zehnder interferometer. Then, the statistical properties of the proposed GSP-TMSV are
investigated via average photon number (APN), antibunching effect, and two-mode squeezing. Particularly, both
higher order m GSP operation and lower proportion parameter s are beneficial for presenting larger total APN,
which leads to the improvement of quantum Fisher information (QFI). In addition, we also compare the phase
measurement precisions with and without photon losses between our scheme and the previous photon subtraction
or photon addition schemes. It is found that our scheme, especially for the case of s = 0, even in the presence of
photon losses, has the best performance via the enhanced phase resolution, sensitivity, and QFI when compared
to those previous schemes. Interestingly, without losses, the standard quantum-noise limit (SQL) is always
broken through for our scheme and the phase uncertainty associated with the state of our scheme is closer to
the corresponding Heisenberg limit (HL) than the TMSV in the larger total APN region, especially for the case
of two-side GSP operation (m, n) ∈ (1, 1). However, in the presence of photon losses, the HL cannot be beaten,
but the SQL can be broken through, particularly for the large total APN regimes.
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I. INTRODUCTION

The ultimate aim of quantum metrology is to achieve
higher precision and sensitivity of the phase estimation using
(non)classical field of light as the input of optical interferom-
eters [1–4]. Among them, the Mach-Zehnder interferometer
(MZI) is one of the most practical interferometers, and its
phase sensitivity is limited by standard quantum-noise limit
(SQL) �ϕ = 1/

√
N (N is the average number of photons

inside the interferometer), together with solely classical re-
sources as the input of the MZI [5]. In order to go beyond
this limit, both the nonclassical states [6,7] and the entangled
states [2,8,9] are applied to quantum metrology, which results
in the reduction of the phase uncertainty, thereby reaching the
Heisenberg limit (HL) �ϕ = 1/N [10]. For instance, Dowl-
ing et al. [2] pointed out that the so-called N00N states in
quantum optical interferometry can achieve the HL. Unfortu-
nately, these states are extremely sensitive to photon losses
[9–11]. To solve this problem, Anisimov et al. [8] theoreti-
cally studied that using the two-mode squeezed vacuum state
(TMSV) as the input of the MZI with parity detection scheme,
which makes the phase sensitivity exceed the HL. However,
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restricted by current experimental techniques, it is still diffi-
cult to generate strongly entangled TMSV in which its max-
imum obtainable degree is about r = 1.15 (n = sinh2 r ≈ 2)
[12]. Thus, how to prepare highly nonclassical and strongly
entangled quantum states has become one of the most impor-
tant topics.

For this purpose, the usage of non-Gaussian operations
[13–22] is a feasible method, e.g., photon subtraction (PS)
[13], photon addition (PA) [16–20], and their superposition
[21,22], which also plays an vital role in quantum illumina-
tion [23,24], quantum cryptography [25–29], and quantum
teleportation [30–32]. For instance, Agarwal and Tara pro-
posed that employing the PA operation to coherent states can
transform classical coherent states into highly nonclassical
quantum states [16] and this PA operation can be implemented
experimentally, proposed by Zavatta [17]. In addition, the
PA (or PS) squeezed states have been proved to show the
highly nonclassicality [33,34]. Based on these merits men-
tioned above, Gerry et al. [6] proposed a theoretical scheme
of simultaneously subtracting the same number of photons
from the TMSV (say, PS-TMSV) as the input of the MZI,
and showed that the phase measurement uncertainty of the PS-
TMSV scheme is smaller than that of the TMSV one for the
same squeezing parameters. Then, Ouyang et al. [20] used the
PA-TMSV as the input state of the MZI, and compared it with
both the PS-TMSV and the TMSV under the same squeezing
parameters. It is shown that the phase measurement precision
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of the PA-TMSV has a better performance when fixing a
small phase shift. In addition to the aforementioned typical
non-Gaussian operations, here we suggest a non-Gaussian
operation, the number-conserving generalized superposition
of products (GSP) operation (saa† + ta†a) with s2 + t2 = 1,
to operate on the TMSV as the input of the MZI in an attempt
to further enhance the resolution and sensitivity of the phase
estimation. Besides, the PA-then-PS (aa†) and the PS-then-PA
(a†a ) are used as special cases of GSP operation to improve
entanglement and fidelity of quantum teleportation, but none
of them are used to improve phase measurement accuracy, so
our scheme in this sense has universality. Not only can this
GSP operation be implemented experimentally, as proposed
by Kim [35], but also the GSP operation on the TMSV is able
to generate a strongly entangled non-Gaussian state as well
[36,37].

In order to extract quantum phase information more effec-
tively, three types of detection schemes are usually required,
including intensity detection [38,39], homodyne detection
[40], and parity detection [41,42]. It should be noted that not
all detection schemes can employ the full potential of non-
classical states to achieve superresolution and supersensitivity.
In particular, as referred to Ref. [43], intensity detection is
more suitable for optical interferometers with coherent light
as input, but it is not applicable to the TMSV. To solve this
problem, parity detection is a promising candidate, allowing
better than classical resolution while keeping the SQL phase
sensitivity [44,45]. Thus, taking advantage of parity detection
to extract phase information, in this paper, we mainly study
the phase resolution and sensitivity of the MZI by using the
GSP-TMSV as the input. The numerical simulation results
show that our scheme, especially for the case of the PS-then-
PA TMSV (s = 0), is always superior to the original TMSV
scheme with respect to the quantum Fisher information (QFI)
and the phase resolution and sensitivity. Additionally, the
phase uncertainty associated with the state of our scheme is
closer to the corresponding HL than the TMSV in the larger
total average photon number (APN) region, especially for the
case of two-side GSP operation (m, n) ∈ (1, 1). Further, from
a practical point of view, we also investigate the effects of
GSP operations against the photon losses placed in front of
parity detection (denoted as an external loss) and between the
phase shifter and the second beam splitter (BS) (denoted as
an internal loss) because the interaction with the environment
is inevitable. Our results show that in the presence of photon
losses the phase sensitivity with the GSP-TMSV, especially
for the case of s = 0, can be still better than that with both
the TMSV and the PA(PS)-TMSV under the same accessible
parameters. Interestingly, we also find that the effects of the
external losses on phase uncertainty are more serious than the
internal-loss cases.

The structure of this paper is as follows: In Sec. II, we
briefly outline the preparation of the GSP-TMSV state and
then present its nonclassicality according to APN, antibunch-
ing effect, and two-mode squeezing property. In Sec. III,
we show the application of the GSP-TMSV in the MZI and
mainly focus on its QFI behavior. After the resolution and sen-
sitivity of phase estimation with parity detection are further
discussed in Sec. IV, in Sec. V, we mainly pay attention to the
effects of photon losses, involving external and internal losses,

FIG. 1. Schematic diagram of a balanced MZI for the detection
of the phase shift (violet) when the GSP-TMSV state is sent to the
first BS (green), and the photon-number parity measurements are
performed on the output b mode.

on the resolution and sensitivity. Finally, the main results are
summarized in Sec. VI.

II. THE GENERATION OF THE GSP-TMSV
AND NONCLASSICAL PROPERTIES

In this section, we first introduce the GSP-TMSV in theory
and then show its nonclassicality by means of APN, anti-
bunching effect, and two-mode squeezing property.

A. The generation of the GSP-TMSV

In recent years, it has been demonstrated that both the
PS-TMSV and the PA-TMSV as the inputs of the MZI can
improve the phase sensitivity effectively [6,20], since these
non-Gaussian states have the advantages over the Gaussian
states in terms of the nonclassicality and the entanglement
degree. In this section, we introduce a different kind of non-
Gaussian state, the GSP-TMSV, which can be prepared by two
GSP operations on the TMSV, as pictured in Fig. 1 (orange
box). As referred to in Refs. [36,37], this GSP operation can
be seen as an equivalent operator,

Ô = (s1aa† + t1a†a)m(s2bb† + t2b†b)n, (1)

where s2
i + t2

i = 1 (i = 1, 2) and both a (a†) and b (b†) are an-
nihilation (creation) operators for modes a and b, respectively.
Note that (m, n) represent m-order operation of s1aa† + t1a†a
on mode a and n-order operation of s2bb† + t2b†b on mode b.
Thus, the GSP-TMSV can be given by

|ψ〉ab = ÔS2(z)√
Pd

|00〉

= Reu√
Pd

exp(va†b†)|00〉, (2)

with

Re = ∂m+n

∂τm
1 ∂τ n

2

{·}|τ1=τ2=0,

u =
√

1 − z2 exp(s1τ1 + s2τ2),

v = z exp(s1τ1 + t1τ1 + s2τ2 + t2τ2), (3)

where S2(z) = exp[(a†b† − ab)arctanh z] is the two-mode
squeezing operator with a squeezing parameter z and Pd is
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a normalization coefficient which can be calculated as

Pd = R̃e
uu1

1 − vv1
, (4)

with

R̃e = ∂2m+2n

∂τm
1 ∂τ n

2 ∂τm
3 ∂τ n

4

{·}|τ1=τ2=τ3=τ4=0,

u1 =
√

1 − z2 exp (s1τ3 + s2τ4),

v1 = z exp (s1τ3 + t1τ3 + s2τ4 + t2τ4). (5)

It should be emphasized that for simplicity, all the following
simulations are based on the assumption of s1 = s2 = s, t1 =
t2 = t . In particular, when s = 0, 0.5, and 1, from Eqs. (1) and
(2), one can obtain the PS-then-PA TMSV, a general GSP-
TMSV, and the PA-then-PS TMSV, respectively.

For the sake of analysis in the following, here we present
the expectation value of a general quantum operator

〈al bka†hb†g〉 = R̃eD̃P−1
d uu1�e�w, (6)

with

D̃ = ∂ l+k+h+g

∂τ l
5∂τ k

6 ∂τ h
7 ∂τ

g
8

{·}|τ5=τ6=τ7=τ8=0,

� = (1 − vv1)−1,

w = τ7τ8v1 + τ6τ5v + τ6τ8 + τ5τ7, (7)

where l, k, h, and g are integers (�0), Eq. (6) can
be used to calculate some expectation values, such as
〈aa†〉, 〈bb†〉, 〈aa†bb†〉, 〈a2b†2〉, and 〈a†2b2〉. The detailed
derivation of Eqs. (2) and (6) is shown in Appendix A.

B. Statistical properties of the GSP-TMSV

As described in Refs. [6,7], the nonclassical states of op-
tical field offer a significant improvement in the sensitivity
and precision of the MZI, thereby promoting the development
of quantum metrology. Before investigating how the GSP-
TMSV as the input affects the sensitivity and resolution of
the MZI, let us first examine its statisticality in terms of APN,
antibunching effect, and two-mode squeezing property, which
provide the basis for the performance improvement of the
phase estimation in next section.

1. Average photon number

As one of statistical properties of the light field, the APN is
an important factor for optical interferometry. In addition, as
a kind non-Gaussian operation, the PS from squeezed vacuum
state presents an interesting effect of increasing the APN, by
which the phase sensitivity can be improved. Here, we first
pay attention to the APN and examine if the GSP operation
can also increase it. According to Eq. (6), the APN, say, for
mode a, can be calculated as

Na = 〈a†a〉 = 〈aa†〉 − 1

= R̃e uu1

Pd

∂2

∂τ5∂τ7
�e�τ5τ7 |τ5=τ7=0 − 1. (8)

FIG. 2. Average photon number as a function of squeezing
parameter z for different operator parameters s = 0, 0.5, 1 for
(a) single-side GSP operations [(m, n) ∈ {(1, 0), (2, 0)}] and (b) two-
side symmetric GSP operations [(m, n) ∈ {(1, 1), (2, 2)}]. Solid lines
correspond to the TMSV case.

For mode b, the APN Nb is the same as Na for the cases of both
m = n and m �= n, i.e., Na = Nb = N, which can be easily
seen from Eq. (6).

Figure 2 shows the total APN (2N ) before injecting into
the MZI as the function of the squeezing parameter z for
different superposition parameters s = 0, 0.5, 1. For a com-
parison, the APN of the TMSV is also plotted in Fig. 2; see
the solid black line. From Fig. 2, it is clear that the APN
of the generated states outperforms that of the TMSV in
nearly all squeezing ranges for both single-side and two-side
GSP operations. In addition, for a fixed superposition s, the
APN increases as the increasing (m, n) and z. The APN with
two-side symmetrical GSP [(m, n) ∈ {(1, 1), (2, 2)}] is bigger
than that with single-side GSP [(m, n) ∈ {(1, 0), (2, 0)}], as
seen by comparing Fig. 2(a) with Fig. 2(b). On the other
hand, it is interesting to notice that, for fixed m and n, the
APN decreases as the increasing s. In particular, in the limit
s = 0, corresponding to the PS-then-PA case, the APN has the
biggest value when other parameters are fixed. While for the
case of s = 1 corresponding to the PA-then-PS case, the APN
has the lowest value when comparing with other cases for s.
Even so, both PA-then-PS and PS-then-PA have bigger APN
than the TMSV. Among these non-Gaussian operations, the
PS-then-PA case presents the biggest APN.

In Fig. 3, under the same parameter of m = n = 1, we also
compare the APN 2N changing with z for giving several non-
Gaussian states, including the PA-TMSV (magenta dashed),
the PS-TMSV (cyan dashed), and the GSP-TMSV. The APN
of the GSP-TMSV is always greater than that of the PS-TMSV
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FIG. 3. As a comparison, the APN as a function of the squeezing
parameter z. The dot-dashed lines represent our scheme for opera-
tion parameters s = 0, 0.5, 1 (corresponding to green, red, and blue
lines, respectively), and dashed lines represent the previous work of
using the PA-TMSV (magenta line) and the PS-TMSV (cyan line) as
inputs. Solid line corresponds to the TMSV case.

for all squeezing ranges. Especially for the PS-then-PA TMSV
(s = 0), its APN has the best performance compared to the
other cases for PA-TMSV and PS-TMSV. This means that
our scheme can show the advantage of the total APN, which
is beneficial for the improvement of the QFI. We also notice
that, compared to that of the PA-TMSV, the APN for the case
of s = 0.5 (s = 1) has poor performance limited at z < 0.18
(z < 0.4), respectively.

2. Antibunching effect of the GSP-TMSV

In this subsection, let us consider the nonclassical proper-
ties of the GSP-TMSV through the antibunching effect, which
reflects the sub-Poisson distribution, implying the existence
of nonclassical states [46]. For an arbitrary two-mode system,
generally, the criteria of the antibunching effect turns out to be
[18,47]

Ra,b = 〈a†2a2〉 + 〈b†2b2〉
2〈a†ab†b〉 − 1. (9)

According to Eq. (6), we can obtain the explicit expres-
sion of antibunching effect Ra,b in theory. In principle, the
condition of Ra,b < 0 corresponds to the existence of the
antibunching effect, which means that this quantum state
has nonclassicality. To clearly see this point, in Fig. 4,
we show the antibunching effect Ra,b as the function of
squeezing parameter z for different several superposition
values s = 0, 0.5, 1, together with the single-side [(m, n) ∈
{(1, 0), (2, 0)}] and the two-side symmetric GSP operations
[(m, n) ∈ {(1, 1), (2, 2)}]. It is found that the GSP-TMSV
states, involving the single-side GSP case [see Fig. 4(a)] and
the two-side symmetric GSP cases [see Fig. 4(b)] always
present the antibunching effect, which indicates the usage of
the GSP operations make it possible to show the nonclassi-
cality. However, this criteria of the antibunching effect cannot
reflect how the change of s = 0, 0.5, 1 in our scheme affects
the strength of the nonclassicality.

3. Two-mode squeezing property

To solve the aforementioned problem, in this subsection,
we further discusses the two-mode squeezing property of

FIG. 4. The antibunching effect Ra,b as a function of squeezing
parameter z for different operator parameter s = 0, 0.5, 1 for (a) the
single-side GSP operations [(m, n) ∈ {(1, 0), (2, 0)}] and (b) the
two-side symmetric GSP operations [(m, n) ∈ {(1, 1), (2, 2)}]. Solid
lines correspond to the TMSV case.

the GSP-TMSV state by using 〈�X 2
1 〉 and 〈�X 2

2 〉, where
〈�X 2

i 〉 = 〈X 2
i 〉 − 〈Xi〉2 (i = 1, 2) and X1 (X2) are the sum (dif-

ference) of the orthogonal components of Xa and Xb, i.e., X1 =
Xa + Xb (X2 = Xa − Xb) with Xa = (ae−iθ1 + a†eiθ1 )/

√
2 and

Xb = (be−iθ2 + b†eiθ2 )/
√

2. For a given two-mode system, its
two-mode variances are given by [48]〈

�X 2
1,2

〉 = 1 + 2〈a†a〉 ± 2〈ab〉 cos(θ1 + θ2). (10)

For simplicity, here we take θ1 + θ2 = π. From Eqs. (6)
and (10), when m = n = 0, we can obtain 〈�X 2

1 〉 =
(1 − z)/(1 + z) and 〈�X 2

2 〉 = (1 + z)/(1 − z), which are
compatible with the TMSV case, as expected. Note that for the
two-mode vacuum state |00〉, 〈�X 2

1 〉||00〉 = 〈�X 2
2 〉||00〉 = 1,

which is a standard noise. Therefore, by using a logarithmic
scale defined as dB[X1||ψ〉] = 10 log10 [〈�X 2

1 〉||ψ〉/〈�X 2
1 〉||00〉]

and dB[X2||ψ〉] = 10 log10 [〈�X 2
2 〉||ψ〉/〈�X 2

2 〉||00〉], one can
quantify the two-mode squeezing property of an arbitrary two-
mode quantum state |ψ〉. If dB[X1||ψ〉] < 0 or dB[X2||ψ〉] < 0,

in general, the state |ψ〉 can be viewed as a squeezed state.
To study the improvement of two-mode squeezing

property between the GSP-TMSV and the initial
TMSV, in Fig. 5, we plot the difference �dB[X1] =
10 log10 [〈�X 2

1 〉||ψ〉ab
/〈�X 2

1 〉|TMSV] as the function of z
with several superposition values s = 0, 0.5, 1, including
the single-side GSP operations [(m, n) ∈ {(1, 0), (2, 0)}]
and the two-side symmetric GSP operations [(m, n) ∈
{(1, 1), (2, 2)}]. In principle, the condition of �dB[X1] < 0
means the existence and improvement of two-mode squeezing
property, but �dB[X1] � 0 only indicates that two-mode
squeezing property cannot be enhanced. It is interesting that,
as for the two types of the GSP operations, the improved area
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FIG. 5. The two-mode squeezing property �dB[X1||ψ〉] as a
function of squeezing parameter z for different operator parame-
ter s = 0, 0.5, 1 for (a) the single-side GSP operations [(m, n) ∈
{(1, 0), (2, 0)}] and (b) the two-side symmetric GSP operations
[(m, n) ∈ {(1, 1), (2, 2)}]. Solid lines correspond to the TMSV case.

of two-mode squeezing property for s = 0 cannot be shown,
which means that using PS-then-PA operation on the TMSV
makes it impossible to present the improvement of two-mode
squeezing property. Whereas for other cases for s = 0.5 and
1, the latter can always show the existence and improvement
of two-mode squeezing property, and the improved area of
two-mode squeezing property for the former would be limited
at a small squeezing range. Besides, with the increase of
(m, n), this limitation is more obvious with respect to the
narrower of achievable squeezing ranges. We also notice that,
at a fixed s, for the case of s = 0.5, the achievable squeezing
range for the single-side GSP operations are bigger than that
for the two-side symmetric GSP operations in terms of the
improvement of the two-mode squeezing property.

III. IMPROVEMENT OF THE QFI VIA THE GSP-TMSV

After evaluating the nonclassical properties of the GSP-
TMSV, then we consider whether the GSP-TMSV can be used
to improve the QFI when the GSP-TMSV is used as inputs of
the balanced MZI, which consists of two symmetrical beam
splitters (BSs), shown in Fig. 1 (box 2). In Ref. [49], it is
pointed out that the behavior of a BS can be described as
a rotation, i.e., using the Schwinger representation of SU(2)
algebra,

J1 = 1

2
(a†b + ab†), J2 = 1

2i
(a†b − ab†),

J3 = 1

2
(a†a − b†b), J0 = 1

2
(a†a + b†b), (11)

where J0 is a Casimir operator that commutes with all oth-
ers angular momentum operators [Ji, J0] = 0 (i = 1, 2, 3),
which should satisfy the commutation relation [Ji, Jj] =
iεi jkJk (i, j, k = 1, 2, 3), and then the action of the MZI can
be equivalent to the following unitary operator

U (ϕ) = eiπJ1/2e−iϕJ3 e−iπJ1/2 = e−iϕJ2 . (12)

Thus, when inputting any pure state |in〉 into the MZI, the
output state is given by

|out〉MZI = e−iϕJ2 |in〉. (13)

Combining Eqs. (2) and (13), for our scheme, the resulting
state prior to the parity detection can be derived as

|out〉MZI = Re u√
Pd

ea†b†v cos ϕ+ 1
2 (b†2−a†2 )v sin ϕ|00〉, (14)

where we have used eiϕJ2 |00〉 = |00〉 and the following trans-
formation relations,

e−iϕJ2 a†eiϕJ2 = a† cos
ϕ

2
+ b† sin

ϕ

2
,

e−iϕJ2 b†eiϕJ2 = b† cos
ϕ

2
− a† sin

ϕ

2
. (15)

In particular, for the case of m = n = 0, Eq. (14) reduces to

|TMSV〉 =
√

1 − z2ez[a†b† cos ϕ+ 1
2 (b†2−a†2 ) sin ϕ]|00〉, (16)

which is just the result in Ref. [8], where the TMSV is
used as inputs of the MZI, and the superresolution and sub-
Heisenberg sensitivity can be achieved using parity detection.
It is interesting that, due to the fact that the usefulness of non-
Gaussian (PA- and PS-) operations for achieving the strongly
nonclassical states, the PS-(PA-)based TMSV scheme has
been proposed for further improving the measurement preci-
sion of quantum metrology. Then a question naturally arises:
Can our proposed GSP-TMSV scheme improve the phase
sensitivity and resolution in quantum metrology?

Next, we first consider the proposed GSP-TMSV as the
input of the MZI to study its QFI denoted by FQ. The QFI is
associated with the ultimate limit of phase sensitivity, which
is given by the quantum Cramer-Rao boundary (QCRB) [50],
i.e.,

�φmin = 1√
FQ

. (17)

In particular, for any pure state |ψ (θ )〉, the QFI can be calcu-
lated as

FQ = 4{〈ψ ′(θ )|ψ ′(θ )〉 − |〈ψ ′(θ )|ψ (θ )〉|2}, (18)

where |ψ (θ )〉 = e−iθJ3 e−iπJ1/2|in〉 and |ψ ′(θ )〉 = ∂|ψ (θ )〉/∂θ .
Thus, for the GSP-TMSV state shown in Eq. (2), the QFI can
be directly calculated as

FQ = 2〈aa†bb†〉 − 〈bb†〉 − 〈aa†〉
− 〈b2a†2〉 − 〈a2b†2〉, (19)

where the expectation values can be derived using Eq. (6).
Especially, for the case of m = n = 0 corresponding to the
TMSV as inputs, Eq. (19) reduces to FQ = 4z2/(1 − z2)2, as
expected [20].
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Dash

FIG. 6. Plots of the quantum Fisher information FQ against
the squeezing parameter z for different operator parameter
s = 0, 0.5, 1 for (a) the single-side GSP operations [(m, n) ∈
{(1, 0), (2, 0)}] and (b) the two-side symmetric GSP operations
[(m, n) ∈ {(1, 1), (2, 2)}]. Solid lines correspond to the TMSV case.

According to Eq. (19), we illustrate the QFI as a function
of z for the single-side [(m, n) ∈ {(1, 0), (2, 0)}] and the two-
side symmetric GSP operations [(m, n) ∈ {(1, 1), (2, 2)}], as
shown in Figs. 6(a) and 6(b), respectively. It is obvious that the
QFI using TMSV input (the black solid line) is outperformed
by that using the GSP-TMSV for these two cases above.
Specifically speaking, when given some parameters s and z,
the QFI of our scheme increases with the increase of (m, n),
especially for two-side symmetric GSP operations. The reason
may be the fact that the APN of the GSP-TMSV increases
with the increasing (m, n) (see Fig. 2). In addition, at some
fixed parameters (m, n) and z, it is found that the QFI corre-
sponding to the PS-then-PA operation (s = 0) is always better
than other cases, including s = 1 and s = 0.5. In addition,
compared to the cases with s = 0 and s = 0.5, the QFI using
PA-then-PS operation has a relatively poor improvement.

In order to highlight the advantages of the GSP-TMSV as
the input of the MZI, we further make a comparison about
the QFI for several different non-Gaussian states, such as
single PA-TMSV (magenta dashed), single PS-TMSV (cyan
dashed), and the GSP-TMSV with m = n = 1. The QFI as
a function of squeezing parameter z is plotted in Fig. 7. It
is interesting that both PA and PS operations always achieve
an improvement of the QFI compared to the TMSV in the
whole squeezing parameter region, while the PA operation
presents a better performance than the PS operation. In addi-
tion, for the two cases with s = 1 and s = 0.5, the QFI can
be also improved when the squeezing parameter exceeds a
small threshold. The latter with s = 0.5 performs better than
the former with s = 1. However, among these non-Gaussian

FIG. 7. As a comparison, the QFI FQ as a function of the squeez-
ing parameter z. The dot-dashed lines represent our scheme for
operation parameter s = 0, 0.5, 1 (corresponding to green, red, and
blue lines, respectively), and dashed lines represent the previous
work of performing the PA-TMSV (magenta line) and the PS-TMSV
(cyan line). Solid line corresponds to the TMSV case.

operations, the PS-then-PA operation (s = 0) presents the
best improvement in the whole squeezing parameter region.
These results are similar to the APN cases of different (non-)
Gaussian states (see Fig. 3).

IV. PHASE ESTIMATION WITH PARITY DETECTION

In this section, we considered the practical precision with
parity detection. Actually, the practical precision depends on
the way of measure. In this section, we further examine the
phase estimation using special measures. Note that the parity
detection has advantages over the other detection schemes,
and thus here we shall take the parity detection as a powerful
tool for analyzing the phase sensitivity of our scheme.

A. The parity detection

In fact, the aim of parity detection is to obtain the expec-
tation value of the parity operator in the output state of the
MZI [51], which plays a vital role in quantum measurements.
In particular, when the TMSV is used as the input, the parity
detection can effectively extract the phase information, while
the intensity detection is not applicable [43]. For convenience,
we choose the b mode of the output, and then the parity
operator can be written as

�b = eiπb†b =
∫

d2γ

π
|γ 〉〈−γ |, (20)

where |γ 〉 is the coherent state, such that for an arbitrary out-
put state ρout = |out〉MZI〈out| in the MZI, the corresponding
expectation value of �b can be expressed as

〈�b〉 = Tr[�bρout] =
∫

d2γ

π
〈−γ |ρout|γ 〉. (21)

Thus, based on Eq. (13), the expectation value 〈�b〉 can be
calculated as

〈�b(ϕ)〉 = R̃e
uu1�1

Pd
√

�2 − �3
, (22)
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FIG. 8. The expectation values of the parity operator
〈�b(φ + π/2)〉 vs the phase shift φ for a given squeezed parameter
z = 0.6 and different operator parameter s = 0, 0.5, 1. (a) The
single-side GSP operations [(m, n) ∈ {(1, 0), (2, 0)}] and (b) the
two-side symmetric GSP operations [(m, n) ∈ {(1, 1), (2, 2)}]. Solid
lines correspond to the TMSV case.

with

�1 = (1 − v1v sin2 ϕ)
1
2 ,

�2 = (v1v cos 2ϕ + 1)2,

�3 = v1v(vv1 − 1)2 sin2 ϕ. (23)

In particular, when m = n = 0, Eq. (22) reduces to
〈�b(ϕ)〉 = (1 − z2)/

√
(1 − 2z2 cos 2φ + z4) (ϕ = φ + π/2),

corresponding to the TMSV case, as expected [8]. In the
following, we will use the parameter φ to investigate the
resolution and sensitivity.

In Ref. [8], it has been shown that the central peak of
〈�b(φ + π/2)〉 at φ = 0 for the TMSV inputs is narrower
than that for the coherent state input under the same pa-
rameters. However, it is interesting that the case can be
further improved using our scheme. For given squeezing
parameter z = 0.6, using Eq. (22) we illustrate the expecta-
tion values 〈�b(φ + π/2)〉 as a function of the phase shift
φ in Fig. 8, including both the single-side GSP operations
[(m, n) ∈ {(1, 0), (2, 0)} in Fig. 8(a)] and the two-side sym-
metric GSP operations [(m, n) ∈ {(1, 1), (2, 2)} in Fig. 8(b)].

From Fig. 8, it is clear that the central peak of
〈�b(φ + π/2)〉 at φ = 0 for all the GPS-TMSV inputs is
much narrower than that for the TMSV input. It implies that
the use of the GSP operation is beneficial for significantly
increasing the phase sensitivity. Among these non-Gaussian
operations, the PS-then-PA operation (s = 0) presents the
best performance again. In addition, for both the single-side
[Fig. 8(a)] and two-side [Fig. 8(b)] GSP operations, the res-

FIG. 9. The expectation values of the parity operator
〈�b(φ + π/2)〉 as a function of φ for fixed squeezed parameter
z = 0.6 for different non-Gaussian operations. The dot-dashed
lines represent the our work for operation parameter s = 0, 0.5, 1
(green, red, and blue lines, respectively), and dashed lines represent
the previous work performing the PA (magenta line) and the PS
operations (cyan line). Solid line corresponds to the TMSV case.

olution can be further enhanced by increasing the parameter
(m, n). Compared to the single-side case, the two-side case
has a better performance for the improvement of resolution
under the same parameters.

In Fig. 9, we make a comparison about 〈�b(φ + π/2)〉
between single PA(PS)-TMSVs and our proposed scheme
with m = n = 1 for a given squeezing parameter z = 0.6. It
is obvious that these non-Gaussian operations can effectively
enhance the resolution and the effects of improvement can be
ranked from small to large, i.e., PS, PA, PA-then-PS (s = 1),
PA-then-PS plus PS-then-PA (s = 0.5), and PS-then-PA
(s = 0). Thus, compared to both PA and PS, our scheme
presents the advantages for further improving resolution,
especially for PS-then-PA (s = 0).

B. The phase sensitivity

After investigating the resolution of our scheme in the
MZI, in this subsection, we further consider the sensitivity of
phase estimation based on the outcome of parity detection. In
general, the phase sensitivity of the MZI can be estimated by
the error propagation formula [52,53], i.e.,

�φ =
√

1 − 〈�b(ϕ)〉2

|∂�b/∂φ| . (24)

In particular, when m = n = 0, corresponding to the case
of TMSV input, using Eq. (22) then Eq. (24) reduces to
�φTMSV = (1 − 2z2 cos 2φ + z4)/{[2z(1 − z2) cos φ]}, as ex-
pected. In the limit of φ → 0, �φTMSV becomes �φmin =
(1 − z2)/(2z) = 1/

√
FQ, in which FQ is the QFI for the TMSV

input into the MZI. This indicates that the QCRB can be
achieved especially at φ → 0 with the help of the parity
detection.

Generally, lower values of �φ correspond to higher phase
sensitivity. In order to clearly see the effects of differ-
ent parameters on the phase sensitivity, at fixed values of
z = 0.6 and s = 0, 0.5, 1, we plot the phase sensitivity �φ

as a function of the phase φ for the single-side [(m, n) ∈
{(1, 0), (2, 0)}] and the two-side [(m, n) ∈ {(1, 1), (2, 2)}]
symmetric GSP operations in Figs. 10(a) and 10(b),
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FIG. 10. The phase uncertainty �φ vs the phase shift φ for
a given squeezed parameter z = 0.6 and different operator param-
eter s = 0, 0.5, 1. (a) The single-side GSP operations [(m, n) ∈
{(1, 0), (2, 0)}], and (b) the two-side symmetric GSP operations
[(m, n) ∈ {(1, 1), (2, 2)}]. Solid lines correspond to the TMSV case.

respectively. Compared to the TMSV case, the minimum
value of �φmin can be significantly reduced by single- and
two-side cases above. For given parameter s, the �φmin can
be further decreased with the increasing of the parameters
(m, n). Comparing the single-side case with the two-side case
[Figs. 10(a) and 10(b)], it is clear that the latter can achieve
a lower �φmin than the former. In addition, the PS-then-PA
(s = 0) is the best operation for getting the minimum value
�φ under the condition that other parameters are the same.

In Fig. 11, we further make a comparison about �φmin

between single PA(PS)-TMSVs and our proposed scheme,
where the condition is the same as that in Fig. 10. In terms of
minima �φmin, the effects for these non-Gaussian operations
can be ranked from large to small, i.e., PS, PA, PA-then-PS
(s = 1), PA-then-PS plus PS-then-PA (s = 0.5), and PS-then-
PA (s = 0). Again, the PS-then-PA is the best choice for
achieving the minima of �φmin due to the fact that the APN
can be increased by the PS-then-PA. These results indicate
that under the same parameters the phase sensitivity �φ can
be further enhanced by using our scheme when comparing to
the PA-TMSV and the PS-TMSV.

On the other hand, it is interesting to notice that the HL
based on parity detection can be beaten when the TMSV
is considered as the input of the MZI [8]. However, when
the PA-TMSV or PS-TMSV is used as input, the HL cannot
be beaten and the corresponding phase uncertainties perform
worse compared to the TMSV under the same parameters
[20]. Then how about our scheme? In order to clearly see this
point, for given phase φ = 0.05 and s = 0, 0.5, 1, we show the

FIG. 11. As a comparison, the phase uncertainty �φ as a func-
tion of the phase shift φ for fixed squeezed parameter z = 0.6. The
dot-dashed lines represent the our work for operation parameter
s = 0, 0.5, 1 (corresponding to green, red, and blue lines, respec-
tively), and dashed lines represent the previous work of performing
the PA-TMSV (magenta line) and the PS-TMSV (cyan line). Solid
line corresponds to the TMSV case.

phase sensitivity as function of the total APN 2N for single-
side [(m, n) ∈ (1, 0)] and two-side symmetric GSP operations
[(m, n) ∈ (1, 1)] in Figs. 12(a) and 12(b), respectively. For our
scheme, it is shown that the SQL is always broken through
due to the fact that the GSP-TMSV is a kind of nonclassical
state. As discussed above, the PS-then-PA (s = 0) can be
used to achieve the best phase sensitivity; however, the phase
sensitivity is not below the HL for this case, but by the cases
of s = 0.5, 1 in the regime of the small total APN (or, say,
the small initial squeezing parameter z). The reason may be
that, except for s = 0, the two-mode squeezing property can

FIG. 12. The phase sensitivity �φ as a function of the total
APN 2N for different operator parameter s = 0, 0.5, 1 for (a) the
single-side GSP operations [(m, n) ∈ (1, 0)] and (b) the two-side
symmetric GSP operations [(m, n) ∈ (1, 1)]. Solid lines correspond
to the TMSV case.
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FIG. 13. Schematic diagram of the photon losses (a) in front of
the parity detection (denoted as an external loss) and (b) between the
phase shifter and the second BS (denoted as an internal loss).

be always improved for the cases of s = 0.5, 1 at the certain
range of z, which can be seen from Fig. 5. In addition, it is
also interesting to notice that comparing with single-side GSP
operation (m, n) ∈ (1, 0), two-side GSP operation (m, n) ∈
(1, 1) is much easier to make the phase uncertainty close to
the HL in the larger total APN region. In particular, the phase
uncertainty associated with the state of our scheme is closer
to the corresponding HL than the TMSV in the larger total
APN region. From the above analysis, we can see that, with
the same average photon number, the GSP-TMSV performs
better than that of the TMSV when the average photon number
is relatively large, while it is opposite when the average pho-
ton number is small. Therefore, we should mention that the
GSP operation can increase the QFI of phase measurement
compared with the input TMSV state. It does not mean that
the GSP-TMSV state can outperform the TMSV state with
the same average photon number.

V. EFFECTS OF PHOTON LOSSES
ON PHASE SENSITIVITY

In practice, the traveling states are inevitably coupled to
the environment, so that the decoherence process should be
taken into account. Generally, there are several models of
decoherence processes, such as photon loss, phase diffusion,
and thermal noise. As described in Ref. [54], particularly,
it is shown that the photon losses have a significant impact
on phase sensitivity. Thus, here we only consider the effects
of photon loss for (m, n) = (1, 1) in our scheme, including
external and internal losses shown in Figs. 13(a) and 13(b),
respectively. On the other hand, in order to further study the
effects of the photon losses on the QFI, we also consider the
photon losses placed before and after the linear phase shift
(whose schematic diagram is shown Fig. 19). For these rea-
sons, in the following simulations, we shall give more detailed
analysis for our scheme about the effects of photon losses on
the phase sensitivity and the QFI. The detail calculations are
shown in Appendixes B and C.

In Fig. 14, at a fixed dissipation value η1 = η2 = 0.9,
we show the expectation values 〈�loss

b (φ + π/2)〉 with the
external and internal losses as a function of the phase shift
φ for several different parameters s = 0, 0.5, 1. It is clear
that the photon-loss processes make the central peak of
〈�loss

b (φ + π/2)〉 at φ = 0 lower than that of 〈�b(φ + π/2)〉
for the ideal cases (see Fig. 9). Nevertheless, we can see that
the central peaks of 〈�loss

b (φ + π/2)〉 at φ = 0 for all the
GPS-TMSV inputs are much narrower than that for both the
TMSV and the single PA(PS)-TMSVs inputs, which reveals

FIG. 14. The expectation values of the parity operator
〈�b(φ + π/2)〉 with (a) external losses and (b) internal losses as
a function of φ for some fixed parameter z = 0.6, η1 = η2 = 0.9,
and m = n = 1. The dot-dashed lines represent the our work for
several different s = 0, 0.5, 1 (corresponding to green, red, and
blue dot-dashed line, respectively). As a comparison, dashed lines
represent the previous work performing the PA (magenta line) and
the PS operations (cyan line). Solid line corresponds to the TMSV
case.

that the GPS operations, especially for PS-then-PA (s = 0),
may help to improve the phase sensitivity even in the pres-
ence of photon losses, compared to both PA and PS. Besides,
in contrast to the external-loss cases, the central peaks of
〈�loss

b (φ + π/2)〉 for the internal losses at φ = 0 are relatively
narrower, which implies that the external losses have a greater
influence on the phase sensitivity than the internal ones.

To visually display the effects of photon losses on phase
sensitivity, we illustrate the phase sensitivity �φL as a func-
tion of the phase φ for several dissipation values ηl =
1, 0.9, 0.8 (l = 1, 2), as shown in Fig. 15. The solid lines
represent the ideal case with ηl = 1 where the optimal phase
point is at φopt = 0. However, in the presence of photon losses,
the optimal phase point that tends to be far away from zero for
ηl = 0.9, 0.8 is at φopt �= 0, which leads to the decrease of
phase sensitivity. The reason may be that the noise could be
suppressed in near decorrelation point (φ = 0), as shown in
Ref. [55]. Furthermore, under the same accessible parameters
except for ηl = 1, the phase sensitivity �φL for the internal
losses performs better than that for the external-loss cases,
which indicates that the latter has a greater impact on the
precision of phase measurement. In order to show the ad-
vantages of our scheme, on the other hand, we take a fixed
ηl = 0.9 and make a comparison about �φL changing with
the phase φ for several non-Gaussian resources inputs in-
volving single PA(PS)-TMSVs and GSP-TMSV, as shown in
Fig. 16. It is found that, compared with the TMSV input (black
solid line), these non-Gaussian resources can still be used for
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FIG. 15. The phase sensitivity with (a) external losses and (b) in-
ternal losses �φL as a function of φ at some fixed parameter z = 0.6
and m = n = 1 for several dissipation values η1 = η2 = 1, 0.9, 0.8
and s = 0, 0.5, 1 (corresponding to green, red, and blue dot-dashed
lines, respectively). As a comparison, the solid line corresponds
to the ideal cases, and the dot-dashed and dashed lines represent
η1 = η2 = 0.9 and η1 = η2 = 0.8, respectively.

enhancing the phases sensitivity even in the presence of pho-
ton losses. Among them, all the GSP-TMSV inputs present
better advantages for further improving the phase sensitivity
when considering photon losses, in which the PS-then-PA
(s = 0) is the best. In Fig. 17, we plot the phase sensitivity
�φL as a function of η1(or η2) for several non-Gaussian
resources inputs mentioned above at fixed parameters z = 0.6
and φ = 0.05, from which the phase sensitivity can be deteri-
orated severely with the decrease of η1(or η2). In contrast to
the TMSV input, fortunately, the phase sensitivity can be still
improved even in the presence of photon losses by using these
non-Gaussian resources, especially for the GSP-TMSV. In this
sense, this means that the GSP operations are more effective to
resist photon losses comparing with the PA(PS) operation. In
addition, the effects of the external losses on phase sensitivity
are more serious than the internal-loss cases, particularly in
the small η1(or η2) regimes.

On the other hand, as shown in Fig. 12, without losses, it
is shown that the SQL can be broken for all the GSP-TMSV
inputs and the phase sensitivity of our schemes are closer
to the HL limit for larger values of 2N compared with the
TMSV. In the context of photon losses, then, can the two limits
be broken by using the GSP-TMSV? To this end, for some
given parameters (m, n) = (1, 1), z = 0.6, and φ = 0.05, in
Figs. 18(a) and 18(b), we plot the phase sensitivity �φL as
a function of total APN 2N for several dissipation values
ηl = 1, 0.99, 0.98, 0.97, 0.96, and 0.95. It is clearly seen that
the phase sensitivity decreases rapidly with the decrease of
η1(or η2). In particular, when η1 = 0.95, the SQL cannot be

FIG. 16. The phase sensitivity �φL with (a) external losses and
(b) internal losses as a function of φ for some fixed parameters z =
0.6, m = n = 1, and η1 = η2 = 0.9. The dot-dashed lines represent
the our work for several different s = 0, 0.5, and 1 (corresponding
to green, red, and blue dot-dashed lines, respectively). As a com-
parison, dashed lines represent the previous work performing the
PA (magenta line) and PS operations (cyan line). Black solid line
corresponds to the TMSV case.

achieved for the external-loss cases but can be still broken
through at large range of the total APN for the internal-loss
ones. As a comparison, in Figs. 18(c) and 18(d), we repeat
these graphs for TMSV, and we can find that the phase sen-
sitivity deteriorates more quickly than our scheme with the
decrease of η1(or η2), especially in a large range of APN 2N .
These results indicate that the external losses made against
the effective improvement of phase sensitivity compared to
the internal-loss cases and the effect of photon losses (includ-
ing external and internal losses) on phase sensitivity can be
restrained by using GSP operation.

According to Ref. [60], the effects of photon losses on
the QFI cannot be ignored in practice, so here we give the
schematic of a balanced MZI for the photon losses placed
before and after the linear phase shifter on mode b, as shown
in Fig. 19. Note that, based on Eq. (18), the photon loss
after the phase shifter has no effect on the QFI. Therefore,
following the approach in Ref. [61], we also assume that the
photon loss occurs before and after the linear phase shifter
(see Appendix B for detailed the photon-loss structure, not
shown here). For a given parameter (m, n) = (1, 1), Fig. 20(a)
illustrates the QFI with a dissipation factor η3 = 0.9 as a
function of the squeezing parameter z with several different
s = 0, 0.5, 1. To make a comparison, the QFI of the TMSV
(black lines) with and without photon losses is also plotted.
We can see that for a given dissipative value η3 = 0.9 (dashed
lines), the corresponding QFI of all the given states increases
with the increase of z. Among them, the QFI of s = 0 has
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FIG. 17. The phase sensitivity with (a) external losses and (b) in-
ternal losses as a function of transmissivity of fictitious beam splitter
η1(or η2) for some fixed parameters z = 0.6, φ = 0.05, and s =
0, 0.5, 1 (green, red, and blue dot-dashed lines, respectively). As
a comparison, a black solid line corresponds to the TMSV case.
Cyan and purple dashed lines correspond to the PS-TMSV and the
PA-TMSV, respectively.

the best performance. In addition, we also find that the gap
between the QFI for the GSP-TMSV with and without photon
losses is slightly larger than that of the QFI for the TMSV,
which means that the GSP-TMSV as the input of optical
interferometers is more sensitive to the photon losses. Even
so, the QFI of the GSP-TMSV with photon losses performs
better than that of the TMSV without photon losses. To fur-
ther understand the QFI of the GSP-TMSV under the photon
losses, at fixed z = 0.6 and (m, n) = (1, 1), we also plot the
QFI as a function of η3 with several different s = 0, 0.5, 1, as
shown in Fig. 20(b). We can find that, with the increase of η3,
the QFI of the GSP-TMSV, especially for s = 0, is enhanced
significantly compared to the TMSV case. More dramatically,
even in the case of severe photon losses (e.g., η3 = 0.9 ), the
QFI of the GSP-TMSV is still larger than that of the TMSV,
which reveals that our scheme with and without photon losses
has obvious advantages in increasing the QFI.

VI. CONCLUSION

In summary, we put forward an improved scheme of the
phase sensitivity and resolution using a non-Gaussian quan-
tum state, the GSP-TMSV, as the input of the MZI via parity
detection. After the nonclassicality of the proposed state is
discussed with respect to the APN, the antibunching effect,
and two-mode squeezing property, both the QFI and the phase
resolution and sensitivity based on parity detection are inves-
tigated in detail. The numerical results show that our scheme,
especially for the case of the PS-then-PA TMSV, is always

superior to the original TMSV scheme in terms of the QFI
and the phase resolution and sensitivity, which is caused by
the fact that the total APN of the former is bigger than that of
the latter.

In addition, to show the advantages of our scheme, we
also make performance comparisons between the GSP-TMSV
and the previous PA- (or PS-) TMSV schemes about the total
APN, the QFI, and the phase resolution and sensitivity. The re-
sults indicate that these performances of the previous schemes
can be surpassed by our scheme, especially by the PS-then-
PA TMSV. This means that the proposed GSP operation is
beneficial for improving the QFI and the phase resolution and
sensitivity significantly. In addition, compared with the single-
side GSP operations, the improvement of two-side symmetric
ones is more remarkable under the same accessible param-
eters. Last but not least, the SQL is always broken through
by our scheme and phase sensitivity closer to the HL than
the TMSV in the larger total APN region. These results show
that the GSP-TMSV is a useful resource for improving phase
sensitivity remarkably beyond the classical limit.

From a realistic point of view, we further study the sensi-
tivity of phase estimation with parity detection in the presence
of photon losses, including external and internal losses. The
results indicate that compared to the internal photon losses,
the external ones have a greater impact on phase sensitivity
when several non-Gaussian resources, involving single PA-
(PS-) TMSVs and GSP-TMSV, are used as the inputs. Inter-
estingly, under the same parameters, the phase sensitivity with
all the GSP-TMSV, especially for the case of s = 0, in the
presence of photon losses can be better than that of both the
TMSV and the PA(PS)-TMSV. Besides, when considering all
the GSP-TMSV as the inputs of the MZI, our scheme with and
without photon losses has obvious advantages in increasing
the QFI well. Especially in the presence of photon losses, it
is also shown that the HL cannot be beaten, but fortunately
the SQL can be broken through particularly for the large total
APN. Finally, we should mention that the GSP operation is
probabilistic. How to improve its success probability is an
interesting topic which can be studied in the future.
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APPENDIX A: DERIVATION OF EQS. (2) AND (6)

In this Appendix, we first derive the the explicit form of
Eq. (2). By using the commutation relation [a, a†] = 1 and
ϑm = ∂m

∂τm exp (τϑ )|τ=0, one can rewrite Eq. (1) as

Ô = ∂m+n

∂τm
1 ∂τ n

2

exp(s1τ1 + s2τ2)

× exp[(s2τ2 + t2τ2)b†b]

× exp[(s1τ1 + t1τ1)a†a]|τ1=τ2=0. (A1)
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FIG. 18. The phase sensitivity �φL with (a) external losses and (b) internal losses as a function of the total APN 2N at some fixed
parameters s = 1, m = n = 1, and φ = 0.05. (c) External losses and (d) internal losses as a function of the total APN 2N for TMSV. The
dot-dashed and dashed line correspond to the SQL and HL, respectively. The color lines from down to up correspond to dissipation value
η1 = η2 = 1, 0.99, 0.98, 0.97, 0.96 and 0.95, respectively.

Thus, by performing the GSP operations Ô on the each mode
of the TMSV, one can obtain

|ψ〉ab =
√

1 − z2

Pd

∂m+n

∂τm
1 ∂τ n

2

exp(s1τ1 + s2τ2)

× exp[(s2τ2 + t2τ2)b†b] exp[(s1τ1 + t1τ1)a†a]

× exp[a†b†z]|00〉|τ1=τ2=0. (A2)

Finally, Eq. (2) can be obtained via the relation
eλa†aa†e−λa†a = a†eλ.

Next, for the GSP-TMSV mentioned above, let us de-
rive the expectation value of a general quantum operators

FIG. 19. Schematic diagram of a balanced MZI for the photon
losses on mode B, which is placed at before and after the linear phase
shifter. Bη3 is the BS with a transmissivity η3 and |0〉 is the vacuum
state on the auxiliary mode bv .

albka†hb†g, which can be expressed as

〈al bka†hb†g〉 = Tr[|ψ〉ab〈ψ |albka†hb†g]. (A3)

FIG. 20. The QFI in the presence of photon losses as a function
of (a) squeezing parameter z with several different s = 0, 0.5, 1 (cor-
responding to green, red, and blue lines) and (b) dissipation factor η3

at fixed z = 0.6 and (m, n) = (1, 1). In panel (a), the solid and dashed
lines represent η3 = 1 and η3 = 0.9, respectively. As a comparison,
the black line corresponds to the TMSV case.
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By using the completeness relation
∫

d2α|α〉〈α|/π = 1 and the integral formula∫
d2γ

π
eς |γ |2+ξγ+χγ ∗ = −e−ξχ/ς

ς
, (Re[ς ] < 0), (A4)

after doing straightforward calculation, we can obtain

〈albka†hb†g〉 = Tr[|ψ〉ab〈ψ |albka†hb†g]

= R̃e uu1

Pd
〈00| exp(v1ab)albka†hb†g exp(va†b†)|00〉

= R̃e uu1

Pd

∂ l+k+h+g

∂τ l
5∂τ k

6 ∂τ h
7 ∂τ

g
8

∫
d2αd2β

π2
exp[−|α|2 + (v1β + τ5)α + (τ7 + vβ∗)α∗] exp(−|β|2 + τ6β + τ8β

∗)

= R̃e uu1

Pd

∂ l+k+h+g

∂τ l
5∂τ k

6 ∂τ h
7 ∂τ

g
8

1

1 − vv1
exp

(
τ7τ8v1 + τ6τ5v + τ6τ8 + τ5τ7

1 − vv1

)
|τ5=τ6=τ7=τ8=0. (A5)

which is Eq. (6).

APPENDIX B: DERIVATION OF THE PHASE SENSITIVITY
WITH PARITY DETECTION IN THE PRESENCE

OF PHOTON LOSSES

In order to derive the phase sensitivity with parity detection
in the presence of photon losses, for simplicity, here we con-
sider two special photon-loss processes, i.e., the external loss
and the internal one, shown in Fig. 13. In practice, the photon
losses on auxiliary mode bv can be structured using a fictitious
beam splitter (denoted as Bηi ) with a dissipation factor ηi

(i = 1 and 2 corresponding to the external and internal losses,
respectively), whose transform relation is given by [56]

B†
ηi

(
b

bv

)
Bηi =

( √
ηi

√
1 − ηi

−√
1 − ηi

√
ηi

)(
b

bv

)
. (B1)

It is worth mentioning that the smaller values of ηi correspond
to the more severe photon losses. In particular, ηi = 1 cor-
responds to the ideal case. To get the parity operator in the
presence of the external losses, on one hand, it is necessary to
rewrite Eq. (20) under the Weyl ordering representation [57],
i.e.,

�b = π

2
:δ(b)δ(b†) : , (B2)

where : • : denotes the symbol of the Weyl ordering and δ(•)
denotes the delta function. Thus, by using Eq. (B1), one can
obtain the parity operator with external losses (denoted as
�loss

b ), namely,

�loss
b = π

2 v
〈0| :δ(

√
ηib +

√
1 − ηibv )

× δ(
√

ηib
† +

√
1 − ηib

†
v ) : |0〉v, (B3)

where |0〉v is the vacuum noise input on auxiliary mode bv .
Finally, according to the classical correspondence of the oper-
ator

: f (b, b†, bv, b†
v ) : = 4

∫
d2βd2γ f (β, β∗, γ , γ ∗)

×�(β, β∗)�(γ , γ ∗), (B4)

with Wigner operators under the normal ordering [58]

�(β, β∗) =: exp[−2(b† − β∗)(b − β )] :,

�(γ , γ ∗) =: exp[−2(b†
v − γ ∗)(bv − γ )] :, (B5)

and using the integration within an ordered product (IWOP)
technique [59], it is easy to obtain

�loss
b =: e−2η1b†b := (1 − 2η1)b†b, (B6)

where the symbol :: denotes the normal ordering. Thus, com-
bining Eqs. (14) and (B6), the average value of �loss

b for the
output state can be given by〈

�loss
b

〉 = Tr
[
ρout�

loss
b

] = R̃e
uu1

√
ϑ1

Pd

√
ϑ2

2 − ϑ3

, (B7)

with

ϑ1 = 1 − vv1 sin2 ϕ,

ϑ2 = 1 − vv1 + 2η1v1v cos2 ϕ,

ϑ3 = (1 − 2η1)2 sin2 ϕv1v(1 − vv1)2. (B8)

On the other hand, unlike the derivation of Eq. (B6), we
rewrite the parity operator with the internal losses as

�̃loss
b =v 〈0|B†

1U †(ϕ)B†
vB†

2eiπb†bB2BvU (ϕ)B1|0〉v
=: e�1a†a−�2b†a−� ∗

2 a†b+�3b†b :, (B9)

where U (ϕ) is given in Eq. (12) and

�1 = √
η2 cos ϕ − 1 + η2

2
,

�2 = (η2 + 1)2 − 4η2 cos2 ϕ

2(iη2 − i + 2
√

η2 sin ϕ)
,

�3 = −√
η2 cos ϕ − 1 + η2

2
, (B10)

and we have used the following transformation relationships:

B†
1

(
a
b

)
B1 =

√
2

2

(
1 i
i 1

)(
a
b

)
,

B†
2

(
a
b

)
B2 =

√
2

2

(
1 −i
−i 1

)(
a
b

)
. (B11)
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Thus, for a given input GSP-TMSV, one can obtain the expec-
tation value of �̃loss

b for the internal losses, i.e.,

〈
�loss

b

〉 = Tr[|ψ〉ab〈ψ |�̃loss
b ]

= R̃e uu1

pd
[(1 − ω1)2 − ω2]−

1
2 , (B12)

with

ω1 = v1v(�1�3 − η2 + |�2|2),

ω2 = 4|�2|2v2
1v

2(�1�3 − η2). (B13)

Finally, using Eqs. (B7) and (B12), the phase sensitivity (de-
noted as �φL) in the presence of external and internal losses
can be estimated by the error propagation formula

�φL =
√

1 − 〈
�loss

b

〉2∣∣∂�loss
b /∂φ

∣∣ . (B14)

APPENDIX C: DERIVATION OF THE QFI
IN THE PRESENCE OF PHOTON LOSSES

In order to derive the QFI in the presence of photon losses,
here we shall use a general formalism for obtaining the the
ultimate limit of precision in noisy systems, proposed by
Escher [60]. They pointed out that the enlarged state of the
system |ψ〉s and the environment |0〉e can be written as

|�〉se = Ûse|ψ〉s|0〉e =
∑

κ

K̂κ (ϕ)|ψ〉s|κ〉e, (C1)

where Ûse is the corresponding unitary operator, |ψ〉s is the
initial state of the system, |0〉e is the initial state of the envi-
ronment, |κ〉e is an orthogonal state of the environment, and
K̂κ (ϕ) are Kraus operators that can be used to describe the
photon losses. For the whole systems, the upper bound of the
QFI �Q is thus given by

�Q[|ψ〉s, K̂κ (ϕ)] = 4[s〈ψ |Ĥ1|ψ〉s − |s〈ψ |Ĥ2|ψ〉s|2], (C2)

with

Ĥ1 =
∑

κ

dK̂†
κ (ϕ)

dϕ

dK̂κ (ϕ)

dϕ
,

Ĥ2 = i
∑

κ

dK̂†
κ (ϕ)

dϕ
K̂κ (ϕ). (C3)

According to Ref. [60], the relation between the QFI and the
upper bound �Q is written as

FL = min
{Kκ (ϕ)}

�Q[|ψ〉s, K̂κ (ϕ)]. (C4)

For simplicity, here we consider the photon losses on mode
b, whose schematic is given in Fig. 19. In this situation, a
possible set of Kraus operators describing the photon-loss
process is [60]

K̂κ (ϕ) =
√

(1 − η3)κ

κ!
e−iϕ

(
a†a−b†b

2 + εκ
2

)
η

nb
2

3 bκ , (C5)

where ε = 0 and ε = −1 respectively represent the photon
losses before and after the phase shifter, and η3 is the dis-
sipation factor with η3 = 0 and η3 = 1 corresponding to the
complete absorption and lossless cases, respectively. In addi-
tion, to obtain the minimum of �Q, it is necessary for us to get
the expressions of both Ĥ1 and Ĥ2, which can be respectively
calculated according to Eqs. (C3) and (C5) as

Ĥ1 = 1
4 n2

a + 1
4 [η3 − ε(1 − η3)]2n2

b

+ 1
2 (ε − εη3 − η3)nanb

+ 1
4 (1 + ε)2η3(1 − η3)nb, (C6)

Ĥ2 = − 1
2 na + 1

2 [η3 − ε(1 − η3)]nb, (C7)

with the definitions of na = a†a and nb = b†b.
Therefore, by combining Eqs. (C2), (C3), (C6), and (C7),

one can obtain

�Q = 〈�2na〉 + (η3 + εη3 − ε)2〈�2nb〉
− 2(η3 + εη3 − ε)(〈nanb〉 − 〈na〉〈nb〉)

+ (1 + ε)2η3(1 − η3)〈nb〉, (C8)

where 〈�2x〉 = 〈x2〉 − 〈x〉2 and 〈x〉 are respectively the vari-
ance and average for the quantum state that the input state |ψ〉s
goes through for the first BS. Finally, the minimum value of
�Q[|ψ〉s, K̂κ (ϕ)] corresponding to the QFI in the presence of
photon losses can be obtained when ε = −ζ/ χ with

χ = (1 − η3)〈�2nb〉 + η3〈nb〉,
ζ = −η3〈�2nb〉 + 〈nanb〉 − 〈na〉〈nb〉 + η3〈nb〉, (C9)

and 〈na〉, 〈nb〉, 〈nanb〉, 〈n2
a〉, 〈n2

b〉 can be calculated as

〈na〉 = 〈nb〉 = R̃e uu1

Pd

1

(1 − v1v)2
− 1,

〈nanb〉 = R̃e uu1

Pd

2v1v − 1

(1 − vv1)3
+ 1,

〈
n2

a

〉 = 〈
n2

b

〉 = R̃e uu1

Pd

4vv1 − 1

(1 − vv1)3
+ 1. (C10)
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