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We propose a scheme for a high-dimensional nonlocal controlled quantum computation network. A client
with limited quantum technology can control a distributed computation between two quantum servers in a secure
manner, such that the client’s computational information remains private. We define a measure to quantify the
client’s control power when performing nonlocal quantum gates. We find that, given the same channel resources,
the client’s control power over nonlocal quantum gate operations between quantum servers is much greater than
that of quantum state transfer between quantum servers. Our scheme prevents quantum servers in the network
from stealing each other’s information or jointly stealing the client’s information. Our protocol provides new
avenues for building quantum computing networks and methods to develop the resource theory of quantum
channels.
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I. INTRODUCTION

Networked or distributed quantum computing [1,2] com-
posed of less powerful quantum computers can improve
computing potential and solve large and complex quan-
tum computing tasks. Quantum entanglement [3–5] between
nodes of the network can link nonlocal quantum processors
over large distances in a hierarchical and secure fashion. It
can be used to realize basic components of nonlocal quan-
tum computing, such as two-qubit controlled gates that have
numerous applications [6–9]. In 2000, Eisert et al. [10]
investigated the minimal resources for implementing a non-
local CNOT gate. Guo et al. [11] proposed a scheme for a
nonlocal swap operation and a nonlocal gate using cavity
quantum electrodynamics [12]. Since then, a large number
of theoretical schemes have been proposed to construct var-
ious nonlocal quantum gates [13–15], and much effort has
been devoted to the implementation of nonlocal gates with
less entanglement resources [16–18]. Nonlocal CNOT gate
was experimentally realized on photonic qubits [19] and in
other physical systems [19,20]. In 2017, the world record for
quantum entanglement distribution over a distance of 1200
kilometers [21] was achieved, and subsequently in 2018,
the first intercontinental quantum key distribution was com-
pleted [22]. These advances are stepping stones toward the
future construction of entanglement-based large-scale quan-
tum computing networks.

A practical quantum computing network would allow ordi-
nary clients to connect to distributed networks using classical
or quantum communication technologies. Quantum networks
with third parties were first discussed for communication
schemes such as quantum secret sharing [23] and controlled
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state teleportation [24]. In these applications, the third party
ensures the security of communication. A third party con-
troller can permit or restrict successful quantum state transfer
from the sender to the receiver but is not the owner of the
information transferred. However, in a quantum computing
network, the third party (the client) is the owner and sender of
calculation information, i.e., algorithm information and initial
computing states. Given the client’s dual identity (sender and
controller) in the quantum computing network, there are two
measures that can be used to assess the performance of the
network based on the client’s needs. The first measure is the
security of the client’s information; when uploading calcu-
lation information to the computing network, the client can
either encrypt the initial computing state, or encrypt the algo-
rithm. The second measure is the control power of the client,
when the client is either controlling quantum state transfer or
controlling quantum operations between two quantum servers.

To satisfy the security requirement, the client should have
the ability to prevent any subserver in the quantum computing
network from stealing the information of other servers, or
all quantum servers in the network jointly from stealing the
client’s confidential quantum algorithm information. One of
the most remarkable achievements in this field is blind quan-
tum computation (BQC) [25–29]. This is an effective method
for a client who has limited quantum (or completely classical)
computational power or memory to delegate the computation
to remote quantum servers without leaking any information
about the client’s input and computational task [25]. In
the field of secure quantum computation with multiple
parties, Elham [30] proposed the secure multiplayer quantum
computation based on the BQC protocol. In 2020, Dulek
et al. [31] generalized the multiparty quantum computation
protocol for k players, against k − 1 colluding players. BQC
has been demonstrated in an optical experiment [20] using
Bell states shared by two servers [32]. In this case, the client
can be totally classical as long as the quantum servers do not
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communicate with each other through classical chan-
nels [25,29,32]. However, it is unrealistic to prevent
two powerful quantum servers from communicating. In
2014, Li et al. proposed a three-server BQC scheme that
satisfies the client’s computing and security needs even with
communication between the servers [33], but the cost of this
scheme is that at least three quantum servers are needed with
quantum channels.

Assuming that security can be guaranteed, the control
power of the remote controllable quantum computing op-
eration must also be assessed. In quantum communication,
there have been many studies of the control power of the
third party for quantum state transfer between two quantum
servers [34–40]. To our knowledge, there has been no quanti-
tative analysis of the control capabilities of clients in quantum
computing networks. In this paper, we propose a method for
clients to remotely control quantum gate operations between
two quantum servers while ensuring security of the protocol
as well as providing the client with control power to supervise
the entire computing process.

We describe a scheme for the client to securely implement
a nonlocal quantum gate between two remote servers using
a tripartite entangled quantum state. To analyze the client’s
supervision capabilities more clearly, we introduce the con-
cept of control power in controlled nonlocal gate operations.
We find that, in higher dimensions, using the same channel
resources, the client’s control of nonlocal quantum gates be-
tween quantum servers is much greater than that of quantum
state transfer between the quantum servers. This means that,
when clients connect into distributed computing networks, en-
crypting the algorithm can be more effective for control than
encrypting the initial state. In addition, through a security-
checking strategy, the client can prevent quantum servers in
the network from stealing each other’s information or jointly
stealing the algorithm information. Furthermore, we do not
need to assume that classical communication is forbidden
between servers. The cost of the security is that the client must
have the ability to perform single-qudit measurements, but any
additional quantum computational power or quantum memory
is not necessary.

II. ARBITRARY DIMENSIONAL PERFECT NONLOCAL
CONTROLLED PHASE GATE

We first construct a client-controlled nonlocal controlled
phase gate scheme between two quantum servers. We choose
the nonlocal controlled phase (CP) gate because the CP gate
is a symmetrical gate in which quantum computing servers
implement the same gate operations. This makes it useful
for analyzing the relation between the channel parameters
and gate fidelities. Moreover, it is a basic quantum logic
operation unit of quantum computing, an arbitrary quantum
circuit can be decomposed into CP gates and single qubit op-
erations, allowing universal quantum computation in d-level
systems [41].

The scheme for the nonlocal CP gate controlled by a client
is shown in Fig. 1. Two remote quantum servers, Alice and
Bob, have the qudits A and B, respectively. The initial state
of qudits AB is set as |ψ〉in = ∑d−1

p=0 αp|p〉A ⊗ ∑d−1
p′=0 βp′ |p′〉B.

The third party Charlie, as a client, wants to nonlocally

FIG. 1. Diagram showing client’s (Charlie’s) controlled par-
ticipation in nonlocal quantum gates. Alice and Bob are two
quantum servers with quantum computers, and they can execute local
two-qudit unitary operation on their qudits. The three blue discs
connected with dotted lines represent the tripartite (abc) entangled
quantum channel. Alice and Bob can also send and receive classical
information through classical channels. Qudits A and B represent the
quantum memory units which can perform quantum computing.

perform a d-dimensional CP gate on qudit A and B, which is
written as U AB

CP |ψ〉in = ∑d−1
p,p′=0 αpβp′e

2π
d i(n1 p+n2 p′−pp′ )|pp′〉AB.

Here, n1 (or n2) is the private algorithm information encoded
by Charlie. For selective implementation of such a nonlocal
d-dimensional CP gate between two remote quantum servers,
the client Charlie should share a three-qudit (abc) entangled
quantum channel |ψ0〉abc with them (with the qudit a dis-
tributed to Alice, b to Bob, and c to Charlie). For convenience
and without loss of generality, we write such a channel state
as

|ψ0〉abc = 1

d
√

d ′

d ′−1∑
k=0

|k〉c

d−1∑
l,m=0

(σa,z )ν(k)

× ⊗ (σb,z )ν
′(k)e

2iπ
d lm|lm〉ab, (1)

where d is the dimension of the qudit a or b, and d ′ � d is
the dimension of the qudit c. Here, σ n

K,z = ∑d−1
j=0 e

2π i
d jn| j〉K〈 j|,

K = a, b, c, A, or B.
To achieve the nonlocal CP operation, simultaneously,

Alice and Bob perform the two different d-dimensional
controlled-flip operations U (−)A

a and U (+)B
b on qudit pairs

Aa and Bb, respectively:

|p〉A|l〉a
U (−)A

a−→ |p〉A|l− p〉a, |p′〉B|m〉b
U (+)B

b−→ |p′〉B|m+ p′〉b.

(2)

To achieve the nonlocal CP operation, the quantum channel
|ψ〉abc should be designed based on private algorithm infor-
mation (n1, n2) desired by the client. Next we describe the
specific implementation of the nonlocal controlled CP gate
using three different channels.

A. Channel I

By setting d = d ′, k = l , ν(k) = 0, and ν ′(k) = 0, the
channel is a d-dimensional GHZ-type state of the form

|ψ〉abc = 1

d

d−1∑
l,m=0

e
2π i
d lm|lml〉abc. (3)
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This is easy to achieve by using an additional d-
dimensional discrete Fourier transform operation (|l〉 →

1√
d

∑d−1
m=0 e

2π i
d lm|m〉) on qudit b of a standard Greenberger-

Horne-Zeilinger (GHZ) state 1√
d

∑d−1
l=0 |lll〉abc.

To implement the nonlocal CP gate U (n) (n is a d-
dimensional private algorithm information encoded by Char-
lie) given by

U (n)|ψ〉in →
d−1∑

p,p′=0

e
2π i
d (pn−pp′ )αp|p〉Aβp′ |p′〉B, (4)

between qudits A and B, Alice and Bob simultaneously
perform the two different d-dimensional controlled-flip op-
erations U (−)A

a and U (+)B
b on qudit pairs Aa and Bb,

respectively. Then Alice and Bob measure the qudits a and
b in the z basis {|l ′〉a} and {|m′〉b} (here, l ′ = l − p and m′ =
m + p′) and they make the measurement outcome results pub-
lic via a classical channel. If Alice and Bob’s outcome is
|l ′m′〉ab, the state of the system becomes

d−1∑
p,p′=0

αpβp′ |p〉A|p′〉Be
2π
d i(l ′+p)(m′−p′ )|l ′ + p〉c

= σ d−l ′
B,z σ m′

A,z

d−1∑
p,p′=0

e
2π i
d (m′l ′−p′ p)αpβp′ |p〉A|p′〉B|l ′ + p〉c,

(5)

where σ n
K,z = ∑d−1

j=0 e
2π i
d jn| j〉K〈 j|. With these measurement

results, Alice and Bob can rotate the state of the system ABc
into the state

∑d−1
p,p′=0 e− 2π

d ip′ pαpβp′ |p〉A|p′〉B|l ′ + p〉c via ap-
propriate unitary operations according to Eq. (5). At the same
time, Charlie measures qudit c in the x basis {|k̃〉x

c} (|k〉c =
1√
d

∑d−1
l̃=0 e

2π i
d kk̃|k̃〉x

c). The state of the system ABc becomes

d−1∑
p,p′=0

e− 2π i
d p′ pαpβp′ |p〉A|p′〉B

1√
d

d−1∑
k̃=0

e
2π i
d (l ′+p)k̃|k̃〉x

c. (6)

If Charlie’s outcome is |k̃〉x
c, Alice and Bob will share a state

of the form

e
2π i
d k̃l ′

d−1∑
p=0

e
2π i
d pk̃αp|p〉A

d−1∑
p′=0

e− 2π i
d pp′

βp′ |p′〉B. (7)

By ignoring the overall phase and performing the single-qudit
operation σ d−k̃+n

A,z on qudit A, the state of qubits AB can be
transformed into Eq. (4), which is the standard form of a d-
dimensional controlled phase gate.

During the entire process of nonlocal gating, Charlie does
not disclose his measurement results k̃ to Alice and Bob.
He only tells Alice the operation σ d−k̃+n

A,z . With information
about (d − k̃ + n) and the information in any one person’s
possession, neither Alice nor Bob can know the value of n.
That is, only Charlie knows what kind of CP gate operation
Alice and Bob are implementing. But if Alice and Bob work
together to jointly measure the state they have, they can know
what kind of CP gate operation (the value of n) is finally
implemented. Therefore, Charlie needs to introduce a security
checking process to find out whether whether Alice and Bob

are jointly stealing the algorithm. We will describe this step in
Sec. IV.

B. Channel II

By setting d = d ′, and ν(k) = ν ′(k) = k, the channel is a
d-dimensional GHZ-type state of the form

|ψ ′〉abc = 1

d

d−1∑
m,l ′=0

e
2π i
d (mk)|mk〉bc

1√
d

d−1∑
l=0

e
2π i
d l (k+m)|l〉a. (8)

By using the inverse change of d-dimensional discrete Fourier
transform operation ( 1√

d

∑d−1
m=0 e

2π i
d lm|m〉 → |l〉) on qudit a,

the state of |ψ ′〉abc becomes

|ψ ′
x〉abc = 1√

d

d−1∑
l ′=0

|B(k, k)〉ba|k〉c, (9)

where |B(u, v)〉 = 1√
d

d−1∑
m=0

e
2π i
d mu|m〉b ⊗ |m + v〉a is the d-

dimensional Bell state. Here, v = 0, 1, 2, . . . , d − 1 (where
m + v must be taken modulo d) denotes the bit information
of the two-particle state and u = 0, 1, 2, . . . , d − 1 represents
the relative phase information.

To implement the nonlocal CP gate U (n1, n2) (n1, n2 are
the d-dimensional private algorithm information encoded by
Charlie) given by

U (n1, n2)|ψ〉in →
d−1∑

p,p′=0

e
2π i
d (pn1+p′n2−pp′ )αp|p〉Aβp′ |p′〉B,

(10)

between qudits A and B, Alice and Bob simultaneously
perform the two different d-dimensional controlled-flip op-
erations U (+)A

a and U (−)B
b on qudit-pairs Aa and Bb,

respectively. Then Alice and Bob measure the qudits a and
b in the z basis {|l ′〉a} and {|m′〉b}, and they make the measure-
ment outcome results public via a classical channel.

If the measurement result of qudits ab is |00〉ab, the state of
the three-qudit system ABc becomes

d−1∑
p′=0

βp′ |p′〉B

d−1∑
p=0

e− 2π i
d (p+p′ )p′

αp|p〉A|d − p − p′〉c

=
d−1∑
p′=0

βp′e− 2π i
d p′2 |p′〉B

d−1∑
p=0

e− 2π i
d pp′

αp|p〉A|d − p − p′〉c.

(11)

By performing the single-qudit operation σ s
B,z =∑d−1

j=0 e
2π i
d j2 | j〉B〈 j| on qudit B, the state of qudits ABc

can be transformed into

d−1∑
p,p′=0

e− 2π i
d pp′

βp′ |p′〉Bαp|p〉A|d − p − p′〉c. (12)
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At same time, Charlie measures qudit c in the x basis {|k̃〉x
c}.

The state shared by Alice and Bob becomes

d−1∑
p′=0

βp′ |p′〉B

d−1∑
p=0

e− 2π i
d pp′

αp|p〉A
1√
d

d−1∑
l̃=0

e− 2π i
d (p+p′ )k̃|k̃〉x

c

= 1√
d

d−1∑
k̃=0

|k̃〉x
cσ

d−k̃
A,z σ d−k̃

B,z

(
d−1∑

p,p′=0

e− 2π i
d pp′

αpβp′ |p〉A|p′〉B

)
.

(13)

If Charlie’s outcome is |k̃〉, Alice and Bob will share the state

σ d−k̃
A,z σ d−k̃

B,z

d−1∑
p′=0

βp′ |p′〉B

d−1∑
p=0

e− 2π i
d pp′

αp|p〉A. (14)

By asking Alice and Bob to perform the single-qudit oper-
ation σ

k̃+n1
A,z σ

k̃+n2
B,z on qudits AB, the state of qubits AB can

be transformed into Eq. (10). If the measurement results of
qudits ab is |l ′m′〉ab, Alice should perform σ m′

A,z on qudit A, and

Bob should perform the σ s
B,zσ

m′−l ′
B,z on qudit B. After Charlie

measures his qudit c in the x basis, he asks Alice and Bob to
perform the single-qudit operations σ

k̃+n1
A,z σ

k̃+n2
B,z on qudits AB,

and the system ABc is collapsed into the state Eq. (10) with
overall phase e

2π i
d (m′+k̃)(l ′−m′ ).

During the process, Charlie does not disclose his measure-
ment results k̃ to Alice and Bob, and only tells Alice and Bob
the corresponding operations σ

k̃+n2
A,z and σ

k̃+n1
B,z , respectively.

Without the information of k̃, Alice or Bob cannot know the
value of n1, n2, or n1 + n2 with only the information in any one
person’s possession. That is, only Charlie will know what kind
of CP gate operation Alice and Bob are implementing. But if
Alice and Bob work together to measure jointly the state in
their hands, they can know what kind of CP gate operation (the
value of n1 + n2) is finally implemented. Therefore, as in the
previous case, Charlie must introduce an additional security
checking process, as described in Sec. IV.

C. Channel III

By setting d ′ = d2, the basis state of qudit c is |k′
1〉c1 ⊗

|k′
2〉c2 , ν(k1) = k1, and ν ′(k2) = k2, the channel is a d-

dimensional GHZ-type state of the form

|ψ ′′〉abc = 1

d2

d−1∑
l,m,k1,k2=0

e
2π i
d lme

2π i
d k1l e

2π i
d k2m|lmk1k2〉abc1c2

= 1

d2

d−1∑
l,m,k1,k2=0

e
2π i
d lmσ k1

a,zσ
k2
b,z|lmk1k2〉abc1c2 . (15)

This state is also a perfect channel for the client to perform a
nonlocal controlled CP gate between Alice and Bob. To im-
plement the nonlocal CP gate U (n1, n2) between qudits A and
B, Alice and Bob simultaneously perform the two different
d-dimensional controlled-flip operations U (−)A

a and U (+)B
b

on qudit pairs Aa and Bb, respectively. Then the state of the

whole system ABabc becomes

1

d2

d−1∑
p,p′,l ′,m′,k1,k2=0

e
2π i
d (l ′+p)(m′−p′ )e

2π i
d k1(l ′+p)

× ⊗e
2π
d k2(m′−p′ )αp|p〉Aβp′ |p′〉B|l ′m′k1k2〉abc1c2

= 1

d2

d−1∑
p,p′,l ′,m′,k1,k2=0

e
2π i
d (l ′m′+k1l ′+k2m′ )σ

(m′+k1 )
A,z

× ⊗σ
(d−l ′−k2 )
B,z αp|p〉Aβp′e− 2π i

d pp′ |p′〉B|l ′m′k1k2〉abc1c2 ,

(16)

where m′ = m + p′ and l ′ = l − p. Alice and Bob measure
the qudits a and b in the z basis {|l ′〉a} and {|m′〉b}, and
they make the measurement outcomes public via a classical
channel.

If the measurement result of qudits ab is |00〉ab, the state of
the three-qudit system ABc becomes

|φ′′〉ABc = 1

d

d−1∑
p,p′,k1,k2=0

e
2π i
d (k1 p−k2 p′−pp′ )αpβp′ |p〉A

× ⊗ |p′〉B|k1k2〉c1c2 . (17)

At the same time, Charlie measures qudit c1 in the z basis
{|k1〉c1} and qudit c2 in the z basis {|k2〉c2}. If Charlie’s out-
come is |k1〉c1 |k2〉c2 , Alice and Bob will share a state in the
form

σ
k1
A,zσ

d−k2
B,z

(
d−1∑

p,p′=0

e− 2π i
d pp′

αpβp′ |p〉A|p′〉B

)
. (18)

By performing the single qudit operations σ
d−k1+n1
A,z σ

k2+n2
B,z on

qudits AB, the state of qubits AB can be transformed into
Eq. (10). If the measurement results of qudits ab is |l ′m′〉ab,
Alice and Bob can rotate the state of the system AB into
the state Eq. (10) with an overall phase of e

2π i
d (l ′m′+k1l ′+k2m′ )

by using appropriate unitary operations according to their
measurement results and Charlie’s instructions.

In the entire process, Charlie does not disclose his mea-
surement results k1 and k2 to Alice and Bob but only tells
them the corresponding operations σ

d−k1+n1
A,z and σ

k2+n2
B,z , re-

spectively. Without the information of k1 and k2, Alice or Bob
cannot know the value of n1 or n2 using just their individual
information. Only Charlie will know what kind of CP gate
operation Alice and Bob are implementing. But if Alice and
Bob work together to jointly measure the state, they can know
what kind of CP gate operation (the value of n1 and n2) is im-
plemented. Hence, Charlie needs to perform security checking
as described in Sec. IV.

III. CONTROL POWER OF THE CLIENT

The client’s control power is an important measure of the
degree of client’s supervision and hence the effectiveness of
our scheme. We learn from the definition of control power
in controlled teleportation [34], and analogously define the
control power P of the client as the difference between two
different nonlocal CP gate fidelities [37],

P = fCQT − fNC . (19)
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Here fCQT is the conditioned fidelity, which is the nonlocal
gate fidelity with the client’s complete involvement, and fNC is
the nonconditioned fidelity, which is the nonlocal gate fidelity
without the client’s involvement. In our scheme, fCQT is equal
to 1 when using the perfect three-qudit quantum channels
described in the previous section. fNC is calculated to be

fNC =
∫ 〈ψt |ρout

AB |ψt 〉dσAdσB∫
dσAdσB

, (20)

where |ψt 〉 is the correct form of the target operation, and σA

and σB are integral elements for the normalization coefficient
αp and βp′ , respectively. ρout

AB is the reduced density matrix

of system after nonlocal gating operation by tracing over the
control qudit c.

The initial system is a product of qudit A and B in state
|ψAB〉, with an auxiliary two-qudit state ρab = trc[ρabc]. ρabc

is the density matrix of the quantum channel. Alice executes
local U (−)A

a gate on Aa, and Bob executes local U (+)B
b gate

on Bb. If the measurement result of qudits a and b is |lm〉ab,
leaving AB in state ρout

AB ,

ρout
AB = d2〈lm|U (−)A

aU (+)B
b |ψAB〉〈ψAB|ρab

× ⊗ U (−)A
a

†
U (+)B

b
†|lm〉. (21)

The elements of this matrix can be written as

〈i j|ρout
AB |i′ j′〉 = d2〈i j|〈lm|U (−)A

aU (+)B
b |ψAB〉〈ψAB|ρab ⊗ U (−)A

a
†
U (+)B

b
†|lm〉|i′ j′〉

= d2〈i j|〈(l − i)(m + j)|ψAB〉〈ψAB|ρab ⊗ |(l − i′)(m + j′)〉|i′ j′〉
= d2〈i j|ψAB〉〈ψAB|i′ j′〉 ⊗ 〈(l − i)(m + j)||ρab ⊗ |(l − i′)(m + j′)〉. (22)

Here, |i j〉 and |i′ j′〉 are the eigenstates of the two-qudit system AB. When l = 0, m = 0, 〈i j|ρout
AB |i′ j′〉 = d2〈i j|ψAB〉〈ψAB|i′ j′〉 ⊗

〈(d − i) j|ρab|(d − i′) j′〉. For example, in the two-dimensional case, the form of matrix ρ in
AB is

ρ in
AB =

⎛
⎜⎜⎜⎝

α2
0β

2
0 α0β0α

∗
0β

∗
1 α0β0α

∗
1β

∗
0 α0β0α

∗
1β

∗
1

α0β1α
∗
0β

∗
0 α2

0β
2
1 α0β1α

∗
1β

∗
0 α0β1α

∗
1β

∗
1

α1β0α
∗
0β

∗
0 α1β0α

∗
0β

∗
1 α2

1β
2
0 α1β0α

∗
1β

∗
1

α1β1α
∗
0β

∗
0 α1β1α

∗
0β

∗
1 α1β1α

∗
1β

∗
0 α2

1β
2
1

⎞
⎟⎟⎟⎠.

(23)

Using |ψ〉abc = 1
2 (|000〉 + |010〉 + |101〉 − |111〉)abc as the channel, we have

ρab = 1

4

⎛
⎜⎝

1 1 0 0
1 1 0 0
0 0 1 −1
0 0 −1 1

⎞
⎟⎠. (24)

Then, using our general derivation, we have

ρout
AB =

⎛
⎜⎜⎜⎝

α2
0β

2
0 α0β0α

∗
0β

∗
1 0 0

α0β1α
∗
0β

∗
0 α2

0β
2
1 0 0

0 0 α2
1β

2
0 −α1β0α

∗
1β

∗
1

0 0 −α1β1α
∗
1β

∗
0 α2

1β
2
1

⎞
⎟⎟⎟⎠. (25)

Thus, we get 〈ψt |ρout
AB |ψt 〉 = |α0|4 + |α1|4 where |ψt 〉 follows

from Eq. (7). For the d-dimensional case, 〈ψt |ρout
AB |ψt 〉 =


d−1
p=0 |αp|4. One can easily see that the CP gate is symmetric

between Alice and Bob, but the fidelity fNC is related only
to coefficients on Alice’s side. This is because the state of
the channel is Eq. (3) with ac symmetry. If the channel is
in the form of bc symmetry, the corresponding 〈ψt |ρout

AB |ψt 〉
is 
d−1

p=0 |βp′ |4. One can obtain fNC = 2
d+1 by simple integra-

tion [36]. This results in the control power P = d−1
d+1 .

With the channel |ψ ′〉abc, we have 〈ψt |ρout
AB |ψt 〉 =∑d−1

j=0 (
∑d−1

i=0 |αi|2|βi+ j |2)2, and the corresponding f ′
NC =

d+3
(d+1)2 for the d-dimensional case where |ψt 〉 follows from
Eq. (14). A higher control power than the channel in Eq. (2) is
achieved while keeping the scheme perfect,

P′ = 1 − d + 3

(d + 1)2
. (26)

With the channel |ψ ′′〉abc, we have 〈ψt |ρout
AB |ψt 〉 =∑d−1

m,n=0 |αm|4|βn|4 where |ψt 〉 follows from Eq. (18). The
corresponding unconditioned fidelity and control power are

f ′′
NC = 4

(d + 1)2
, P′′ = 1 − 4

(d + 1)2
. (27)

To evaluate the performance of the control power P of
the client, we numerically calculate P as a function of the
dimension d of the controlled CP gate (12 � d � 2) in dif-
ferent quantum channels. The results are shown in Fig. 2.
Here, P, P′, and P′′ are the control power of channels |ψ〉abc,
|ψ ′〉abc, and |ψ ′′〉abc for the implementation of a nonlocal d-
dimensional controlled CP gate. For comparison, Ps = P′

s =
d−1
d+1 [35] and P′′

s = d−1
d [36] are the control power for con-

trolled teleportation with channels |ψ〉abc, |ψ ′〉abc and |ψ ′′〉abc,
respectively. From Fig. 2, one can see that P′

s < P′ and P′′
s <

P′′. This shows that using the same channel resources, such as
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FIG. 2. Control power of three different high-dimensional channels as a function of the dimension parameter d (2 � d � 12). (a) P =
1 − 2

d+1 is the control power for a controlled nonlocal CP gate with the channel |ψ〉abc (the red solid line) which is equal to the control power
Ps of controlled state teleportation with the channel |ψ〉abc (the black dotted line). (b) P′ = 1 − 3+d

(d+1)2 is the control power for a controlled
nonlocal CP gate with the channel |ψ ′〉abc (the red solid line) which is larger than the control power P′

s = Ps of controlled state teleportation
with the channel |ψ ′〉abc (the black dotted line). (c) P′′ = 1 − 4

(d+1)2 is the control power for a controlled nonlocal CP gate with the channel

|ψ ′′〉abc (the red solid line) and P′′
s = d−1

d is the control power of controlled state teleportation with the channel |ψ ′′〉abc (the black dotted line).

|ψ ′〉abc and |ψ ′′〉abc, the client’s control power for supervising
nonlocal quantum gate operations between quantum servers
is much greater than that of quantum state transfer between
quantum servers.

After all calculations are completed, Charlie will get the
quantum calculation result returned by the servers. Char-
lie randomly selects some of them as the control-checking
sequence Kc and measures these qudits in the appropriate
basis. By comparing the measurement results of these control-
checking qubits, Charlie can measure the fidelity and control
power in the calculation process. Artur et al. [40] concluded
that control power could be simulated by classical corre-
lations. However, classical correlations between client and
quantum servers cannot be used to guarantee the security of
the algorithm information in our scheme.

IV. SECURITY CHECKING

Control power can be used to measure the degree of client’s
participation in the nonlocal calculation process, but the quan-
tum servers can still steal the client’s calculation information
to give a correct result. Thus, after confirming that the cal-
culation result is correct by a sample comparison, the client
must also check the security of remote computing. In this sec-
tion, we introduce the safety checking strategies for different
potential situations.

Alice and Bob could use the state

|ψ〉in
0 = 1

d

d−1∑
p=0

|p〉A0

d−1∑
p′=0

|p′〉B0 , (28)

instead of |ψ〉in for performing nonlocal gate operations. Af-
ter nonlocal controlled CP gating operation U (n) of Eq. (4),
the state becomes 1√

d

∑d−1
p′=0 |p′ − n〉x

A0
|p′〉B0 . Alice and Bob

jointly measure the state in the x basis {|p〉x
A0

} and in the
z basis {|p′〉B0}, respectively, and compare the measurement
results privately to get the value of n. Here, only the local
measurement and classical communication (LOCC) are used.

To avoid these situations, the client Charlie should intro-
duce security checking. After safely distributing N identical

entangled three-qudit states |ψ〉aibici (i = 1, 2, . . . , N), Char-
lie randomly selects some of them as the security checking
sequence K . In the nonlocal controlled CP gating operations,
Charlie picks the qudits ck in the security checking sequence
K , and measures the qudit ck in the z basis {|l ′ + p〉}ck .
As l ′ is the measurement result of qudit a, Charlie can get
the value of p at the same time. In this step, according to
Eq. (5), the state of the qudits AkBk becomes |p〉Ak |p〉x′

Bk
ignor-

ing the overall phase (here, |p〉x′
Bk

= ∑d−1
p′=0 e− 2π i

d p′ pβp′ |p′〉Bk ).
After all calculations are completed, Charlie will get the quan-
tum calculation result returned by the servers. Charlie picks
the calculation results of security checking sequence K and
checks the results according to the state of qudits AkBk is
|p〉Ak |p〉x′

Bk
. If Alice and Bob want to steal information from

Charlie, they will give back a result according to the state
of qudits AkBk is

∑d−1
p=0 e

2π i
d pn0αp|p〉Ak |p〉x′

Bk
. Therefore, once

Charlie performs the security checking on this state, Alice
only have a probability of 1/d on average to provide the right
answer to Charlie. That means the client has a probability of
χ = d−1

d to discover that Alice and Bob have stolen informa-
tion.

With the channel |ψ ′〉abc, after nonlocal controlled CP gat-
ing operation U (n1, n2) of Eq. (10), the state |ψ〉in

0 becomes

1√
d

d−1∑
p=0

e
2π i
d pn1 |p〉A0 |p − n2〉x

B0

= 1√
d

d−1∑
p′=0

e
2π i
d p′n2 |p′ − n1〉x

A0
|p′〉B0 . (29)

Alice and Bob can measure the state in the x basis {|p〉x
A0

} and
in the z basis {|p′〉B0}, respectively, and compare the measure-
ment results privately to get the value of n1. Since Charlie tells
Alice and Bob the corresponding operation σ

k̃+n2
A,z and σ

k̃+n1
B,z ,

respectively, Alice and Bob can get the value of n1 − n2, and
with n1, they can obtain the value of n2. Here, only the LOCC
is used. To prevent this, Charlie selects the qudits belonging
to the security checking sequence K , and measures the qudit
ck in the z basis. According to Eq. (11), the state of the

052601-6



CONTROL POWER OF A HIGH-DIMENSIONAL … PHYSICAL REVIEW A 103, 052601 (2021)

qudits AkBkck becomes
∑d−1

p=0 e− 2π i
d p(k+p)αp|p〉Ak βd−k−p|d −

k − p〉Bk |k〉c. If Alice and Bob want to steal information from
Charlie, they will give back a result according to the state
of qudits AkBk is

∑d−1
p,p′=0 e

2π i
d (pn1+p′n2−pp′ )αp|p〉Aβp′ |p′〉B. As p

and p′ are independent of each other, once Charlie implements
the security checking on this state, Alice and Bob only have
a probability of 1/d on average to provide the right answer to
Charlie. That means the client has a probability of χ = d−1

d to
discover that Alice and Bob have stolen information.

In the case of the |ψ ′′〉abc channel, after the gating oper-
ation, Alice and Bob can jointly perform a nonlocal inverse
operation of UCP on the qubits A0 and B0 using entangled re-
sources so that the state |ψ〉in

0 becomes |d − n1〉x
A0

|d − n2〉x
B0

.
Then, Alice and Bob measure the state in the x basis, re-
spectively, and by sharing the measurement results privately
get the values of n1 and n2. Here, the quantum nonlo-
cal cooperation (QNC) and LOCC are required. Charlie
picks the qudits belonging to security checking sequence
K and measures the qudit ck1 in the (−x) basis {|k̃1〉−x

c }
(|k1〉c = 1√

d

∑d−1
k̃1=0 e− 2π i

d k1 k̃1 |k̃1〉−x
c ) and the qudit ck2 in the

x basis. The state of the qudits AkBkckck1ck2 becomes
αpβp′ |p〉Ak |p′〉Bk |p〉−x

ck1
|p′〉x

ck2
ignoring the overall phase. If Al-

ice and Bob want to steal information from Charlie, they
will give back a result according to the state of qudits AkBk

is
∑d−1

p,p′=0 e
2π i
d (pn1+p′n2−pp′ )αp|p〉Aβp′ |p′〉B. Once Charlie does

the security checking on this state, Alice and Bob only have
a probability of 1/d2 on average to give a right answer to
Charlie. Hence the client has a probability of χ = d2−1

d2 to
discover that Alice and Bob have stolen information.

If quantum servers in the network provide the quantum
channels for the client, they can replace the original GHZ-type
channel with one or two Bell-state channels. The quantum
servers can measure the entangled qudits in the same basis as
Charlie, and they can achieve the specific information of the
algorithm. In this case, the security checking strategy is also
applicable for different channels with the same probability to
discover the colluding quantum servers. Our proposed quan-
tum security strategy prevents quantum servers in the network
from stealing each other’s information or jointly stealing the
client information through specific methods. Fortunately, our
scheme uses three-qudit entanglement which is also a valu-
able resource to perform some quantum information tasks
in a device-independent way. This will lead to trustworthy
security protocols for our controlled quantum computation
distribution with device-independent security guarantees and
device-independent randomness certifications.

V. CONCLUSION AND SUMMARY

Through the above analysis, we can see that the error rate
in security checking and control power in control checking are
used to describe the impact on the whole nonlocal quantum
calculation from two different perspectives when users and
quantum servers do not cooperate with each other. For the
quantum servers, the control power reflects the degree of dis-
tortion in the whole calculation process caused by the user’s
“inaction” behavior, and it shows the importance of the user’s
participation. The error rate in security checking indicates
the probability that the user can discover the inappropriate

TABLE I. The security and control power of channels.

Channel Function Eavesdropping ways χ Control power

|ψ〉abc U (n) LOCC d−1
d

d−1
d+1

|ψ ′〉abc U (n1, n2) LOCC d−1
d 1 − d+3

(d+1)2

|ψ ′′〉abc U (n1, n2) QNC & LOCC d2−1
d2 1 − 4

(d+1)2

behavior of the server. The performance of different chan-
nels in security and control power is shown and compared
in Table I. Clients can select the channel that best balances
their security and control needs, depending on their priorities.
If necessary, the client can store the results on the quantum
servers, and when he extracts the calculation result from the
servers, he performs security and control-checking simultane-
ously. If the security and control power cannot be guaranteed,
the client will discard these calculation results.

A three-dimensional three-particle [42,43] and high-
dimensional four-party [44] GHZ state has recently been
experimentally created using photons. Experimental demon-
strations of local high-dimensional single-photon quantum
gates and two-qubit controlled-NOT quantum operation have
also been recently published [45,46]. Therefore, the quan-
tum channel and the main elements of our high-dimensional
controlled distributed computation scheme have been realized
experimentally. We expect that further laboratory implemen-
tations of high-dimensional operations will be published in
the near future. Our results are thus of relevance both from a
theoretical and an applied perspective.

In summary, we have proposed a scheme for clients to re-
motely control nonlocal gates in a secure manner. To quantify
the client’s control power, we also defined a measure of the
client’s control power in analogy to the control power used
to assess controlled teleportation. By replacing the bipartite
quantum channel with a tripartite entangled quantum state,
the client has the power to monitor successful quantum gate
performance between two quantum computers even when they
collude. Our proposed quantum security strategy prevents
quantum servers in the network from stealing each other’s
information or jointly stealing the client information through
specific methods. From the view of control power, the client
has two options for performing confidential nonlocal quantum
computing. One is to encrypt the calculated state, and the
other is to encrypt the algorithm. Assuming that the security is
guaranteed, our analysis of control power shows that given the
same channel resources, the client’s control power over nonlo-
cal quantum gate operations between quantum servers is much
greater than that of quantum state transfer between quantum
servers. Our framework for nonlocal controlled quantum gate
operations in arbitrary dimensions provides a feasible method
and new directions of exploration for the future construction
of quantum computing networks. Furthermore, it may provide
new ideas and methods to develop the resource theory of
quantum channels.
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