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We characterize the boundary of the convex compact set of absolutely separable states, referred as AS, that
cannot be transformed to entangled states by global unitary operators, in 2 ⊗ d Hilbert space. However, we show
that the absolutely separable states of rank (2d − 1) are extreme points of such sets. We then discuss conditions
to examine if a given full-rank absolutely separable state is an interior point or a boundary point of AS. Moreover,
we construct two-qubit absolutely separable states which are boundary points but not extreme points of AS and
prove the existence of full-rank extreme points of AS. Properties of certain interior points are also explored. We
further show that by examining the boundary of the above set, it is possible to develop an algorithm to generate
the absolutely separable states which stay outside the maximal ball. By considering paradigmatic noise models,
we find the amount of local noise which the input entangled states can sustain, so that the output states do not
become absolutely separable. Interestingly, we report that with the decrease of entanglement of the pure input
state, critical depolarizing noise value, transferring an entangled state to an absolutely separable one, increases,
thereby showing advantages of sharing nonmaximally entangled states. Furthermore, when the input two-qubit
states are Haar uniformly generated, we report a hierarchy among quantum channels according to the generation
of absolutely separable states.
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I. INTRODUCTION

Characterization of resourceful quantum states is impor-
tant from the perspective of several quantum information
processing tasks [1,2]. These include quantum communi-
cation protocols like quantum state transfer [3,4] using
entangled states [5,6], encoding of classical information into
quantum states [7,8], secure communication via entangled
states [9–13], and measurement-based quantum computation
[14–16]. In a resource theory, along with the characterization
of set of states according to certain tasks, understanding the set
of operations, known as free operations, by which resource-
ful states cannot be created is also important. For example,
in the theory of entanglement, the set of local operations
and classical communication constitute the free operations
by which only separable states can be produced. Therefore,
characterizing useless states in any paradigm can be essential
to understand the free operations.

Two-qubit gates or joint unitary operators acting on two-
qubit pure states can, in general, create entanglement in the
systems [17–19]. For example, from the initial product state
|−〉|0〉, with |−〉 = 1√

2
(|0〉 − |1〉), a two-qubit CNOT gate can

create a maximally entangled state. However, it was shown
that there are bipartite states from which it is not possible
to generate entanglement by acting joint (global) unitary op-
erations. They are called absolutely separable states [20,21]
(see also Refs. [22–27] in this regard). In a resource theory in
which global unitary operators are free operations, the set of
absolutely separable states are not useful states. However, it

is important to understand the properties of such states from a
resource theoretic point of view.

Recently, the witness operators (for entanglement wit-
nesses, see Refs. [28–30]) have been constructed to separate
the absolutely separable states from the separable ones (which
are not absolutely separable) [25] by using the fact that the set,
containing absolutely separable states, is convex and compact,
so that the Hahn-Banach separation theorem [31] can be
applied.

In this context, we note that to construct optimal wit-
ness operators, it is important to explore the boundary points
of the set of absolutely separable states. Moreover, the
Krein-Milman theorem [32] states that a convex compact set
corresponding to a finite dimensional vector space is equal to
the convex hull of the extreme points of that set. Therefore, to
understand a convex compact set, it is enough to know about
the extreme points of that set.

The main objectives of the present work is twofold: (1)
We consider the characterization of the boundary of the set
of absolutely separable states when the quantum system is
associated with a 2 ⊗ d Hilbert space. In particular, we show
the states having rank (2d − 1) in 2 ⊗ d always are extreme
points of the set. On the other hand, the states having full
rank can be interior as well as extreme points of the above set,
which can be on or outside of the maximal ball. By exploring
the boundary of this set, it is also possible to develop an
algorithm to generate the absolutely separable states which
stay outside the maximal ball (it is the maximal ball around
a maximally mixed state in which all the states are separable)
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FIG. 1. MB represents the maximal ball. It is fully contained in
AS, the set of absolutely separable states, while the set of separable
states is marked as SEP. Similarly, SEP is the subset of D denoting
the entire state space. In 2 ⊗ 2, the portion where the boundaries
of MB and AS are touching with each other contains the rank-3
extreme points of AS, while the region in the boundary of AS which
is not touching that of MB contains rank-4 extreme points of AS.
Furthermore, the line segments at the boundary of AS represent the
boundary points which are not extreme points.

[33,34]. Moreover, we construct two-qubit absolutely separa-
ble states which are boundary points but not extreme points
of the set of absolutely separable states. We then prove the
existence of full-rank extreme points of that set (see Fig. 1
for schematic representation). (2) We further search for noisy
scenarios which result in absolutely separable states. Finding
such situations can be interesting from the perspective of
experiments. Specifically, we find critical strengths of local
noise for different prototypical noise models [1,2], which lead
to absolutely separable states. Further, we find that when Haar
uniformly generated two-qubit states are sent through noisy
channels, the process of generating an absolutely separable
state can distinguish three quantum channels: depolarizing,
amplitude damping, and phase damping channels. Since en-
tangled states cannot be generated from absolutely separable
states by applying global unitary operators, effects of local
decoherence on state space induces irreversibility in the theory
of entanglement.

This paper is arranged as follows: After a few basics,
presented in Sec. II, we characterize the set of absolutely
separable states in Sec. III. In Sec. IV we address the question
of irreversibility appearing due to the existence of absolutely
separable states when an entangled state is affected by deco-
herence. Finally, we conclude in Sec. V.

II. PRELIMINARIES

Absolutely separable states are those which cannot be
transformed to entangled states under the action of global
unitary operators. For any given Hilbert space, the identity
operator is an example of an absolutely separable operator.
For a 2 ⊗ d Hilbert space, there is a necessary and sufficient
condition to check whether a separable state is absolutely
separable [21,22,24]. In particular, it was shown that in a
2 ⊗ d system, a state is absolutely separable if and only if

λ1 − λ2d−1 − 2
√

λ2d−2λ2d � 0, (1)

where λ1, . . . , λ2d are the eigenvalues in decreasing order
corresponding to a bipartite density matrix ρAB, associated
with a 2 ⊗ d Hilbert space.

With increasing importance of the entangled states, the
properties of states lying in the neighborhood of the maxi-
mally mixed states [35] were studied. It was shown that the
largest ball of separable as well as absolutely separable states
around a maximally mixed state in a two-qubit system can be
described by Tr(ρ2) � 1

3 [20,33,34]. This ball is known as a
maximal ball. In general, for a d ⊗ d system, the maximal ball
can be described by Tr(ρ2) � 1

d2−1 [33,34]. However, it was
found that there are absolutely separable states which reside
outside the maximal ball [20]. So, to understand these states,
it is important to construct such states.

The possible structures of witness operators which separate
absolutely separable states from the separable states were
explored in [25]. But to make these operators optimal, one
may require to explore the boundary points of the set of
absolutely separable states. So understanding these boundary
points is one of the main objectives, discussed in the succeed-
ing section. In this regard, remember that a state is not an
extreme point of a convex set if it can be written as a convex
combination of two or more absolutely separable states. On
the other hand, if an absolutely separable state does not allow
any such decomposition, then it must be an extreme point of
the set.

III. CHARACTERIZATION OF ABSOLUTELY
SEPARABLE STATES

Let us now concentrate on any two-party state, ρAB in
2 ⊗ d , which is absolutely separable. It is known that the
pure product states can always be transformed to entangled
states under global unitary operations. From condition (1), it
is also clear that rank-2 states cannot be absolutely separable
states in 2 ⊗ d [21,22,24]. Moreover, the condition given in
(1) says that the mixed states having rank � (2d − 2) cannot
be absolutely separable in 2 ⊗ d . So, in 2 ⊗ 2, absolutely sep-
arable states can have rank 3 and 4. Since the set of absolutely
separable states is a convex and compact set in any dimension
[25], it is possible to explore certain geometric properties of
such a set, especially the structure of the extreme points of the
set of absolutely separable states. Here we call this set as AS.
We prove the following proposition for absolutely separable
states having lowest rank in 2 ⊗ 2:

Proposition 1. All rank-3 absolutely separable states are
extreme points of AS in 2 ⊗ 2.

Proof. In 2 ⊗ 2, a state is absolutely separable if and only
if λ1 − λ3 − 2

√
λ2λ4 � 0, where λ1, . . . , λ4 are the eigen-

values of a given density matrix in decreasing order. For
a rank-3 state, λ4 = 0, which implies that a rank-3 state
is absolutely separable iff λ1 � λ3. But we have assumed
that λ1 � λ3. This indicates that a rank-3 state is absolutely
separable if and only if λ1 = λ2 = λ3 = 1

3 . Now, consider
the spectral decomposition of a state, ρAB = 1

3 |ψ1〉 〈ψ1| +
1
3 |ψ2〉 〈ψ2| + 1

3 |ψ3〉 〈ψ3|, where {|ψi〉}, i = 1, 2, 3 are or-
thogonal states. Obviously, this state is the only absolutely
separable state in the three-dimensional subspace spanned by
{|ψ1〉 , |ψ2〉 , |ψ3〉}. Therefore, this state cannot be written as
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a convex combination of two or more absolutely separable
states, proving the fact that all rank-3 absolutely separable
states are extreme points of AS. �

Since there is only one particular structure possible for
rank-3 absolutely separable states, any rank-3 state which
does not capture such a structure must not be an absolutely
separable state. Now we make the following remark:

Remark 1. The number of rank-3 extreme points of AS in
2 ⊗ 2 can be infinitely many, and they reside on the maximal
ball.

This is because in a two-qubit Hilbert space, one can
choose three orthogonal states in infinitely many possible
ways and then take an equal mixture of three orthogonal
states, leaving the final state to be an extreme point of AS.
Next, using the condition given in (1), the generalization of
the above proposition for a 2 ⊗ d system is presented:

Proposition 2. All rank (2d − 1) absolutely separable
states are extreme points of AS in 2 ⊗ d .

Proof. The proof is along the same line as Proposition 1.
It uses the fact that any state of AS, having rank (2d − 1),
is the only state of AS supported in a proper subspace (of
2 ⊗ d Hilbert space) spanned by a set of orthogonal states
{|ψi〉}2d−1

i=1 . �
The above state has a spectral decomposition: ρ =

1
2d−1 (

∑2d−1
i=1 |ψi〉 〈ψi|), where |ψi〉’s are orthogonal states.

Clearly, purity of the state ρ is given by Tr[ρ2] = 1
2d−1 . In

the context of Propositions 1 and 2, see also Refs. [26,36].
Remark 2. All rank-(2d − 1) absolutely separable states in

2 ⊗ d having purity 1
2d−1 are included in the maximal ball

characterized by [Tr(ρ2
AB) � 1

2d−1 ], and they all lie on the
surface of the ball.

Interestingly, there exist rank-4 absolutely separable states
in 2 ⊗ 2, which can stay outside the maximal ball [20]. In
this context, we mention that there are ways to check if
a given state is an absolutely separable state and if it be-
longs to the maximal ball, but there is no known protocol to
produce rank-4 absolutely separable states systematically in
2 ⊗ 2 which reside outside the maximal ball. We now propose
a prescription to produce rank-4 absolutely separable states
which reside outside the maximal ball. This can be done by
exploring the boundary of AS.

(1) Take a rank-3 state in 2 ⊗ 2 which is not absolutely
separable, i.e., such states must reside outside the maximal
ball. From Proposition 1, it is clear that such states are of the
form

∑3
i=1 pi |ψi〉 〈ψi| with at least one pi, not equal to the

other pi’s.
(2) Consider a pure state in 2 ⊗ 2 which is orthogonal to

the previous state. Pure states are not included in the maximal
ball, and they cannot be absolutely separable either.

(3) A suitable convex combination of these two states can
produce rank-4 states in 2 ⊗ 2 which are absolutely separable.
But we have to take the convex combination in such a way that
the newly generated states reside outside the maximal ball for
some choices of parameters.

Example. Let us now illustrate the recipe discussed above
by an example. We consider a two-qubit rank-3 state ρ1 =
1
2 |00〉 〈00| + 1

4 |01〉 〈01| + 1
4 |10〉 〈10|, which is not an abso-

lutely separable state. Also consider a pure state ρ2 = |11〉 〈11|
which cannot be absolutely separable. These two states are

orthogonal to each other. So any convex combination of them
must be a rank-4 state. We now take convex combination
of these two states qρ1 + (1 − q)ρ2 in a way that q = 16

17 . It
can be checked that the newly prepared state is an absolutely
separable state. Interestingly, if q = 16

17 , then Tr[qρ1 + (1 −
q)ρ2]2 > 1

3 , indicating that the state resides outside the maxi-
mal ball. We observe that the value of q is not independent of
the choice ρ1.

Notice that in the above, when q = 16
17 , the newly prepared

rank-4 state is just included into AS. Therefore, it is a bound-
ary point of the set. But it is not known whether the state is
an extreme point of AS. Note that the above protocol is quite
easy to generalize for 2 ⊗ d . In that case, one has to start with
a rank-(2d − 1) state which is not included in the maximal
ball as well as in AS (this can be found by Proposition 2).
Then consider a pure state which is orthogonal to the previous
state, and the rest is as described above.

Let us now move to full-rank, i.e., rank-4 absolutely sepa-
rable states in 2 ⊗ 2 and discuss different properties of a set
consisting of such states. It is known that there exists a ball
around the maximally mixed state, (I/d2), in d ⊗ d and all the
states, belonging to that ball, are absolutely separable [33,34].
So the maximally mixed state is an interior point of AS in
d ⊗ d . Clearly, any state ρ (except the maximally mixed state)
which is an interior point of AS can be written as a convex
combination of the maximally mixed state (I/d2) and another
absolutely separable state σ , where ρ �= σ , and both ρ and σ

are not maximally mixed. Note that for different states ρ, the
states σ can be different. However, the states which do not
allow such a decomposition must be boundary points of AS.
We now present the following observation:

Proposition 3. In 2 ⊗ 2, any rank-4 absolutely separable
state ρ which satisfy the condition λ1 − λ3 = 2

√
λ2λ4, cannot

be written as a convex combination of the maximally mixed
state (I/4) and another absolutely separable state σ , not max-
imally mixed, with ρ �= σ , where λi’s are the eigenvalues of
ρ in decreasing order.

Proof. We consider a spectral decomposition of the above
state ρ = ∑4

i=1 λi |ψi〉 〈ψi|. Now consider a decomposition of
ρ as the following:

ρ =
4∑

i=1

λi |ψi〉 〈ψi| = (1 − 4ε)
4∑

i=1

(λi − ε)

1 − 4ε
|ψi〉 〈ψi|

+ (4ε)
4∑

i=1

ε

4ε
|ψi〉 〈ψi| = (1 − 4ε)σ + (4ε)

I

4
, (2)

where ε can be considered as a very small number and I is
the identity operator. Now the question is whether σ is an
absolutely separable state. The state σ is absolutely separable
if and only if the eigenvalues of it (λi − ε)/(1 − 4ε) (in de-
creasing order) obey the condition (1). If it is the case, then
λ1 − λ3 � 2

√
(λ2 − ε)(λ4 − ε). But this cannot be because

we have assumed λ1 − λ3 = 2
√

λ2λ4. So, for any ε > 0,
(λ1 − λ3) > 2

√
(λ2 − ε)(λ4 − ε), leading to the fact that σ

cannot be absolutely separable. Thus, it is proved that if the
eigenvalues of ρ (in the decreasing order) obey the condition
λ1 − λ3 = 2

√
λ2λ4, then the state cannot be written as a
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convex combination of the maximally mixed state and another
absolutely separable state. �

In the above, it is clear that any state ρ whose eigenval-
ues (in the decreasing order) obey the condition λ1 − λ3 =
2
√

λ2λ4, are the boundary points of AS. Next, we describe an
important property of certain interior points of the set.

Remark 3. It is interesting to note that by using sim-
ilar arguments, Proposition 3 can be extended to 2 ⊗ d .
Let us consider the spectral decomposition of a state ρ =∑2d

i=1 λi |ψi〉 〈ψi|, where λi are in decreasing order. Now con-
sider a decomposition of ρ as

ρ =
2d∑
i=1

λi |ψi〉 〈ψi| = (1 − 2dε)
2d∑
i=1

(λi − ε)

1 − 2dε
|ψi〉 〈ψi|

+ (2dε)
2d∑
i=1

ε

2dε
|ψi〉 〈ψi| = (1 − 2dε)σ + (2dε)

I

2d
,

(3)

where ε can be considered as a very small number and I is
the identity operator. Now the question is whether σ is an
absolutely separable state. The state σ is absolutely separable
if and only if the eigenvalues of it (λi − ε)/(1 − 2dε) (in the
decreasing order) obey the condition, given by

(λ1 − ε)

(1 − 2dε)
− (λ2d−1 − ε)

(1 − 2dε)
� 2

√
(λ2d−2 − ε)

(1 − 2dε)

(λ2d − ε)

(1 − 2dε)
.

(4)
If it is the case, then λ1 − λ2d−1 � 2

√
(λ2d−2 − ε)(λ2d − ε).

But this cannot be true if we begin with λ1 − λ2d−1 =
2
√

λ2d−2λ2d . The reason behind it is that for any ε > 0, λ1 −
λ2d−1 > 2

√
(λ2d−2 − ε)(λ2d − ε), leading to the fact that σ

cannot be absolutely separable. Thus, it is proved that if the
eigenvalues of ρ (in the decreasing order) obey the condition
λ1 − λ2d−1 = 2

√
λ2d−2λ2d , the state cannot be written as a

convex combination of the maximally mixed state and another
absolutely separable state. This also implies that the states,
which satisfy the above equality, are boundary points of AS
when the associating Hilbert space is 2 ⊗ d .

Proposition 4. In 2 ⊗ 2, if the eigenvalues (in the decreas-
ing order) of a rank-4 absolutely separable state (except
the maximally mixed state) satisfy the condition λ1 − λ3 <

2
√

λ2λ4 the state can be written as a convex combination of
the maximally mixed state and a boundary point of AS.

Proof. We consider the states other than the maximally
mixed state. Suppose that the spectral decomposition of such
a state is given by ρ = ∑4

i=1 λi |ψi〉 〈ψi|. This state can be
decomposed into the following form:

ρ =
4∑

i=1

λi |ψi〉 〈ψi| = (1 − 4ε)
4∑

i=1

(λi − ε)

1 − 4ε
|ψi〉 〈ψi|

+ (4ε)
4∑

i=1

ε

4ε
|ψi〉 〈ψi| = (1 − 4ε)σ + (4ε)

I

4
. (5)

Our goal is to prove that the state σ in the above decom-
position is a boundary point of AS. Because if it is the
case, then the absolutely separable state ρ can be written as
the convex combination of the maximally mixed state and
a boundary point of AS. Notice that the eigenvalues of σ

are given by (λi − ε)/(1 − 4ε). It is a boundary point of
AS if λ1 − λ3 = 2

√
(λ2 − ε)(λ4 − ε). We have assumed that

λ1 − λ3 < 2
√

λ2λ4. Clearly, it is possible to consider ε �
λ4, such that σ becomes a boundary point. The value of ε

can be found by solving the quadratic equation λ1 − λ3 =
2
√

(λ2 − ε)(λ4 − ε). This completes the proof. �
Obviously, the states of Proposition 4 are interior points

of AS. By Propositions 3 and 4, we analyzed the known
necessary and sufficient condition, given in (1), to a further
extent for two qubits. This condition was to check whether
a given state is absolutely separable or not. In our case, we
have established the conditions to find out whether a given
absolutely separable state is a boundary point (when the equal-
ity holds) or an interior point (when the inequality holds) of
the set consisting of absolutely separable states. However, like
Proposition 1, Proposition 4 can also be generalized in 2 ⊗ d
by following the same argument given in the above proof, and
hence we have the following:

Proposition 5. For a 2 ⊗ d system if the eigenvalues (in
decreasing order) of a given absolutely separable state (except
the maximally mixed state) satisfy the condition λ1 − λ2d−1 <

2
√

λ2d−2λ2d , the state can be written as a convex combination
of the maximally mixed state and a boundary point of AS.
Obviously, such a state must be an interior point of AS.

Let us now address another important question: Are all
boundary points of AS extreme points? In the following, we
show that this is not the case.

Proposition 6. In 2 ⊗ 2, there exist rank-4 absolutely sep-
arable states which are the boundary points of AS but they are
not extreme points of the set.

Proof. We simply construct a class of states, the eigenval-
ues (in the decreasing order) of which satisfy the condition (1)
with equality and the constructed states allow some convex
decomposition. Specifically, let us consider a two-qubit state
σ1 = ∑4

i=1 λi |ψi〉 〈ψi| (spectral decomposition), where λi’s
are in decreasing order and they satisfy the condition λ1 − λ3

= 2
√

λ2λ4. Similarly, we have another two-qubit state σ2 =∑4
i=1 λ′

i |ψi〉 〈ψi| (spectral decomposition), with λ′
i’s being in

decreasing order, satisfying the condition λ′
1 − λ′

3 = 2
√

λ′
2λ

′
4.

For any convex combination xσ1 + (1 − x)σ2, 0 < x < 1, the
newly generated state can have the following eigenvalues:
μi = xλi + (1 − x)λ′

i, for i = 1, . . . , 4. μi’s are also in de-
creasing order. It can be shown that μ1 − μ3 = 2

√
μ2μ4

if λ′
2/λ

′
4 = λ2/λ4. We assume λ′

2/λ
′
4 = λ2/λ4 = κ . Using

this along with the conditions
∑

i λi = ∑
i λ

′
i = 1, it can be

shown that λ1 = [1 − (1 + κ )λ4 + 2
√

κλ4]/2, λ2 = κλ4, λ3

= [1 − (1 + κ )λ4 − 2
√

κλ4]/2. λ′
i’s also satisfy similar rela-

tions. [Notice that for i = 1, 2, 3, λi’s or λ′
is are the function

of λ4 or λ′
4 respectively. Similarly, for i = 1, 2, 3, μi’s are also

the same function of μ4.] However, for proper choice of κ ,
λ4, λ′

4, one can get λi’s and λ′
i’s in decreasing order. Thus,

one can generate absolutely separable states which satisfy the
condition given in (1) with equality. Moreover, these states
allow convex decomposition, implying the fact that such states
are boundary points but not extreme points of AS. To con-
stitute an example, one may consider κ = 2.5, λ4 = 0.1, and
λ′

4 = 0.11. �
In the above context, we mention that if we assume for

σ1, λ1 − λ3 < 2
√

λ2λ4 and for σ2, λ′
1 − λ′

3 < 2
√

λ′
2λ

′
4, for any
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newly generated state, μ1 − μ3 must be less than 2
√

μ2μ4.
Nevertheless, which states are the rank-4 extreme points of
AS in 2 ⊗ 2 is still an open problem, but we are able to prove
the existence of such states in the succeeding proposition.

Remark 4. Applying the Remark 3 along with Proposi-
tion 6, we can now construct examples of boundary points
which are not extreme points of AS in 2 ⊗ d . An explicit
example can be given as follows: We take ν2d = 0.1, ν1 =
[1 − (1 + κ )ν2d + 2

√
κν2d ]/2, ν2d−2 = κλ2d , ν2d−1 = [1 −

(1 + κ )ν2d − 2
√

κν2d ]/2. We can assume κ = 2.5. We next
take ν2 = · · · = ν2d−3 = κ ′, ν1 � κ ′ � ν2d−2 and then nor-
malize the spectrum {νi} such that the normalized quantities
{ν ′

i} satisfy the condition
∑2d

i=1 ν ′
i = 1. So any density matrix,

having eigenvalues {ν ′
i}, is a boundary point of AS. In the

similar fashion, if we take ν2d = 0.11 and follow the above
procedure, we can obtain another boundary point of AS. Now,
taking a suitable convex combination of these two boundary
points, we can get a third boundary point which is surely not
an extreme point of AS (as shown in Fig. 1).

Proposition 7. In 2 ⊗ 2, there exist rank-4 absolutely sepa-
rable states outside the maximal ball which are extreme points
of AS.

Proof. In Proposition 1, we have proved that all rank-3
absolutely separable states are extreme points of AS. More-
over, they reside on the surface of maximal ball, defined
by Tr[ρ2] � 1

3 . We mention here that the maximal ball is
a convex set, based on the fact that a convex combination
does not allow to increase purity. We know that there are
rank-4 absolutely separable states outside the maximal ball
as depicted in Fig. 1. An example of such a state is explicitly
constructed after Proposition 1. Obviously, these rank-4 states
cannot be written as a convex combination of rank-3 extreme
points of AS since these states reside outside the maximal ball.
Therefore, either such a state is an extreme point of AS, or
they can be written as a convex combination of rank-4 extreme
points of AS outside the maximal ball. This completes the
proof. �

IV. INTERCONVERTABILITY BETWEEN ABSOLUTELY
SEPARABLE AND ENTANGLE STATE

Entanglement is a resource for different quantum informa-
tion processing tasks. Since absolutely separable states cannot
be transformed to entangled states under global unitary opera-
tions, their existence puts a restriction on the state space. First,
we discuss how auxiliary systems can help to overcome abso-
lute separability and prescribe a method to identify operations
on AS so that it becomes entangled. Second, we address how
an entangled state get converted into separable or absolutely
separable state through noisy channels.

A. Qubit-assisted entanglement generation

It is easy to notice that given an absolutely separable state
if one enlarges the local dimension by considering auxiliary
qubit(s), one may find unitary operator(s), acting on the newly
generated higher dimensional state, which can produce entan-
glement. So the newly generated state is basically the given
absolutely separable state along with the auxiliary qubit(s),
which corresponds to the higher dimensional Hilbert space.

Now the question is: which kind of auxiliary qubit(s) one
should take along with a given absolutely separable state such
that at least one unitary operator exists which acts on the
newly generated state and can produce entanglement. Clearly,
there might be a restriction on the form of the auxiliary
qubit(s), depending on the given absolutely separable state,
which can create entangled states. In this regard, we present
the following:

Observation 1. If the absolutely separable state is of full
rank, there can be a restriction on the form of the auxiliary
qubit, while for a non-full-rank absolutely separable state, any
auxiliary qubit together with an absolutely separable state can
produce entangled states by applying global unitary opera-
tor(s) which are being applied on the newly generated state
in the higher dimensional Hilbert space.

The first part is simple to establish. Suppose, for a two-
qubit system, the maximally mixed state is given. Obviously,
that state is an absolutely separable state. Now, if the second
party enlarges the local dimension by considering an auxiliary
qubit, then it must not be prepared in the maximally mixed
state in order to generate entanglement by applying a global
unitary operator. Because, if the auxiliary qubit is prepared in
a maximally mixed state, the overall state is again a maximally
mixed state in 2 ⊗ 4, and, thus, generating entanglement using
any global unitary operator is not possible.

On the other hand, suppose, a non-full-rank absolutely
separable state is given in 2 ⊗ 2. Then any auxiliary qubit
can be chosen if one wants to enlarge the local dimension,
so that a separable state of rank lower than 2d − 1 can be
obtained, which by construction is not absolutely separable.
So, using the final state, entanglement can be generated via
a suitable global unitary operator. This follows from the fact
that in 2 ⊗ d , a state which have rank less than 2d − 1 cannot
be absolutely separable.

From the above observation, we prescribe a possible way of
creating entangled state from AS and derive Kraus operators
for that kind of operations. Suppose a global unitary operator,
U , acts both on an absolutely separable state and an auxiliary
state |0〉〈0|. Mathematically, we can say the following:

	(ρAS ) = TrB[U (ρAS ⊗ |0〉B〈0|)U †] =
∑

μ

KμρASK†
μ, (6)

where Kμ = 〈μ|U |0〉 with
∑

K†
μKμ = I.

B. Identifying absolutely separable states in noisy environments

In realistic scenarios, due to imperfections in preparation
procedure or interaction with the environment, the entangled
state generated in the laboratory is not a pure one. This effect
of noise can be modeled in various ways. Typically, a lo-
cal noisy channel destroys entanglement, and thereby creates
a separable state [5] which may or may not be absolutely
separable. We are interested in finding the amount of noise
required in the channel to produce absolutely separable states.
Such a study can be important for two reasons: (1) in experi-
ments, a state is always affected by noise and (2) determining
the range of noise parameter which makes the state absolutely
separable is significant to avoid them.

We deal with three paradigmatic noise models: depolariz-
ing, amplitude damping, and phase damping channels which
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can affect an initial state differently and, thereby, gener-
ate absolutely separable states in independent ways. Before
discussing the consequence of noisy channels on a given
state, let us first fix the transformation of the input state
that happens due to the interactions between the environ-
ment and the system. The depolarizing channel (DPC), 	DPC

takes an arbitrary quantum state, ρ to ρ ′ = 	DPC(ρ) = pρ +
(1−p)

3

∑
i=x,y,z σiρσi where σi (i = x, y, z)s represent the Pauli

operators and (1 − p) is the strength of the noise.
On the other hand, the amplitude damping channel (ADC),

	ADC acts asymmetrically on the states |0〉 and |1〉. In par-
ticular, it keeps |0〉 unchanged while it flips |1〉 to |0〉 with
probability (1 − p) and the corresponding Kraus operators
which describe the effects of ADC are given by

K1 =
(

1 0
0

√
p

)
, K2 =

(
0

√
1 − p

0 0

)
. (7)

The input state ρ after sending through the ADC results in an
output state, represented as

	ADC(ρ) =
2∑

i=1

KiρK†
i . (8)

Finally, we consider a scenario in which a qubit is sent through
a phase damping channel (PDC), described by

	PDC(ρ) =
3∑

i=1

KiρK†
i , (9)

with the operators Ki, i = 1, 2, 3 given by

K1 =
√

1 − p

(
1 0
0 1

)
, K2 = √

p

(
1 0
0 0

)
,

K3 = √
p

(
0 0
0 1

)
. (10)

A noisy environment always takes an initial pure state, |ψ〉 =
cos x

2 |00〉 + e−iφ sin x
2 |11〉 with 0 � x � π and 0 � φ � 2π

to a mixed one which may or may not be an entangled state.
Note that the input state |ψ〉 is entangled for all values of
x and φ except when x = 0 or π . We assume here that two
independent and identical channels, 	1(p) ⊗ 	2(p), act on
the input state where 	i can be either DPC, ADC, or PDC,
and we are interested with the properties of output state.

1. Absolutely separable states via depolarizing channels

Let us start the investigation by studying the features of the
output state obtained after sending the initial state via local
depolarizing channels (also see Ref. [37] in this regard):

|ψ〉 → 	1
DPC ⊗ 	2

DPC(|ψ〉〈ψ |) = ρ ′(p, x, φ). (11)

The characteristics of the resulting state can be summarized
as the following:

(1) The output state is a rank-4 state. As discussed in
Sec. III, the full-rank states can in principle be an absolutely
separable for certain choices of p, x, and φ. For any fixed
values of x, we find that there exists a critical value of noise
above which the output state is absolutely separable.

FIG. 2. Creation of absolutely separable states from a pure state
|ψ〉 = cos(x/2)|00〉 + e−iφ sin(x/2)|11〉. Note that |ψ〉 is maximally
entangled with x = π/2. It is sent through local depolarizing chan-
nels which produce separable as well as absolutely separable states
with the variation of parameter p (abscissa). Red, blue, and green
lines correspond to x = π/2, x = π/6, and x = π/12 respectively.
Dashed lines correspond to the minimum eigenvalues of the partial
transposed output states for different values of x (ordinate), thereby
quantifying the entanglement contents of the output states while
solid lines represent the quantity λ1 − λ3 − 2

√
λ2λ4 (ordinate) for

examining the absolute separability in 2 ⊗ 2, given in (1). It is clear
that there exists a range of p where the output state is separable but
not absolutely separable when the input state is a pure nonmaximally
entangled state, while for maximally entangled state, the critical
value of noise above which state is separable as well as absolutely
separable coincide (see red solid and dashed lines). Both axes are
dimensionless.

(2) Two eigenvalues of the output state are the same and
are independent of the input state parameter, x and φ, while the
other two depend on x and p. For a fixed value of x, we observe
that there exists a critical value of noise 1 − pabs, above which
the state is absolutely separable (see Fig. 2).

(3) The partial transposed output state leads to the condi-
tion that the state is entangled when sin x > [4(1 + 2p)(1 −
p)]/(4p − 1)2 as depicted in Fig. 2.

Remember that we have taken here the strength of the noise
as (1 − p), while in this figure, the plots are made with respect
to the parameter p. However, looking at properties 2 and 3, we
observe that when x < π/2, (1 − pabs) is strictly greater than
(1 − psep), below which the state is entangled. Interestingly,
when x = π/2, i.e., the input state is maximally entangled,
(1 − pabs) = (1 − psep). The gap obtained between the thresh-
old values of noise for separability and absolute separability
when the input state is a nonmaximally entangled state can be
interesting. We know that nonmaximally entangled states are
less useful than maximally entangled states in several quan-
tum information protocols. Nonetheless, such disadvantages
can be compensated, since in the presence of a certain amount
of noise, separable states that are not absolutely separable
are created which can be converted to entangled states under
global unitary operations. This is shown in Table I.

We also observe that if the entanglement of the input state
decreases, the output state becomes separable quickly under
the action of local DPCs. But lowering the input state en-
tanglement, the range of the noise in which the output state
remains only separable (not absolutely separable) increases.
Specifically, for maximally entangled and nonmaximally en-
tangled states, denoted by |ψmax〉 and |ψnm〉 respectively, we
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TABLE I. Entanglement of the input state is measured in von
Neumann entropy [38]. We show that with the decrease of entan-
glement of the input state, the range of separability but not absolute
separability increases.

Entanglement of input 1 − psep 1 − pabs �p = psep − pabs

0.7715 0.29133 0.36114 0.0698
0.33225 0.21413 0.426103 0.21197

obtain that

(1 − psep)(|ψmax〉) > (1 − psep)(|ψnm〉),

while

(1 − pabs)(|ψmax〉) < (1 − pabs)(|ψnm〉).

Remark 5. A maximally entangled state sent through a
global depolarizing channel results in the Werner state [39],
given by p|ψ−〉〈ψ−| + (1−p)

4 I (with |ψ−〉 being the singlet
state), which is separable as well as absolutely separable with
p � 1/3. On the other hand, if a nonmaximally entangled state
is admixed with the white noise, the gap in the strength of
noise between separability and absolute separability emerges
like the local depolarizing channels, establishing the useful-
ness of nonmaximally entangled states over the maximally
entangled ones.

Generation of absolutely separable states from Haar uni-
formly simulated inputs. Let us generate two-qubit pure states
Haar uniformly, and both qubits are sent through local de-
polarizing channels. We find a critical value of noise below
which the states become absolutely separable. In particular,
we plot pc below which the state is absolutely separable by
varying the initial entanglement content of the pure states.
Results show that with respect to noise, states with higher
entanglement are more robust than the states with low en-
tanglement value from the perspective of generation of ASs
(see Fig. 3).

2. Absolutely separable states via amplitude damping channels

Let us now move to the scenario where two local ADCs are
acted on |ψ〉, resulting in an output state of rank-4. It turns out
that the output state is separable when tan(x/2) � 1/(1 − p).
By using condition (1), we can find the condition on p and
x for which the resulting state is absolutely separable. Here
also the eigenvalues are independent of the phase of the initial
state.

Unlike the depolarizing channels, we find that the final
state is absolutely separable only when x � 2.325. The crite-
ria for absolute separability are satisfied in the neighborhood
of p = 0.5. The range of p in which the state is absolutely
separable increases with the increase of x and becomes max-
imum when x = π . For example, when x = π , the state is
separable in the entire range of p, although it is absolutely
separable when p ∈ [0.302, 0.6998]. For the input state with
x = 2.4, the state remains absolutely separable when p ∈
[0.414, 0.586] and separable for 0 � p � 0.61. Therefore,
like depolarizing channels, there also exists a range of pa-
rameter p in which the state is separable, but not absolutely
separable as depicted in Fig. 4. However, the absolute separa-

FIG. 3. Plot of pc (critical noise value below which the state is
absolutely separable) (vertical axis) against initial entanglement, E
(horizontal axis). We generate 104 pure states Haar uniformly. Both
qubits are sent through the local depolarizing channels. Entangle-
ment of a pure state is characterized by the von Neumann entropy of
the local density matrices. The vertical axis is dimensionless while
the horizontal one is in ebits.

bility of the resulting state with respect to amplitude damping
noise requires a minimum amount of entanglement in the
input state, which is in a sharp contrast to DPC.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

x

p

FIG. 4. Regions in (x, p)-plane indicates separable and abso-
lutely separable states when |ψ〉 is sent through local amplitude
damping channels. The parameter x corresponds to the state |ψ〉,
and the parameter p corresponds to the channels. The blue (bigger)
region is for separability, while the yellowish (smaller) region rep-
resents states that are absolutely separable. The parameter p in the
vertical axis is a dimensionless quantity, while the parameter x in the
horizontal axis is in radian.
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Interestingly, we find that in case of amplitude damping
channel (ADC), there exist no random pure states that, after
sending through the double-sided local channels, become ab-
solutely separable. If we start with rank-2 or higher rank Haar
uniformly generated states and ADC acting on both the qubits,
such states are produced, although unlike depolarizing chan-
nels, we observe that the percentage of absolutely separable
states grows with the increase in the rank of the initial states.

3. Absolutely separable states via phase damping channels

Phase damping channels make the pure rank-1 state to a
rank-2 one, and hence the output state produced after PDCs
cannot be absolutely separable, as discussed in Sec. III. To
obtain an absolutely separable state by using PDCs, either we
consider a rank-2 state which can produce a rank-3 state with
equal mixing parameter, or we can start with a rank-3 or a
rank-4 state that can be absolutely separable.

To illustrate this feature, let us first consider a rank-3 state,
given by

ρ3 = 1
3 |ψ〉〈ψ | + 1

3 |01〉〈01| + 1
3 |10〉〈10|, (12)

where |ψ〉 = cos (x/2) |00〉 + e−iφ sin (x/2) |11〉. By Propo-
sition 1, it is an extreme point of AS. If one sends the state
through local PDCs, it is easy to check that the state becomes
rank-4 except x = 0 as well as x = π and remains absolutely
separable, i.e., it satisfies the condition (1) in a strict sense.
Note that at x = 0 and x = π , the state remains unaffected by
the PDCs.

As a second example, let us consider the initial state for
the PDCs as the Werner state, given by q|φ+〉〈φ+| + (1 − q) I4
which is of rank-4. It is known that the state is separable as
well as absolutely separable when q � 1/3. When the state
is sent through two noisy PDC channels, entanglement gets
destroyed, and hence the state becomes separable even for q >

1/3. We find that the state becomes separable against q in a
bigger range than the value of q below which it is absolutely
separable, as shown in Fig. 5. Therefore, phase damping noise
introduces a gap between separable and absolutely separable
regions for Werner states.

Numerical simulations of Haar uniform generation of two-
qubit states reveal that no pure, rank-2 and rank-3 states under
the action of PDC can produce absolutely separable states,
thereby showing its high amount of robustness in the preser-
vation of entanglement. Specifically, we find that among 104

rank-4 randomly generated states, only 60 states can create ab-
solutely separable states when local phase damping channels
act on both the qubits. It also indicates that the production of
absolutely separable states via depolarizing, amplitude damp-
ing, and phase damping channels from random input states is
capable to distinguish these three channels.

V. DISCUSSION

Absolutely separable states are those which cannot be
made entangled by the action of global unitary operations.
Therefore, from the resource theoretic perspective, it is im-
portant to study the set of useless states, also known as
absolutely separable states. In this work, we considered 2 ⊗ d
dimensional states and showed that absolutely separable states

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p
q

FIG. 5. Map of separable (blue) and absolutely separable (yel-
low) states for local PDC with the Werner state as input. The
abscissa and ordinate, respectively, represent the noise parameter,
p, and the mixing parameter, q, of the Werner state. Both axes are
dimensionless.

of rank-(2d − 1) are all extreme points of the set of such
states. We proved that the states with full rank satisfying
strict absolute separability condition are the interior points;
otherwise, they are boundary points of the set of absolutely
separable states. We also showed that there exist full-rank
states which are the boundary points but not extreme points
of the above set. We further proved the existence of full-rank
extreme points of the set.

We showed a possible method to make absolutely sep-
arable states entangled by adding an auxiliary system. We
also considered the reverse process, specifically the generation
of absolutely separable states with the help of decoherence.
In particular, we found the range of noise parameter which
can produce absolutely separable states from entangled states
when sent through local noisy channels. We also showed that
after sending maximally entangled states via a local depo-
larizing channel, threshold noise value producing separable
and absolutely separable states coincide, while with the de-
crease of entanglement content of the input pure state, the gap
between these two critical values increases. Moreover, when
Haar uniformly generated two-qubit states are sent through
noisy channels, we found that the production of absolutely
separable states depends on the rank of the input states,
thereby showing a discrimination method for noisy channels.
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