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High-fidelity method for a single-step N-bit Toffoli gate in trapped ions
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Conditional multiqubit gates are a key component for elaborate quantum algorithms. In a recent work,
Rasmussen et al. [Phys. Rev. A 101, 022308 (2020)] proposed an efficient single-step method for a prototypical
multiqubit gate, a Toffoli gate, based on a combination of Ising interactions between control qubits and an
appropriate driving field on a target qubit. Trapped ions are a natural platform to implement this method, since
Ising interactions mediated by phonons have been demonstrated in increasingly large ion crystals. However, the
simultaneous application of these interactions and the driving field required for the gate results in undesired
entanglement between the qubits and the motion of the ions, reducing the gate fidelity. In this work, we
propose a solution based on adiabatic switching of these phonon-mediated Ising interactions. We study the
effects of imperfect ground-state cooling and use spin-echo techniques to undo unwanted phase accumulation
in the achievable fidelities. For gates coupling to all axial modes of a linear crystal, we calculate high-fidelity
(>99%) N-qubit rotations with N = 3–7 ions cooled to their ground state of motion and a gate time below 1
ms. Finally, we study the effect of laser intensity fluctuations and find that the proposed gate requires intensity
stabilization with subpercentage noise levels. The high fidelities obtained also for large crystals could make
the gate competitive with gate-decomposed, multistep variants of the N-qubit Toffoli gate, at the expense of
requiring ground-state cooling of the ion crystal.
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I. INTRODUCTION

Quantum computers promise dramatic speedups in a va-
riety of disciplines [1–5] but remain challenging to scale up
in practice. A major obstacle to executing elaborate quantum
algorithms is the need for gates that act conditionally on a
large number of qubits. The prototypical example of such a
gate is the N-qubit Toffoli gate, which flips a single “target”
qubit if and only if all N − 1 “control” qubits are in state |1〉.
Even though quantum devices with over 50 qubits have been
reported [6,7], the largest Toffoli gate ever performed is, to
our best knowledge, the case N = 4 [8]. This gap is surprising
because Toffoli gates (or equivalents) are essential ingredients
of many basic computation steps, such as elementary arith-
metic [9–11], error correction [12], and the Grover diffusion
operator [13].

Two different strategies exist to implement Toffoli gates.
The first consists of decomposing a single N-qubit Toffoli gate
into a circuit consisting of one- and two-qubit gates [14–16] or
multiqubit gates, such as the Mølmer-Sørensen gate in trapped
ions [17–19]. The second approach is to perform the gate in
a single step using interactions that are native to the specific
platform [20–23]. In particular, a recent proposal [23] has
demonstrated that, by exploiting systems with an all-to-all
Ising interaction in combination with a drive field on a single
target qubit, an i-Toffoli gate can be implemented. This gate
differs from the regular Toffoli gate only by a phase +i on the
target states which, if required, can be removed at the cost of
a single ancilla.

Trapped ions are a natural candidate to implement this
proposal because intrinsic Ising interactions have been
demonstrated in increasingly large ion crystals [6,17,24–
26]. Moreover, quantum operations have been demonstrated
[27,28] with fidelities higher than 99.9%. Ising interactions
generally arise from qubit-phonon couplings Ĥq-ph generated
from state-dependent laser-induced forces on the ions. Com-
bining this mechanism with the driving field Ĥdrive required
for an i-Toffoli gate poses a problem because the processes
do not commute i.e., [Ĥq-ph, Ĥdrive] �= 0. As a result, the qubit
states and the motion of the ions remain entangled at the
end of the gate sequence, which leads to fidelity loss. This
effect could be mitigated by restricting the strength of the
spin-phonon coupling such that the phonons are only virtually
excited [26,29]. However, limiting the strength of the Ising
interactions leads to undesirably long gate times.

In this work, we show that this residual qubit-phonon
entanglement can be suppressed by adiabatic ramping of
Ĥq-ph. In this way, the i-Toffoli gate operates on the dressed
eigenstates of Ĥq-ph, which are adiabatically connected to
the Fock eigenstates of the noninteracting system. The ben-
efit of this approach is that the effective Ising interaction
strength does not have to be limited to the regime of vir-
tual phonon excitation. We show that high-fidelity F̄ > 99%,
single-step i-Toffoli gates should be possible with up to
seven ions at gate times ≈600 μs, assuming ground-state-
cooled crystals and sufficient suppression of laser intensity
fluctuations.
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FIG. 1. Energies of noninteracting eigenstates (J = 0) and inter-
acting (dressed) states (J > 0). The two target states |111〉, |011〉 are
highlighted. Because their energy gap is unique, an appropriate drive
field can couple the states resonantly.

We start in Sec. II with the derivation of the model for a
N-qubit i-Toffoli gate for a system of trapped ions and intro-
duce our proposal for adiabatic preparation of dressed states.
In Sec. III we analyze the results of numerical simulations
for a linear three-ion crystal and consider the role of inho-
mogeneous Ising interactions mediated by multiple phonon
modes. We discuss the implementation of a method based on
multifrequency laser fields [30] to eliminate undesired phases
originating from these inhomogeneous interactions. Finally,
in Sec. IV we calculate the fidelities for 3–9 qubits gates and
discuss sources of errors and ways to mitigate them. We also
consider the effects of imperfect ground-state cooling.

II. MODEL OF N-QUBIT TOFFOLI GATE
IN TRAPPED IONS

A. Single-step N-qubit i-Toffoli gate

Briefly, the proposal [23] requires qubits coupled via an
Ising interaction of the form ĤIsing = ∑N

i j J (i, j)σ̂ (i)
z σ̂

( j)
z with

σ̂ (i)
z being the Pauli matrix acting on ion i, and J (i, j) being

the strength of the interaction field.1 Including a drive field
of frequency ωg with strength g acting on the target qubit,
Ĥdrive = gσ̂ (t)

x cos (ωgt ), and the energy of the noninteracting
qubits, Ĥ0 = ω0/2

∑
i σ̂

(i)
z , a simple Hamiltonian is obtained:

ĤT = −ν

2

∑
i

σ̂ (i)
z +

∑
i �= j

J (i, j)σ̂ (i)
z σ̂ ( j)

z + g

2
σ̂ (t)

x , (1)

where we transformed into the interaction picture with respect
to ωg, using Û = exp(U −iωgσzt/2). We also define ν = ωg − ω0

with ω0 being the energy spacing between qubit states (or

1We define h̄ = 1 and thus omit it from all the Hamiltonians in this
text.

eigenstates of σ̂z). These eigenstates and their energies (Fig. 1)
can be labeled as |xt, �xc〉 and E|xt ,�xc〉 with xt describing the
state of the target qubit and �xc being the string describing the
state of the control qubits. In particular, the two target states
are labeled as |0, 1Nc〉, |1, 1Nc〉, where Nc corresponds to the
number of control qubits.

The driving field frequency (ωg) is chosen such that it
resonantly couples these two states, i.e., �1Nc = E|0,1Nc 〉 −
E|1,1Nc 〉 = ωg. According to Eq. (1) the energy gap for any pair
of states with equal control bits can be written as

��xc = 4
Nc∑

i=1

J (t,i)(−1)�xi + ω0, (2)

where xi denotes the state of the ith control qubit. The resonant
condition becomes then ν = 4

∑Nc
i=1 J (t,i)(−1)�xi , which for the

target states implies ν = −4
∑Nc

i=1 J (t,i).
Evolution under the Hamiltonian of Eq. (1) for a gate

time τg = π/g leads to the desired i-Toffoli gate. To prevent
accumulation of unwanted dynamical phases during the gate,
timing restrictions can be considered, or an echo pulse can be
applied. Both will be discussed later in this text.

B. Implementation in trapped ions

To achieve the required Ising interaction in trapped ions, a
qubit state-dependent force is generated with two noncoprop-
agating bichromatic lasers with beatnote frequency μ, which
excites phonons in the ion crystal. For a homogenous laser
field extending over the full ion crystal, the laser-ion inter-
action Hamiltonian is Ĥq-ph = ∑

i Fi exp(i�k · �̂r (i) ) + H.c. Here
Fi = (�/2)e−iμt σ̂ (i)

z is a state-dependent interaction 2 with �

being the interaction strength, �k the resulting wave vector of
the interfering laser fields, and �̂r (i) the position operator of
ion i. With �k · �̂r (i) = ∑

m η(i)
m (â†

m + âm) the Hamiltonian can
be written as

Ĥq-ph = �

2

∑
i

(
ei

∑
m η(i)

m (â†
m+âm )−iμt + H.c.

)
σ̂ (i)

z , (3)

where the creation and annihilation operators for the mth
phonon mode are denoted by â†

m and âm, respectively. The
Lamb-Dicke parameter η(i)

m is scaled with the motion am-
plitude of the ith ion on the mth phonon mode (�b (i)

m ), i.e.,
η(i)

m = �b (i)
m · �k√

h̄/(2Mωm) with M being the ion mass and ωm

the phonon-mode frequency.
By including again the drive field (Ĥdrive) and the energy of

the noninteracting system (Ĥ0), the total Hamiltonian in the
interaction picture of ωg becomes:

ĤT = − ν

2

∑
i

σ̂ (i)
z +

∑
m

ωmâ†
mâm

+ �

2

∑
i

(
ei

∑
m η(i)

m (â†
m+âm )−iμt + H.c.

)
σ̂ (i)

z + g

2
σ̂ (t)

x , (4)

which includes a new (second) term for the motional energy of
the system. Now the eigenstates of the noninteracting system

2The dependence on the qubit state arises from a differential Stark
shift set by the proper choice of laser polarizations [24].
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have the form |
〉 = |�〉 ⊗ |xt, �xc〉, with |�〉 = ⊗
m |nm〉 the

motional wave function of the system in the Fock space of
the m phonon modes of the crystal. For this system we define
the target states for the i-Toffoli gate as those corresponding
to an ion crystal cooled to its ground state, that is, the two
target states are |
1〉 = ⊗

m |nm = 0〉 ⊗ |1, �xc〉 and |
0〉 =⊗
m |nm = 0〉 ⊗ |0, �xc〉.3
Next, we simplify this Hamiltonian by going into the in-

teraction picture of the phonon mode frequencies with the
transformation Û = exp(−it

∑
m ωmâ†

mâm):

H̃T = − ν

2

∑
i

σ̂ (i)
z + �

2

∑
i

(
ei

∑
m η(i)

m (â†
meiωmt +H.c.−iμt )

+ H.c.
)
σ̂ (i)

z + g

2
σ̂ (t)

x , (5)

where high-frequency terms (2ωm) were ignored. We now
consider a system within the Lamb-Dicke limit and transform
the Hamiltonian into a new interaction picture with respect to
δm = μ − ωm using Û = exp(−it

∑
m δmâ†

mâm):

H̃T,mm = − ν

2

∑
i

σ̂ (i)
z + i�

2

∑
m

∑
i

(
â†

m − âm
)
η(i)

m σ̂ (i)
z

−
∑

m

δmâ†
mâm + g

2
σ̂ (t)

x . (6)

Here we have used the rotating wave approximation and
ignore frequencies higher than |δs|.

To recover a Hamiltonian having the desired Ising
interaction as in Eq. (1), we apply a Lang-Firsov trans-
formation [31–33] to introduce a dressed-state picture of
qubits entangled with phonon modes of the crystal. The
transformation, ÛI = exp[−i

∑
i,m α(i)

m (â†
m + âm)], with α(i)

m =
(�η(i)

m /2δm)σ̂ (i)
z , has the form of a displacement operator that

displaces the state of the system in phase space by a state
dependent magnitude of αm,
 = ∑

i α
(i)
m . The result of the

transformation is

H̃T,I = Û †
I H̃T,smÛI = − ν

2

∑
i

σ̂ (i)
z +

∑
i �= j

J (i, j) σ̂ (i)
z σ̂ ( j)

z

−
∑

m

δmâ†
mâm + g̃

2
˜̂σ (t)

x , (7)

with J (i, j) = �2 ∑
m η(i)

m η
( j)
m /4δm, a corrected drive strength g̃,

and a transformed drive term ˜̂σ (t)
x = Û †

I σ̂ (t)
x ÛI. Because the

drive and the Ising terms do not commute, this transformation
introduces a term ∝α(t)

m σ̂ (t)
y which couples the drive to ion

motion and can cause a gate error ∝α(t)
m . For weak (virtual)

phonon excitation, α
 	 1, such that ˜̂σ (t)
x ≈ σ̂ (t)

x , this error is
small. However, this regime corresponds to very slow gates
and we are here interested instead in the regime in which the
corrections to σ̂ (t)

x have to be taken into account, i.e., α
 � 1.
The corrected drive strength g̃ = g/λ
 ′,


c accounts for the
nonunitary overlap of the motional part of the (dressed)

3In the following we drop the motional component from states in
its ground state and label them only by their electronic part, e.g.,
|
0〉 → |0, �xc〉.

eigenstates of Eq. (7). These states are displaced Fock states,
i.e., |�〉I = ∏

m D̂(αm,
 )|nm〉, which can be produced adiabat-
ically from the Fock states of the noninteracting system. The
correction factor λ
 ′,


c is equal to the overlap between the
displaced states of any pair of states |
 ′〉, |
〉. The overlap
is dependent on their initial phonon occupation number |nm〉
and can be written as [34]:

λ
 ′,

c =

∏
m

〈n′
m|D̂†(αm,
 ′ )D̂(αm,
 )|nm〉

=
∏

m

e−β2
m/2β |�n|m

m

(
nm!

n′
m!

)sign(�nm )/2

L|�nm|
nm

(
β2

m

)
, (8)

where �nm = n′
m − nm and βm = αm,
 ′ − αm,
 , L(γ )

n (β ) is the
associated Laguerre polynomial. Note that the drive strength
needed for implementing the correct gate depends therefore
explicitly on the motional input state. For the target states
in their ground states of motion, |
0〉, |
1〉, the overlap sim-
plifies to λ
0,
1

c = ∏
m e−β2

m/2 with βm = �η(t)
m /δm and where

L0(β2
m) = 1.

C. Adiabatic preparation of states

To guarantee a complete inversion of the target qubit, the
system has to be prepared in a nearly pure dressed eigenstate
|
〉I of the interacting system such that the drive strength
can be exactly corrected using Eq. (8). In the case of a sud-
den quench (diabatic activation) of Eq. (7), a superposition
of dressed eigenstates will result. In contrast, by adiabatic
switching (see Appendix A) the qubit-phonon interaction
Ĥq-ph and thus ĤIsing, pure (dressed) eigenstates are obtained
for which an appropriate drive strength can be chosen.

It also makes our gate robust against residual phonon-qubit
entanglement which in turn makes it less sensitive to timing
errors. For quenched gates, this residual entanglement occurs
if the total gate time tT �= 2k1π/δm (k1 ∈ N), as in this case
the evolution of the states do not describe closed trajectories
in phase space. In contrast, the adiabatic ramp assures that the
system remains in an eigenstate during the laser-ion interac-
tion. Therefore, the exact timing is not crucial as long as the
ramp time is long enough to assure adiabaticity. In practice,
however, setting tT = 2k1π/δm still proves to be useful to
reduce errors due to off-resonant drive field coupling between
dressed states and to reduce errors caused by nonadiabaticity.

The gate sequence consists then in ramping up the interac-
tion for a time ta and performing the i-Toffoli gate [Eq. (7)]
for a time τg, and finally ramp down the interaction to trans-
form the system back to the noninteracting or computational
basis. This complete i-Toffoli process has a total length tT =
2ta + τg and is described by

ÛiTof = Û d
egÛTÛ a

eg, (9)

where Û a
eg (Û d

eg) is the unitary of the adiabatic activation (de-
activation) of ĤIsing and ÛT = exp(−iτgH̃T,I ).
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(b)

(a)

(c)
(d)

(e)

FIG. 2. Time evolution of states under the action of H̃T,sm (a) Phase-space trajectories (zoomed in, dimensionless) of motional wave function
during evolution with ÛT. Note that the adiabatic ramp ensures that dynamics take place along the momentum axis in this frame, as explained
more in detail in Appendix A. (b) Real and (c) imaginary part of process unitary matrix for the motional ground state (|n = 0〉) subspace.
(d) Evolution in the Bloch sphere of the two resonant states, and (e) the projections along x (−·), y (−−), and z (−) of the trajectory of initial
state |111〉. Time is indicated with the color intensity from light (t = 0) to dark (t = τg) in panel (d). The gate parameters are δCM/2π = 20 kHz,
J/2π = 2 kHz (�/2π = 126.491 kHz), g/2π = 1 kHz for a gate time of τg = π/g = 500 μs.

III. SIMULATIONS OF A N-QUBIT TOFFOLI GATE IN A
LINEAR ION CRYSTAL

A. Single-mode coupling

The main features of our model can be first studied by
considering an ideal system. This consists of a ground-state
cooled linear ion crystal and an interaction laser coupling only
to the axial modes of the crystal, with a beatnote μ tuned close
to the center-of-mass phonon mode frequency ωCM of the
crystal, i.e. δCM 	 δm �=CM. We assume that the coupling with
the remaining phonon modes can be ignored, i.e., J (i, j)

CM �∑
m �=CM J (i, j)

m . This results in a homogeneous Ising coupling
strength J (i, j) = �2η2

CM/4δCM ≡ J and the simplified Hamil-
tonian:

H̃T,sm = 2NcJ
∑

i

σ̂ (i)
z +J

∑
i �= j

σ̂ (i)
z σ̂ ( j)

z + g̃

2
˜̂σ (t)

x − δCMâ†
CMâCM.

(10)

The resulting i-Toffoli process unitary for a three-ion crys-
tal is observed in Figs. 2(b) and 2(c). We have chosen a ramp
time ta that ensures the adiabaticity of the process, and the dis-
appearance of dynamical phases. These phases have the form
φtT = exp(−iE|xt ,�xc〉t̃T), where the total effective process time
is t̃T = 2t̃a + τg and t̃a is effective ramp time (see Appendix
A). Because the Ising couplings are homogeneous in this
particular case, the phases vanish if t̃TJ = 2k2π (k2 ∈ N). For

a modulation of the form �(t < ta) = � sin2[πt/(2ta)] and
these parameters both criteria are fulfilled by setting ta = τg.

To illustrate the dynamics under the action of Eq. (10), we
plot the phase space [Fig. 2(a)]4 and Bloch sphere trajectories
[Fig. 2(d)] of the (target) dressed states |
〉I = Û a

eg|n = 0〉 ⊗
|xt , �xc〉. As expected for the two target states, the motional and
electronic component are transformed from one to the other,
i.e., D̂(α
0 )|n = 0〉 ↔ D̂(α
1 )|n = 0〉 and |0, 12〉 ↔ |1, 12〉.
For the off-resonant states, closed trajectories are obtained
indicating that motion is disentangled from the electronic
component of the states. Finally, in Fig. 2(e) we observe that
the coupling of drive with the ion motion, leads to a small
drive error reflected as small oscillations of 〈σ̂x〉.

B. Multimode coupling

In experiments, due to the finite spacing between phonon
frequencies, the laser field will couple to multiple phonon
modes, as described in Eq. (6). Although the dynamics of the
gate will still be dominated by the coupling to the center-of-
mass mode, the contributions of nearby modes,

∑
m �=CM J (i, j)

m ,

4The phase space shown in this work is in a rotating frame with
frequency μ and the values of 〈x〉 are in units of the ground-state
wave package.
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(a) (b)

(c)

FIG. 3. Multimode unitaries and spectrum of multiple beatnotes
for “echo” step for phases cancellation. (a) i-Toffoli unitary for a
three-ion crystal considering all-mode couplings without and (in-
set) with echo step. Frequency and amplitude of beatnotes for
(b) three and (c) seven-ion gate with detunings δCM/2π = −20 kHz
and δCM/2π = −50 kHz, respectively. The phonon mode frequen-
cies are indicated in dashed red lines. The parameters of panel (a) are
ωCM/2π = 1 MHz, δCM/2π = −20 kHz, g/2π = 1 kHz and for pan-
els (b) and (c) the interaction time is tmb = 5 μs.

will lead to two additional source of errors. The first are addi-
tional terms ∝α(t)

m σ̂ (t)
y which increase the drive error, and the

second are state-dependent dynamical phases. The latter occur
because the Ising interactions are inhomogeneous, J (i, j) �=
J (i,k), thus the state energies are not longer proportional to a
single value of J . As a consequence, no single gate time can be
chosen such that they vanish at the end of the gate [Fig. 3(a)].

The first error is minimal if the amplitude of the next-
nearest phonon mode at the target ion is close to zero (�b(t)

NN �
0), as in the case of the linear crystal with an odd number
of ions and a central target ions. For other configurations, the
error can be reduced by increasing spacing between phonon
modes, for example, by increasing the trap frequencies. Fi-
nally, when reconstructing the Toffoli gate [23], the error is
again reduced as the phases on the resonant states are largely
suppressed.

To cancel the second error, dynamical phases are reversed
with an additional “echo” step. In analogy to a spin echo, the
sign of all coupling strengths is inverted J (i, j) → −J (i, j) for
the duration of the gate tT. To realize the inverted couplings re-
quired for this echo, we follow a recent proposal [30] in which
a combination of multiple beatnotes coupling to all the phonon
modes is used to generate couplings with arbitrary magnitude
and sign. In short, the method uses beatnotes with frequencies
μk that are harmonics of the interaction time tmb between
the crystal and a multibeatnote laser field, i.e., μk = 2πk/tmb

for k ∈ N. Their amplitudes �μk [Figs. 3(b) and 3(c)] are
calculated such that after a time tmb the entanglement phases
accumulated by each of the modes matches a target value ϕm,
and in addition both dynamical phases and the entanglement
with the phonon modes disappear. The entanglement phases
are obtained by expressing the matrix of couplings for the
echo step, J̃i, j = −J (i, j), in terms of the phonon modes (�bm)

and the target entanglement phase:

J̃ �

N∑
m=1

ϕm�bᵀm ⊗ �bm. (11)

To reduce the number of beatnotes required, we chose
an interaction tmb ∼ 2k1π/ωCM for a small integer k1, that
also satisfies tT = k2tmb (k2 ∈ N). This allows for stroboscop-
ically implementing the echo by consecutively applying k1

multibeatnote field pulses. The amplitudes of the beatnotes
�μk have the same modulation envelope as for the laser-ion
coupling strength � (see Appendix B).

IV. GATE FIDELITIES AND ERROR SOURCES

We have shown that an i-Toffoli gate (ÛiTof) can be imple-
mented in a linear crystal of ions in realistic conditions where
the effective Ising interaction is generated by coupling to mul-
tiple phonon modes of the crystal. In this section, we compare
this gate against an ideal i-Toffoli gate (ÛIdeal) for different
number of qubits and find conditions for fast gates with high
fidelities. Additionally, we are interested in identifying and
estimating the effect of other error sources.

To characterize the gate, we use as figure-of-merit the
average fidelity F̄ [35]:

F̄
(
ÛiTof, ÛIdeal

) =
∑

j tr
[
ÛIdealU

†
j Û †

IdealÛiTof(Uj )
] + d2

d2(d + 1)
,

(12)

where ÛiTof(Uj ) ≡ trFS(ÛiTof[P̂0 ⊗ Uj]Ũ
†
iTof), Uj are general-

ized Pauli matrices in the qubit Hilbert space with dimension
d = 2N , P̂0 = ⊗

m |0〉〈0|m is a projector onto the nm = 0 Fock
subspace and trFS is the partial trace of the phonon Fock space.

We start again by assuming single-mode coupling and cal-
culate faster gates by increasing both � and g and setting
ta = τg to avoid phase accumulation. By increasing the inter-
action strengths and reducing gate and ramp times three types
of gate errors will have to be accounted for: couplings between
off-resonant states, drive errors, and nonadiabatic couplings
during ramping of the Ising interaction. To mitigate the first
one, we require J > g, therefore we keep the ratio J/g = 2
for all the gates we will study. The last two errors can be
minimized either by extending the duration of the adiabatic
ramp or increasing the detuning of the laser beatnote δm, both
reducing the amplitudes αm,
 and thus the final error. Because
our goal is a faster gate, we have chosen the latter.

Fidelities higher than 99% with gate times below 500 μs
are obtained when δCM/2π = 200 kHz [Fig. 4(c)] for gates
with 3–9 qubits. As a consequence of the reduction of the
ramp time with increasing J , the activation of the interaction
becomes less adiabatic and the crystal motion is excited. This
leads to coupling of motional excited states in the form of
|n > 0〉|1, 1Nc〉 ↔ |n > 0〉|0, 1Nc〉 during the drive step. The
larger drops in the fidelity are observed for particular inter-
action strengths, e.g., J/4π = 3.1 kHz for δt/2π = 50 kHz,
originate also from undesired couplings between states of
the type |n = 0〉 ⊗ |1, �xc〉, |n = k〉 ⊗ |0, �xc〉, which become
degenerate when ��xc ∼ kδCM.

These errors affect more strongly gates with larger amount
of qubits as the number of states and the occurrence of
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(a)

(b)

FIG. 4. Process error in function of Ising strength and gate time
assuming single-mode coupling. The results are for a i-Toffoli gate
of 3, 5, 7, and 9 ions for detunings of (a) 50, and (b) 200 kHz. We
also show the result (7∗) for a seven-ion crystal including an “echo”
step. In this case, the total process time corresponds to 2tT.

degeneracies increases. Furthermore, the drive and nonadia-
baticity errors also increase, as the displacement amplitude
αm,
 ∝ N . However, by choosing appropriate gate parame-
ters, these undesired couplings can be avoided.

A. Multimode coupling with residual crystal motion

From the single-mode coupling analysis we have iden-
tified conditions for high fidelity gates for ion crystals in
their ground state. We can use this information to calculate
high-fidelity gates for systems where all axial phonon modes
participate. We will also take into account residual ion motion
such that the average number n̄m of phonons in the crystal is
not zero. In particular, we consider the cases where n̄CM > 0
and n̄m �= CM = 0.

To illustrate, we choose gates with the largest detuning
(δCM/2π = −200 kHz) to minimize drive errors and select
two drive strength values (g/2π = 1.0; 4.762 kHz) for which
no large drop of fidelities were obtained in the single-mode
model. As a result, we obtain multimode coupled gates with
fidelities better than 99% for both fast [Fig. 5(a)] and slow

(a) (b)

FIG. 5. Effect of average phonon number in process fidelity
for gate with multimode coupling. The Ising and drive strengths
(J/4π = g/2π ) are (a) 4.762 kHz and (b) 1 kHz. The detuning,
δCM/2π , and the center-of-mass frequency, ωCM/2π , are −200 kHz
and 1 MHz, respectively.

FIG. 6. Gate error for fluctuating Rabi frequency �̃ at fre-
quency f�̃ for two different variances σ�. The gate parameters are
ωCM/2π = 1 MHz, δCM/2π = −200 kHz, g/2π = 1 kHz for a gate
time of 1500 μs. The results are the average and deviation from 50
realizations.

gates [Fig. 5(b)]. Even in the presence of residual motion up
to n̄ = 1, the fidelities always exceed 90%.

Importantly, the addition of the echo step leads to fidelities
that, in most of the cases, are better than those for the single-
mode model. Clearly, this step also compensates phases due
to Stark shifts originating by couplings of states |1, �xc〉 ↔
|0, �xc〉, which remained uncorrected in Fig. 4. Moreover, in
absence of these phases, higher fidelities are obtained for
larger gates (compare with Fig. 4). The increasing gaps be-
tween states, ��xc for larger systems will reduce any type
of off-resonant coupling. In particular, it reduces couplings
with excited motional states ��xc ∼ kδCM, as the ratio �1Nc /δm

increases. Furthermore, not only do these gaps increase, there
are also vastly more states with large gaps than with small
gaps as N increases. Thus state-specific errors weigh less in
the calculation of the average fidelity for larger qubit gates.

Finally, this section provides an indication of the effect
of ion heating on the gate fidelity. This an aspect which is
present in all ion trap experiments and which requires strict
mitigation. For long gate times, in particular, this would lead
to incorrect values of the corrected drive strength g̃ which will
affect the rotation of the target qubit.

B. Fluctuation of Rabi frequency

A critical aspect of our method is choosing a drive fre-
quency matching the gap between the two resonant states as
in Eq. (2). However experimental imperfections could lead to
changes of the size of this gap, for example due to fluctuations
of the Rabi frequency due to laser intensity instabilities. We
analyze this source of error by adding a noise term to the
Rabi frequency with variance σ 2

� during the drive step ÛT (see
Appendix C). The effect of the frequency of this noise in the
fidelity of a three-ion crystal is shown in Fig. 6. As observed,
the gate is severely affected by noise of a timescale of the
gate length while the effect decreases at larger frequencies.
However, existing and improving techniques should allow the
control of this type of noise [36–38].

V. DISCUSSION AND CONCLUSIONS

We have presented a high-fidelity method to implement a
single-step i-Toffoli gate in trapped ions. Our method allows
operating in a regime of strong Ising interactions between
qubits, necessary for fast gate operations. Compared with
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FIG. 7. Strength of Hamiltonian terms during length i-Toffoli
gate. The Ising interaction (blue, lower row) is increased before
acting with the drive field (purple, middle row) and then lowered
again. A “echo” step (red, upper row) can be applied at the end of the
gate to correct for residual entanglement or dynamical phases.

the best known gate-based decomposition requiring N2 CNOT

gates [15], thus a quadratic time-scaling, our implementation
predicts constant or even improved results with number of
qubits at constant gate time. As a result, our gate will suffer
less from the accumulation of errors from common sources as
motional heating or dephasing, or noise in the optical fields.

We have shown that, when the Ising interactions are me-
diated by multiple phonon modes, the residual dynamical
phases can be effectively removed by using an echo step
exploiting a recent nonadiabatic method for multiple qubit
entanglement [30]. A natural next step would be to combine
our model and this method to generate homogeneous Ising
interactions which should allow us to avoid the echo step.
As an alternative, the interaction could also be tailored by
individual addressing of ions [26], with the drawback of added
complexity.

Our method requires high level of control on the prepara-
tion of initial states and on the energy spacing between states.
In the case of the former, pure phonon states are required to
choose the appropriate drive strength g̃, and the latter is neces-
sary to ensure the right drive frequency ωg and thus an efficient
rotation of the target qubit. This sets our implementation apart
from a decomposition in, e.g., Mølmer-Sørensen gates [18,19]
that are more robust with respect to the phonon states [17,39]
and show no sensitivity to a drive frequency. On the other
hand, pure phonon states can be assured by well-established
ground state cooling techniques and additional methods [40]
are available to minimize the effect of heating during gate
operations. For the control of the energy gap, laser intensity
stabilization with subpercentage noise will be required.

Finally, our proposal could be combined with recent meth-
ods of shortcut to adiabaticity [41–43] to speed up the
adiabatic preparation of states and reduce the gate time.
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(a) (b)

(c) (d)

FIG. 8. Phase-space trajectories (dimensionless) of target states
under the application of Ĥq-ph. Trajectories of |111〉 (red, outer trajec-
tory) and |011〉 (blue, inner trajectory) wave packages and evolution
of momentum expectation value (blue, solid line) of |011〉 due to (a),
(c) a quench activation of 500 μs and (b), (d) an adiabatic modulation
of Ĥq-ph (orange, dashed line). 〈x〉 = 0 at the times indicated in panels
(a) and (b).

APPENDIX A: MODULATION OF ISING INTERACTION

The adiabatic transformation between the noninteracting
and dressed states basis is realized by slowly increasing (de-
creasing) the strength of the Ising interaction for a time ta �
1/δs. This is achieved by modulating the Rabi frequency of the
laser-ion Hamiltonian Ĥq-ph, such that �(t ) = � sin2( π

2 t/ta)
for t < ta and �(t ′) = � cos2( π

2 t ′/ta) with t ′ = t − ta − τg for
t > ta + τg (Fig. 7). As a result we obtain the time-dependent
Ising couplings J (t ) ∝ �(t )2. This modulation leads to a pulse
area equivalent to that of a square pulse of half the length, such
that we define an effective ramp time as t̃a = 0.5ta.

As seen in Figs. 8(a) and 8(b), the displacement in phase
space of the two target states are significantly reduced for the
adiabatically initialized system. This minimizes errors due to
the noncommutativity between the drive and Ising interaction
fields and also those arising from residual phonon-qubit cou-
pling. To approximate the unitary evolution of this adiabatic
process we use a Trotter-Suzuki expansion:5

Û a
eg =

ta∏
t=0

e−i�t ĤIsing(t )e−i�t H̃0 ,

Û d
eg =

0∏
t=ta

e−i�t ĤIsing(t )e−i�t H̃0 , (A1)

where

ĤIsing(t ) = J (t )
∑
i �= j

σ̂ (i)
z σ̂ ( j)

z , (A2)

H̃0 = 2NcJ (ta)
∑

i

σ̂ (i)
z − δsâ

†
s âs, (A3)

5[ĤIsing, Ĥ0] �= 0.
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and �t 	 (1/k)δs 	 ta is the time-step of the expansion and
k = taδt/2π .

APPENDIX B: ELIMINATION OF RESIDUAL
ENTANGLEMENT AND DYNAMICAL PHASES

Whenever the timing condition for the elimination of dy-
namical phases, t̃TJ = 2k2π , is not fulfilled, it is possible to
add an additional echo step to the process to correct for these
errors (Fig. 7). In this step the sign of the interaction strength
is also reversed, i.e., J → −J . For the single-mode coupling
model, this is obtained by inverting the sign of the detuning
δs → −δs. In the case of multimode coupling, we have used
a combination of multiple beatnotes to generate an effective
Ising interaction reversing the sign of the couplings during
the gate step. More details of this method can be found in
Ref. [30].

The modulation of the coupling strengths between the ion
and the single � or multimode laser fields �μk is equal to

the one during the application of the initial gate. Furthermore,
the length of the step needs also to be equal to total process
time tT and during the constant coupling strength portion of
the echo, no drive field is applied. In summary, this step can
be described by the unitary

ÛSE = Û a
egÛIÛ

d
eg, (B1)

where ÛI = e−iτg[ĤIsing(ta )+H̃0] and the signs of J (t ) and δs are
inverted in the Hamiltonians ĤIsing(t ) and H̃0.

APPENDIX C: EVOLUTION WITH A NOISY GATE

To introduce a fluctuation on the Rabi frequency during
the gate, we calculate the ÛT as ÛT = ∏S

i exp(−i�τgH̃T,I,�̃),
where �τg = 1

f�̃
, S = τg f�̃, H̃T,I,�̃ corresponds to the Hamil-

tonian of Eq. (7) with a fluctuating Ising coupling J�̃ =
�̃2 ∑

m η(i)
m η

( j)
m /4δm and �̃ is sampled from a normal distri-

bution with mean � and standard deviation σ�.
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