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Transmission-based tomography for spin qubits
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We consider a system of static spin qubits embedded in a one-dimensional spin-coherent channel and develop
a scheme to readout the state of one and two qubits separately. We use unpolarized flying qubits for this
purpose that scatter off from the static qubits due to localized Heisenberg exchange interaction. Analyzing
the transmission coefficient as a function of density matrix elements along with additional unitary gates we
reconstruct the state of static qubits.

DOI: 10.1103/PhysRevA.103.052430

I. INTRODUCTION

Measurement of the state of qubits is fundamentally crucial
for quantum computing [1]. The state, the wave function or the
density matrix, of a qubit system is reconstructed from a set
of measured observables and is known in literature as state
tomography. Since the measurement invokes an interaction
of a well-protected quantum system with the observer, the
state of the system is inevitably perturbed or in some cases
collapsed [2]. The tomography thus involves the simultaneous
ensemble measurement of identically prepared states or the
repeated measurement of a single state prepared identically
for each iteration.

There are a variety of architecture-oriented tomography
techniques [3–6]. In this paper we are interested in mea-
suring qubits in spintronic systems, especially those where
qubits are housed in localized spins (static qubits) embed-
ded in spin-coherent medium. These types of systems have
the potential for scalable fault-tolerant quantum information
processing owing to advantages such as long decoherence
times, a smaller physical footprint, etc. [7–11]. Manipulation
of qubit states in such systems often relies on local magnetic
control [12] and or controlled exchange interaction between
nearest neighbors [8]. Other approaches found in the litera-
ture utilize spin-transfer-torque-like effects for manipulation
of single qubits or entangling multiple qubit states using po-
larized flying qubits [13–21]. Unpolarized flying qubits can
also be used for mediating entanglement [22]. From a prac-
tical viewpoint local magnetic control is not quite scalable,
whereas the latter approaches offer indirect access to remote
localized qubits via polarized flying qubits. Polarized flying
qubits can be provided by a spin-polarized source through
mechanisms such as spin-pumping [23], spin-dependent ther-
moelectric effects [24], the spin Hall effect [25,26], the spin
Nernst effect [27,28], and so on. The control of spin qubits via
interaction with flying qubits can be compared to its classical
counterpart of manipulating nanomagnets [29–31].
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An important aspect of the latter mechanism above is
the direct exchange interaction between the spin degrees of
freedom of the flying and static qubits. The information in
the flying qubit is often not utilized for manipulating the
information in static qubits [18,20,21]. The parameters are
set such that a single pass (inclusive of multiple scattering
inside the channel) of the flying qubits perturbs the com-
bined state of static qubits by a minuscule amount in either
reflection or transmission channels. The transmission channel
was completely blocked to implement unitary operations in
Refs. [18,20,21]. In this work, however, we discuss how we
can utilize the information in the flying qubits in the transmis-
sion channel to infer the state of static qubits. We specifically
analyze the transmission of flying qubits through a system
of one qubit and two qubits embedded in a spin-coherent
channel. We also assume the contacts at the ends provide
flying qubits and perfectly accept the flying qubits without any
backscattering into the channel.

The idea of using spin-polarized flying qubits for readout
of a single qubit has been discussed in the literature [32,33].
As a major distinction from the previous works, we show that
the state of single- and two-qubit systems can be measured by
using unpolarized flying electrons. The entanglement between
static qubits modulates the transmission coefficient [34] sig-
nificantly and we show that it can be used to reconstruct not
only the subclass of pure states but also the full density matrix.

II. MODEL

In this section we discuss the one-dimensional problem
of scattering of spin-polarized electrons by one or two static
impurity spins. The static spins are assumed to be noninteract-
ing with each other, while the incident electron and the static
spins are assumed to interact via the Heisenberg exchange
interaction. Thus, if the impurity spin is located at x = 0, the
scattering potential is taken as δ(x)Jσ̄ f · σ̄s, where σ̄ f and σ̄s

denote the Pauli spin matrix of the incident electron ( f stands
for flying) and the static impurity, respectively, and J denotes
the Heisenberg exchange interaction strength.

Single impurity with frozen spin. To begin with, we consider
only one static spin and assume the spin of the static impurity
to be frozen along the n̂ direction. The transmission coefficient

2469-9926/2021/103(5)/052430(7) 052430-1 ©2021 American Physical Society

https://orcid.org/0000-0002-8105-7150
https://orcid.org/0000-0002-6539-5571
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.052430&domain=pdf&date_stamp=2021-05-26
https://doi.org/10.1103/PhysRevA.103.052430


AMRITESH SHARMA AND ASHWIN A. TULAPURKAR PHYSICAL REVIEW A 103, 052430 (2021)

(2 × 2 matrix in spin-space) is then given by

t = [I2 + i�n̂ · σ f ]−1, (1)

where the dimensionless parameter � is given by � =
mJ/h̄2k, where m and k denote the mass and the wave vector
of the flying electron. I2 denotes a 2 × 2 identity matrix. The
reflection coefficient is related to the transmission coefficient
as r = t − I2. The transmission coefficient can be simplified
as t = 1

1+�2 (I2 − i�n̂ · σ f ). One can see that the factor t†t

is given by t†t = 1
1+�2 I2. Thus, the transmission probability

is independent of the spin direction of the incident electron
and is given by 1

1+�2 . However, the incident spin direction
is rotated around the n axis by tan−1 2�

1−�2 after transmission.
Similarly the reflection probability is spin independent, and
the reflected spin is rotated around the n axis by the same
angle.

Two impurities with frozen spins. We now extend this calcu-
lation to two static spin impurities separated by distance d . We
assume that the flying electron interacts via the Heisenberg ex-
change interaction with both the impurities. We can associate
a scattering matrix s = [r t ′; t r′] with each impurity, where r
and t are defined above and ′;′ separates the two rows of the
matrix. Further r′ = r and t ′ = t here. The combined s matrix
can be calculated from Ref. [35]. The combined transmission
coefficient tcomb under these conditions is given by

tcomb = exp(ikd )t2[I2 − exp(2ikd )r1r2]−1t1, (2)

where the subscripts index the corresponding qubit. Taking
the first impurity spin along the z direction, and the sec-
ond impurity spin oriented along (θ, φ), the factor t†

combtcomb

turns out to be 1
1+2�2(1+cos θ )I2, which is independent of the

incident electron spin. Here, we have assumed kd � 1 for
simplicity. The transmission probability in this case is given
by PT = 1

1+2�2(1+cos θ ) . Thus, the transmission probability is
again independent of the spin direction of the incident elec-
tron. However, the transmission probability depends on the
angle between the two static spins. We can consider these two
impurities attached to two unpolarized leads, and using the
fact that conductance is proportional to the transmission prob-
ability, this system shows “magneto-resistance.” The rotation
of the spin direction of the incident electron can be found from
the transmission and reflection coefficients.

Single impurity with spin escalated to an operator. Let
us now solve the above two problems assuming the impurity
spins to be operators, i.e., treating the impurity spins as qubits.
In the case of single static impurity, the transmission coeffi-
cient (4 × 4 matrix) is t = [I4 + i�σ f · σs]−1. The reflection
coefficient is related to t by r = t − I4. t is given by

t = 1

1 + i�

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 �+i
3�+i

2�
3�+i 0

0 2�
3�+i

�+i
3�+i 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

. (3)

The transmission and reflection probabilities are given by
PT = trace(t†tρ) and PR = trace(r†rρ), where ρ is the density
matrix of the combined system of an incident electron (flying
qubit) and static spin impurity (static spin qubit). Assuming

FIG. 1. Scattering of a flying qubit by two static qubits. Indi-
vidual qubits act as spin-dependent scatterers with reflection and
transmission denoted by [r] and [t] matrices.

that initially the flying qubit is polarized along the z direction
and the static qubit along the (θ, φ) direction, the transmission
probability turns out to be PT = (7�2+1)+2�2 cos(θ )

(�2+1)(9�2+1) . Note that
the transmission probability is independent of the sign of �.
The transmission probability is θ dependent, and thus, we
get “magnetoresistance” when the impurity spin is treated
as an operator. Note magneto-resistance was not seen in the
frozen spin case. After the scattering the system is entangled,
and the rotation of the spin directions can be found from the
transmission and reflection coefficients. The spin of the flying
electron develops a spin polarization along the spin direction
of the static qubit and there are also changes in the spin
polarization in the transverse direction. The same also holds
for the static qubit’s spin; i.e., it develops a spin polarization
along the spin direction of the flying qubit along with changes
in the transverse polarization.

Two impurities with spins escalated to operators. We now
consider the case of two static qubits. We assume that the
static qubits are noninteracting with each other. The flying
qubit interacts with each static qubit via Heisenberg exchange
interaction. We can associate an 8 × 8 scattering matrix with
each static qubit, s = [r t ′; t r′], and combine the two s matri-
ces to get the combined s matrix of the system, from which
we can find out the transmission and reflection coefficients
(see Fig. 1). Knowing the initial density matrix of the com-
bined system of flying and two static qubits, we can find
out the transmission probability as PT = trace(t†

combtcombρi ),
where tcomb is the combined transmission matrix and ρi is
the initial density matrix. Below we give the expression for
transmission probability for the case where the incident flying
qubit is unpolarized and the static qubits are described by a
density matrix (ρ), which was obtained after some algebraic
manipulations:

PT = (1 + 12�2) + 4�2(1 + 8�2)[ρ22 + ρ33 − 2Re(ρ23)]

(1 + 16�2)(1 + 4�2)
.

(4)

Note that we have assumed that kd � 1 in writing above
equation, where d is the distance between the static qubits.
The above equation is valid even for a mixed-state density
matrix of static qubits. As the density matrix is positive
semidefinite, ρ22 + ρ33 − 2Re(ρ23) � 0, which ensures that
the transmission probability is non-negative for any value
of �. The factor ρ22 + ρ33 − 2Re(ρ23) cannot exceed 2 as
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the transmission probability cannot be more than 1. In fact,
when this factor is 2, the transmission probability is 1, for
any value of �. As discussed in the Appendix, the above
equation can be written in a physically transparent way by
noting that 1−〈σ1·σ2〉

2 = ρ22 + ρ33 − 2Re(ρ23), where σ1 and
σ2 are Pauli spin operators of the first and second static qubit,
respectively, and 〈〉 denotes average value. Further, we can
write 1−〈σ1·σ2〉

2 = 2 − 〈S2〉
h̄2 , where S is the total spin operator

of the two static qubits. Note that the maximum and min-
imum values of 〈S2/h̄2〉 are 2 and 0, corresponding to the
triplet and singlet states, respectively. Thus, the transmission
is maximum (equal to 1, for any value of �) for the singlet
state and minimum for the triplet state. Consider a simple
case where the first static qubit is polarized along the z axis
and the second qubit along the (θ, φ) direction. As the qubits
are unentangled, 〈σ1 · σ2〉 = 〈σ1〉〈σ2〉 = cos(θ ). We thus see
that the transmission depends on cos(θ ), but the functional
form is quite different compared to that of the previous case
where the two impurity spins were considered to be frozen. If
the static qubit spins are unentangled, 〈σ1 · σ2〉 ranges from
1 to −1. In general case, the value of 〈σ1 · σ2〉 ranges from
1 (triplet state) to −3 (singlet state). Thus, the range of the
transmission probability can be significantly increased due to
the entanglement.

III. TOMOGRAPHY SCHEMES

We now examine how tomography of single- and two-qubit
system can be performed from the measurement of the trans-
mission probability using unpolarized electrons.

A. Tomography of single qubit

Consider a single static impurity qubit with the density ma-
trix to be determined. We assume that multiple copies of the
impurity qubit are available. To determine the density matrix,
we place an ancilla qubit near the impurity qubit and carry
out the transmission measurements using unpolarized flying
qubits. If the ancilla qubit is polarized along the z direction,
we can measure the average value 〈σz〉 of the impurity qubit.
By changing the polarization of the ancilla qubit to the x and
y directions, we can measure 〈σx〉 and 〈σy〉 values. From these
three average values, the density matrix can be determined
as discussed in the Appendix. Instead of rotating the ancilla
qubit, one can also rotate the impurity qubit by using single-
qubit gates.

B. Tomography of a two-qubit system

We now discuss how tomography of the two-qubit system
can be carried out by measuring the transmission probability
of the incident unpolarized flying qubit. As discussed in the
Appendix, to know the density matrix completely we need
to find out 15 a coefficients which correspond to the average
values of certain operators. We thus need 15 equations relat-
ing the a coefficients. We have seen in the previous section
that measurement of the transmission probability depends on
〈σ1 · σ2〉; i.e., it gives us the value of (a1,1 + a2,2 + a3,3).
We now need two more equations relating a1,1, a2,2, and
a3,3 to determine them. We now apply certain gates (unitary

operators, U ) to the qubit system and measure the trans-
mission probability in the new state (ρnew = UρU †). The
gates are chosen to give us the required two equations.
Consider applying single qubit X gate to the second qubit.
This corresponds to U = I2 ⊗ σx. One can easily check
that UM1,1U † = M1,1, UM2,2U † = −M2,2, and UM3,3U † =
−M3,3, where the various M matrices are defined in the Ap-
pendix. Thus, the values of a2,2 and a3,3 in the new state
change sign. Thus, the transmission probability in the new
state gives us the value of (a1,1 − a2,2 − a3,3). Similarly, mea-
surement of the transmission probability of the state obtained
from the original state after application of the Y gate to the
second qubit gives us (−a1,1 + a2,2 − a3,3). From these three
equations we can obtain a1,1, a2,2, and a3,3. Instead of ap-
plying single-qubit gates to the second qubit, we can as well
apply them to the first qubit and will get the same information.

Let us now see how other coefficients can be measured.
Consider single-qubit rotation around the y axis by an amount
of π/2. This essentially changes z into x and x into −z.
Thus, taking U = I2 ⊗ Ry(π/2), we get UM1,3U † = M1,1,
UM2,2U † = M2,2, and UM3,1U † = −M3,3, i.e., a1,1,new =
a1,3, a2,2,new = a2,2, and a3,3,new = −a3,1. Thus, measurement
of the transmission probability gives the value of a1,3 − a3,1,
as the value of a2,2 is known. Now consider the single-qubit
gate XRy(π/2). Note that the X gate changes y into −y and
z into −z. Thus, the combined operator XRy(π/2) changes x
into z and z into x (and y into −y). Thus, by applying U =
I2 ⊗ XRy(π/2) to the original state and measuring the trans-
mission probability, we get the value of a1,3 + a3,1. From the
two equations for a1,3 and a3,1 we can determine them. (Note
that XRy(π/2) is the same as the Hadamard gate.) Using
this method, coefficients a1,2 and a2,1 can be determined by
the application of Rz(π/2) and Y Rz(π/2) single-qubit gates.
Similarly, coefficients a2,3 and a3,2 can be determined by the
application of Rx(π/2) and ZRx(π/2) single-qubit gates.

We still need to determine six more coefficients: a0,i and
ai,0 where i = 1, 2, or 3. These cannot be determined by
applying single-qubit gates as index 0 cannot be converted
into other nonzero indices by these gates. We need to ap-
ply two-qubit gates to get the remaining six a coefficients.
We can choose the square-root SWAP gate as a two-qubit
gate. The average 〈σ1 · σ2〉 is invariant under this operation.
However, this gate does change M0,i and Mi,0 matrices, e.g.,
M3,2,new = M0,1 + M1,0. If we apply the single-qubit Rx(π/2)
gate on the second qubit after applying the square-root SWAP

gate, the resulting transmission probability depends on a0,1

and a1,0. Applying Rz on qubit 2, followed by the square-root
SWAP gate, followed by Rx(π/2) on qubit 2 gives one more
equation for a0,1 and a1,0. Thus, from these two operations,
a0,1 and a1,0 can be determined. In a similar way we can
determine a0,2, a2,0 and a0,3, a3,0. Note that, in principle, there
are many different choices of single- and two-qubit gates.
We have selected here some of the “standard” gates naturally
implementable in this architecture.

1. Alternative to two-qubit gates

Using auxiliary static qubits. It is possible to avoid us-
age of two-qubit gates in the above scheme. Note that six
coefficients, ai,0 and a0,i with i = 1, 2, or 3, essentially are

052430-3



AMRITESH SHARMA AND ASHWIN A. TULAPURKAR PHYSICAL REVIEW A 103, 052430 (2021)

FIG. 2. Measurement of the average spin values of the first qubit.
The two static impurity spins are denoted by the color blue. An
ancilla qubit is placed near the first static qubit. A flying qubit is
passed through the ancilla qubit and the first static qubit.

the average values of σx, σy, and σz of the first and second
qubit, respectively. The average values for the first qubit can
be measured as shown in Fig. 2. If the flying qubit interacts
only with the first qubit, the transmission probability depends
on the average value of σ of the first qubit along the ancilla
qubit direction. Thus, by varying the polarization of the ancilla
qubit along the x, y, and z directions we can measure the
average values of σx, σy, and σz of the first qubit. This gives
us the coefficients a1,0, a2,0, and a3,0. Similarly we can carry
out the measurements on the second qubit to get a0,1, a0,2,
and a0,3. Note that, in the type of measurements as shown
in Fig. 2, what matters is the density matrix traced over the
second qubit. It shown in the Appendix that this operation
results in a density matrix which depends on the average
values of the Pauli operators of the first qubit. As a related
comment, it should be noted that any single qubit unitary
operation performed on the second qubit does not change
the transmission probability through the first qubit, even if
the qubits are entangled. It is thus not possible to modulate
the transmission via entanglement in such a setting where the
other entangled qubit never interacts with the flying qubit.
Even if we carry out a projective measurement on the second
qubit, the state of the first qubit will also collapse, but the
transmission on average still remains the same.

Using polarized detectors. Up to now we have consid-
ered unpolarized incident flying qubits and looked at the
measurement of the transmission probability. If we can also
measure the spin polarization of the transmitted flying qubit,
we can get additional information. If the flying qubit is
transmitted, the density matrix of the system is given by
tcombρit

†
comb/PT . The average value of the flying qubit’s Pauli

spin operators obtained from the density matrix is given by
6�2

(1+16�2 )(1+4�2 )
〈σ1+σ2〉

PT
. Thus, the incident unpolarized flying

qubit gets polarized after transmission and the average spin
polarization is along the net spin direction of the static qubits.
Thus, from these measurements, we can measure 〈σ1 · σ2〉 and
〈σ1 + σ2〉. In terms of a coefficients, the measurement of the
x, y, and z components of 〈σ1 + σ2〉 corresponds to measuring
a1,0 + a0,1, a2,0 + a0,2, and a3,0 + a0,3, respectively. If we ap-
ply the X gate to the second qubit, the average value of 〈σ2,y〉
and 〈σ2,z〉 changes sign, and we can measure the values of
a2,0 − a0,2 and a3,0 + a0,3. If we apply the Y gate to the second
qubit, the average value of 〈σ2,x〉 and 〈σ2,z〉 changes sign, and

we can measure the values of a1,0 − a0,1 and a3,0 + a0,3. Thus,
we can measure a0,123 and a123,0 without the need of two qubit
gates nor the arrangement shown in Fig. 2.

Using polarized injectors. Instead of using an unpolar-
ized incident electron and detecting the polarization of the
transmitted electron, we can use a polarized electron as input
and then measure the transmission probability. If the incident
electron is polarized along the z direction, the transmis-
sion probability is given by PT − 2�2

(1+16�2 )(1+4�2 ) (σ1,z + σ2,z ),
where PT is the transmission probability of the unpolarized
electron. Thus, measuring the transmission probability with
electrons polarized along and opposite to the x, y, and z
directions gives us the values of 〈σ1 · σ2〉 and 〈σ1 + σ2〉.

2. Tomography of a pure two-qubit state

If the two static qubits are in a pure state, we can
write the wave function as |ψ〉 = a1eiθ1 |00〉 + a2eiθ2 [|01〉 +
|10〉 /

√
2] + a3[|01〉 − |10〉 /

√
2] + a4eiθ4 |11〉. We have cho-

sen θ3 to be 0. There are six unknown parameters due to the
normalization condition. We can see that 〈σ1 · σ2〉 = 1 − 4a2

3.
Thus, measurement of the transmission probability of the
unpolarized electron gives us the a3 parameter. As done pre-
viously, we can apply various gates to the static qubits and
measure the transmission probability. If we measure the trans-
mission probability after applying the X , Y , and Z gates to
the second qubit, we can get the amplitudes of all the four
wave-function components, i.e., a1, a2, a3, and a4. We can
apply Rx(π/2), Ry(π/2), and Rz(π/2) gates to the second
qubit and measure the transmission probability. This gives us
partial information about the phases; e.g., we get the value
of sin(θ2), leaving an uncertainty of π − θ2. If we measure
the transmission probability with polarized qubits, such an
uncertainty can be removed.

C. Discussion on choice of parameters

We have assumed Heisenberg exchange interaction be-
tween the flying qubit and each static qubit. If the interaction
Hamiltonian is invariant under any unitary operation U , the
transmission coefficients t1 and t2 and hence the combined s
matrix are also invariant. This implies that if the initial density
matrix is transformed under U , the transmission probability
remains the same. The interaction Hamiltonian here is in-
variant under the rotation of all spins. The previous results,
viz., the transmission probability of unpolarized electrons de-
pends on 〈σ1 · σ2〉 and the transmission probability of spins
polarized along n̂ depend on 〈σ1 · σ2〉 and 〈(σ1 + σ2) · n̂〉, are
consistent with these symmetry arguments. (It should be also
noted that the transmission is invariant under time reversal.)
We have assumed the parameter kd to be small; it can differ
from 2nπ by a small amount, in principle, while combin-
ing the s matrices. In general, the transmission depends on
the parameter exp(ikd ) [see Eq. (2)]. However, this does
not change the qualitative nature of the transmission prob-
ability; i.e., it still depends on 〈σ1 · σ2〉 and 〈(σ1 + σ2) · n̂〉,
but the dependence of various coefficients on the exp(ikd )
factor is more intricate. As an example, the previous re-
sult that transmission is 1 for singlet states no longer holds.
Nevertheless the results remain unaltered for kd = nπ , which
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FIG. 3. Heat engine. A static qubit (light blue color) is placed
between a ferromagnetic (FM) reservoir and a nonmagnetic (NM)
reservoir. By opening gate 1 and closing gate 2, the qubit gets
polarized along the magnetization direction of the FM. By opening
gate 2 and closing gate 1, the qubit gets depolarized.

is more practical than the kd = 0 limit, and the proposed algo-
rithms for tomography will still work. This argument can be
extended to multiple-qubit systems; e.g., in the case of a three-
qubit system, the transmission probability would depend on
〈σ1 · σ2 + σ2 · σ3 + σ3 · σ1〉 and 〈(σ1 + σ2 + σ3) · n̂〉. In this
way, the present scheme can be extended to tomography of
multiple-qubit systems.

We now consider optimizing the values of the parameters
(kd and �) for the case of tomography by unpolarized flying
qubits. If kd = nπ , the transmission coefficient (PT ) is one
for the singlet state and (1 + 12�2)/(1 + 16�2)(1 + 4�2)
for the triplet state. Thus, a larger value of � would give a
larger variation in the transmission coefficient. In the limit
of large �, PT for the triplet state would be zero. As the PT

values are at maximum and minimum possible values, the
first derivative of PT with respect to the parameters kd and
� is zero, implying that such a choice would be robust against
variations in the parameters.

IV. AN ALTERNATE APPLICATION

We finally consider another application of the system of
flying and static qubits. Consider a static qubit placed be-
tween a polarized reservoir and an unpolarized reservoir as
shown in Fig. 3. There are two controllable gates between
the reservoirs and the static qubit. If we keep gate 2 closed
and gate 1 open, the static qubit interacts with the polarized
flying qubits incident from the polarized reservoir. The flying
qubits finally return to the reservoir as gate 2 acts like a
perfect reflector. The flying and static qubits get entangled
due to the Heisenberg exchange interaction, and the state
of the static qubit is changed when the flying qubit returns
to the reservoir, which corresponds to taking a partial trace
of the combined density matrix over the flying qubit. This
effect has been analyzed in Refs. [18,36] and subsequently
in Refs. [20,21]. After sequential interaction with many flying
qubits, the static qubit gets polarized along the polarization
direction of the reservoir. We now close gate 1 and open gate
2. The static qubit now interacts with unpolarized flying qubits
emerging from the second reservoir. After interaction with
many flying qubits, the static qubit gets unpolarized. After
interaction with the first reservoir, the static qubit’s state is
a pure state with zero entropy, and after interaction with the
second reservoir, the static qubit is in a completely mixed state

with entropy kB ln(2). Thus, in one cycle a maximum entropy
of kB ln(2) can be transferred from the unpolarized reservoir
to the polarized reservoir. Thus, the system shown in Fig. 3
can work as a heat engine. We can replace the single qubit by
many noninteracting static qubits. Our numerical simulations
indicate that it is possible to “magnetize” and “demagne-
tize” the qubits by connecting them to the ferromagnetic and
nonmagnetic reservoirs. The process, however, needs some
single-qubit operations on the qubits (which do not change
entropy) to completely magnetize and demagnetize the qubits.

V. CONCLUSION

In this paper, we have analyzed the transmission of flying
qubits from a system of static impurity spins.

The idea of quantum magnetoresistance is discussed
whereby the transmission probability and hence the conduc-
tance depends on the entangled quantum state of the static
qubits. We explicitly obtained the expressions of transmission
probability as a function of density matrix components for one
or two qubits. The tomography scheme we develop hinges
on the fact that the transmission probability through a two-
qubit system depends on the expectation value of the scalar
product of the spin operators of the two qubits. Measurement
of the transmission coefficient after application of appropriate
unitary gates is sufficient for inferring the density matrix. For
tomography of a single static qubit, we use another ancilla
static qubit in a known state. Finally, we discuss another
similar scenario containing a single qubit connected to two
different types of reservoirs (one polarized and the other
unpolarized), each with controlled gates but now utilizing
only the reflection channels. Alternating connections to these
reservoirs enables the transfer of entropy, which is the tell-tale
sign of a minuscule heat engine.
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APPENDIX

The density matrix for a single qubit can be resolved as

ρ = 1
2 [I2 + 〈σx〉σx + 〈σy〉σy + 〈σz〉σz], (A1)

where the average of an operator O is given by 〈O〉 =
trace(ρO). Thus, the density matrix is uniquely determined
if we know 〈σx〉, 〈σy〉, and 〈σz〉.

For two qubits, the density matrix (4 × 4) can be resolved
into 16 matrices obtained from the set (I2, σx, σy, σz ) ⊗
(I2, σx, σy, σz ). We can write

ρ = 1
4 [a0,0(I2 ⊗ I2) + a0,1(I2 ⊗ σx ) + a0,2(I2 ⊗ σy)

+ a0,3(I2 ⊗ σz ) + a1,0(σx ⊗ I2) + a1,1(σx ⊗ σx )

+ a1,2(σx ⊗ σy) + · · · + a3,3(σz ⊗ σz )]. (A2)
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All the a coefficients are real and given by ai, j = 〈σi ⊗ σ j〉,
where σ0 = I2, σ1 = σx, etc. Note that a0,0 = 1 as the trace of
the density matrix is 1. We denote the various matrices in the
above equation by symbol M, i.e., Mi, j = σi ⊗ σ j . To find out
the density matrix of the two-qubit system, we need to know
these 15 coefficients. Taking the above form of the density
matrix, we find that ρ22 + ρ33 − 2Re(ρ23) = 1

2 [1 − (a1,1 +
a2,2 + a3,3)]. Further using, a1,1 + a2,2 + a3,3 = 〈σ1 · σ2〉, we
see that the transmission is determined by 〈σ1 · σ2〉. Thus, we
can write

PT = (1 + 12�2) + 2�2(1 + 8�2)(1 − 〈σ1 · σ2〉)

(1 + 16�2)(1 + 4�2)
. (A3)

If we take the partial trace of the density matrix over the
second qubit, we get

ρ1 = 1

2

{
I2 −

[
a3,0 a1,0 − ia2,0

a1,0 + ia2,0 −a3,0

]}
. (A4)

The traced out matrix can be compared to Eq. (A1). It shows
that the average values of the Pauli operators of the first qubit
in the combined density matrix are the same as average values
obtained from the traced out density matrix. Similarly, if we
take the partial trace of the density matrix over the first qubit,
we get

ρ2 = 1

2

{
I2 −

[
a0,3 a0,1 − ia0,2

a0,1 + ia0,2 −a0,3

]}
(A5)

as the reduced density matrix for the second qubit. The Pauli
matrix averages in the reduced density matrix match the cor-
responding Pauli matrix averages of the second qubit in the
combined density matrix. This can be utilized for determin-
ing the coefficients appearing in the reduced density matrix
without the use of entangling gates as discussed in the main
text.
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