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Simple criterion for local distinguishability of generalized Bell states in prime dimension
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Local distinguishability of sets of generalized Bell states (GBSs) is investigated. We first clarify the conditions
such that a set of GBSs can be locally transformed to a certain type of GBS set that is easily distinguishable within
local operations and one-way classical communication. We then show that if the space dimension d is a prime,
these conditions are necessary and sufficient for sets of d GBSs in Cd ⊗ Cd to be locally distinguishable. Thus
we obtain a simple computable criterion for local distinguishability of sets of d GBSs in prime dimension d .
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I. INTRODUCTION

A set of orthogonal quantum states can be perfectly
distinguished, though the laws of quantum mechanics do
not allow one to distinguish nonorthogonal quantum states
perfectly [1–4]. However, the issue is more involved when
the states are shared by several parties and they are allowed
to perform only local operations and classical communica-
tion (LOCC). Any two bipartite orthogonal states can be
distinguished by one-way LOCC [5]. For sets of three or-
thogonal states, however, some sets require two-way LOCC
to distinguish, and some sets are not even locally distinguish-
able [6,7]. In the space of Cd ⊗ Cd , there are d2 orthogonal
states. However, it is impossible to locally distinguish more
than d orthogonal maximally entangled states perfectly in
Cd ⊗ Cd [8–10].

The generalized Bell states (GBSs) are typical exam-
ples of orthogonal maximally entangled states in Cd ⊗ Cd ,
and much attention has been paid to clarifying local dis-
tinguishability of sets of GBSs [11–18]. In particular, some
sufficient conditions for GBS sets to be one-way LOCC
distinguishable or indistinguishable have been discussed
in [11,15,18].

In this paper, we present a simple computable
criterion for local distinguishability (not limited to be
one way) of sets of d GBSs in prime dimension d . In
Sec. III, we clarify the conditions such that a set of GBSs
can be locally transformed to a certain type of GBS set that
can be distinguished by a simple strategy within one-way
LOCC. In Sec. IV, if d is a prime, these conditions are
shown to be necessary and sufficient for sets of d GBSs
in Cd ⊗ Cd to be locally distinguishable. Discussion
including the case of composite-number dimensions is given
in Sec. V.

II. GENERALIZED BELL STATES

Consider bipartite pure states shared by Alice and Bob
in space Cd ⊗ Cd . It is convenient to represent a maxi-
mally entangled state (MES) by a unitary operator W in Cd

(see, e.g., [8–11]) as

|W 〉AB = 1√
d

d−1∑
a,b=0

Wab |a〉A ⊗ |b〉B

= (W ⊗ 1) |1〉AB , (1)

where

|1〉AB = 1√
d

d−1∑
a=0

|a〉A ⊗ |a〉B , (2)

with {|a〉}d−1
a=0 being an orthonormal base of Cd . We note that

W denotes both the bipartite state and the unitary operator in
this useful notation.

The inner product between two MES states |W1〉 and |W2〉,
expressed in terms of the corresponding operators W1 and W2,
is given by

〈W1|W2〉 = 1

d
tr W †

1 W2. (3)

Suppose Alice and Bob perform some local unitary operations
given by A and B, respectively. We find that a MES state |W 〉
is transformed to another MES state |AW BT 〉 as

(A ⊗ B) |W 〉 = |AW BT 〉 , (4)

where the superscript T represents the transposition with
respect to the base {|a〉}d−1

a=0 .
Generalized Bell states (GBSs) belong to a special class of

MESs, where the unitary operator W is given by

Wm,n = X mZn (m, n = 0, 1, . . . , d − 1). (5)

Here, X and Z are generalized Pauli operators defined as

X =
d−1∑
a=0

|a + 1〉 〈a| , (6)

Z =
d−1∑
a=0

ωa
d |a〉 〈a| , (7)
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where we employ the periodic convention for the base states;
that is, |d + a〉 = |a〉, and ωd is a dth primitive root of unity,
ωd = e2π i/d . It is readily checked that the unitary operators X
and Z satisfy the following relations:

X d = Zd = 1, ZX = ωd XZ. (8)

We can also see that the set of d2 unitaries {Wm,n}d−1
m,n=0 in

Eq. (5) is an orthonormal base in the operator space of Cd ,

tr W †
m,nWm′,n′ = dδmm′δnn′ . (9)

This together with Eq. (3) implies that d2 GBSs {|Wm,n〉}d−1
m,n=0

form an orthonormal base in Cd ⊗ Cd , and therefore they are
perfectly distinguishable by global measurements in the total
space Cd ⊗ Cd . However, it is known that Alice and Bob
cannot distinguish more than d MESs in d × d dimensions,
if they are restricted to employ local operations and classical
communication (LOCC) [8–10].

Suppose we are given a set of � GBSs W = {|Wmi,ni〉}�i=1
with � � d . To specify a GBS set, we will use the following
notations interchangeably:

W = {|Wmi,ni〉}�i=1 = {Wmi,ni}�i=1 = {(mi, ni )}�i=1. (10)

Our concern in this paper is what the conditions are for the set
W to be distinguishable by LOCC.

Fan [11] noted that there is a special class of GBS sets for
which one can easily find the way to distinguish the states
with one-way LOCC. This is when all mi(i = 1, 2, . . . , �) are
distinct, and GBS sets with this property will be called F-type
sets in this paper. Assume the set W is F type. The states in
the set are explicitly given by

|Wmi,ni〉 = 1√
d

d−1∑
a=0

ω
nia
d |a + mi〉 |a〉 (i = 1, . . . , �). (11)

Suppose Alice and Bob locally perform the projective mea-
surement in the base {|a〉}d−1

a=0 and compare their outcomes.
Then they obtain mi, thereby identifying i since all mi

are distinct.

III. LOCAL UNITARY TRANSFORMATIONS AND
F-EQUIVALENT SET

Suppose a GBS set W = {(mi, ni )}�i=1 is transformed to
another set W ′ = {(m′

i, n′
i )}�i=1 by some local unitary transfor-

mations,

U ⊗ V |X mi Zni〉 = |UX mi ZniV T 〉
∼ |X m′

i Zn′
i〉 (i = 1, . . . , �), (12)

where the symbol “∼” means equality up to a global phase.
It is clear that local distinguishability is invariant under local
unitary transformations. If a set W can be transformed to a
F-type set W ′ (defined in the preceding section), the set W is
also distinguishable by one-way LOCC [11].

Let us determine the most general form of local unitary
operations that transform all GBS states to other GBS states,
that is,

UX mZnV T ∼ X m′
Zn′

(m, n = 0, . . . , d − 1). (13)

A GBS set W is called F equivalent if W can be transformed
to a F-type set by this local unitary operation. By setting m =
n = 0 in Eq. (13), we have

UV T ∼ X μ0 Zν0 , (14)

for some integers 0 � μ0, ν0 � d − 1. This implies

UX mZnU † ∼ X m′′
Zn′′

, (15)

for some m′′, n′′, since

UX mZnU † = UX mZnV T (UV T )−1

= X m′
Zn′

(X μ0 Zν0 )−1 ∼ X m′−μ0 Zn′−ν0 .

Some specific types of unitary operators U with this property
have been used to study the F equivalence of GBS sets [11,18].
In this paper, we will employ more general unitary operators
by establishing the necessary and sufficient conditions for the
existence of unitary U with the property of Eq. (15).

First assume that Eq. (15) holds for some unitary U . Setting
m = 1, n = 0 or m = 0, n = 1, we obtain{

X ′ ≡ UXU † ∼ X αZγ ,

Z ′ ≡ UZU † ∼ X βZδ,
(16)

for some integers 0 � α, β, γ , δ � d − 1. It is clear that the
relations given by Eq. (8) persist under a unitary transforma-
tion, implying X ′d = Z ′d = 1 and Z ′X ′ = ωd X ′Z ′. From the
latter relation, we find that α, β, γ , δ should satisfy

det

(
α β

γ δ

)
≡ 1 (mod d ). (17)

Conversely, assume that integers 0 � α, β, γ , δ � d − 1
satisfy the relation (17), and define{

X ′ ∼ X αZγ ,

Z ′ ∼ X βZδ.
(18)

We have the relation Z ′X ′ = ωd X ′Z ′ and, furthermore, we
can evidently choose global phase factors of X ′, Z ′ such that
X ′d = Z ′d = 1 since (X αZγ )d ∼ (X βZδ )d ∼ 1. We can show
that the set of operators {X ′, Z ′} is unitary equivalent to
{X, Z}; that is, there exists a unitary operator such that X ′ =
UXU †, Z ′ = UZU †. This can be seen in the following way:
Let us take an eigenstate |ψ0〉 of Z ′ with an eigenvalue being
a dth root of unity, ω

k0
d . Using the relation Z ′X ′ = ωd X ′Z ′

repeatedly, we find that |ψk〉 ≡ X ′k |ψ0〉 is an eigenstate of Z ′
with eigenvalue ω

k0+k
d . Now it is clear that the relations X ′ =

UXU †, Z ′ = UZU † hold if we take U = ∑d−1
k=0 |ψk−k0〉 〈k|.

Thus we establish the following lemma:
Lemma 1. There exists a unitary operator U such that{

UXU † ∼ X αZγ ,

UZU † ∼ X βZδ,
(19)

if and only if integers 0 � α, β, γ , δ � d − 1 satisfy

det

(
α β

γ δ

)
≡ 1 (mod d ). (20)

All 2 × 2 matrices (
α β

γ δ
) with integer entries satisfying

0 � α, β, γ , δ � d − 1 and the condition given by Eq. (20)
form a group under matrix multiplication modulo d . This
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group is denoted by Sp(d ). We note that U is not unique
for a given element of Sp(d ). It depends on global phase
factors that are not specified in Eq. (19). The phase of U itself
is not determined either since the unitary transformations of
Eq. (19) are independent of a phase change, U → eiθU . For
discussions on explicit forms of U corresponding to a given
element of Sp(d ), see Ref. [19], where a Euclidean type of
algorithm to construct U is presented.

Using UX mZnV T = UX mZnU †(UV T ) together with
Eqs. (14) and (19), we conclude that operator X mZn

transforms under local transformations as

UX mZnV T ∼ X m′
Zn′

, (21)

where(
m′
n′

)
≡

(
α β

γ δ

)(
m
n

)
+

(
μ0

ν0

)
(mod d ). (22)

Now it is easy to write the conditions for a GBS set W =
{(mi, ni )}�i=1 to be F equivalent. The conditions are that

m′
i = miα + niβ + μ0 (i = 1, . . . , �) (23)

are all distinct modulo d for some Sp(d ) matrix (
α β

γ δ
) and

an integer 0 � μ0 � d − 1.
It is clear that the integer μ0 can be omitted in the

above conditions. As for α and β, it is assumed that they

are the elements of some Sp(d ) matrix (
α β

γ δ
). However,

these constraints can be lifted; that is, α and β are any in-
tegers. This can be seen in the following way: Suppose that
miα + niβ are all distinct modulo d for some integers α and
β. It is clear that miα1 + niβ1 are also all distinct modulo
d , where α1 ≡ α, β1 ≡ β (mod d ) and 0 � α1, β1 � d − 1.
Write α1 = cα2, β1 = cβ2 with c = gcd(α1, β1). Note that
gcd(α2, β2) = 1. Then we find that miα2 + niβ2 are all distinct
modulo d and there are some integers 0 � γ2, δ2 � d − 1
such that α2δ2 − β2γ2 ≡ 1 (mod d ).

Thus we arrive at the following theorem:
Theorem 1. A set of � GBSs W in Cd ⊗ Cd is F equivalent

and therefore one-way LOCC distinguishable if and only if

miα + niβ (i = 1, . . . , �) (24)

are all distinct modulo d for some integers α and β.
Theorem 1 gives a sufficient condition for a GBS set W

to be distinguishable by one-way LOCC. We show that the
same condition can be derived from a different point of view.
Ghosh et al. showed that a GBS set W is one-way LOCC
distinguishable if and only if there is some state |φ〉 such that
{X mi Zni |φ〉}�i are pairwise orthogonal [8]. This orthogonality
is expressed as

〈φ|X mi−mj Zni−n j |φ〉 = 0, i 
= j. (25)

We show that in some cases, the state |φ〉 satisfying this
equation can easily be found. To do so, we will employ a
general property of two unitary operators. Let V and V ′ be
unitary, and assume that VV ′ = λV ′V with λ 
= 1. For any
eigenstate |φ〉 of V , we find

〈φ|V ′|φ〉 = λ 〈φ|V †V ′V |φ〉 = λ 〈φ|V ′|φ〉 . (26)

From this, it follows that 〈φ|V ′|φ〉 = 0 since λ 
= 1.

Now let V be X −βZα with some integers α, β and suppose
that V does not commute with V ′ = X mi−mj Zni−n j for every
i 
= j. This noncommutability can be expressed as the follow-
ing conditions:

(mi − mj )α + (ni − n j )β 
= 0 (mod d ), i 
= j, (27)

which is equivalent to the conditions in Theorem 1. Taking
|φ〉 to be an eigenstate V , we obtain Eq. (25), which shows
that the set W is one-way LOCC distinguishable.

IV. NECESSARY AND SUFFICIENT CONDITION FOR
LOCAL DISTINGUISHABILITY IN THE CASE OF PRIME

� = d

Theorem 1 in the preceding section gives a sufficient con-
dition for a GBS set W = {|Wmi,ni〉}�i=1 in Cd ⊗ Cd to be
distinguishable by one-way LOCC for arbitrary � and d . In
this section, we consider the case where d is a prime number
and � = d . Then it will be shown that the condition given
in Theorem 1 is also necessary for one-way LOCC distin-
guishability; F equivalence is equivalent to one-way LOCC
distinguishability. Furthermore, we will see that the restriction
to one-way LOCC can be removed by using a lemma given by
Yu and Oh [20].

Let us assume that a set of d GBSs W = {|Wmi,ni〉}d
i=1

is one-way LOCC distinguishable and show that the set W
is then F equivalent. According to Ghosh et al., there is a
normalized state |φ〉 such that

〈φ|W †
mi,ni

Wmj ,n j |φ〉 = δi j (i, j = 1, . . . , d ), (28)

which implies

d∑
i=1

Wmi,ni |φ〉 〈φ|W †
mi,ni

= 1. (29)

For |φ〉 〈φ| on the left-hand side, we substitute its expanded
form in terms of the complete operator set {Wm,n}d−1

m,n=0,

|φ〉 〈φ| = 1

d

d−1∑
m,n=0

〈φ|W †
m,n|φ〉Wm,n. (30)

We obtain
d−1∑

m,n=0

〈φ|W †
m,n|φ〉 κmnWm,n = 1, (31)

where κmn is defined as

κmn = 1

d

d∑
i=1

ω
nim−min
d . (32)

Note that Eq. (31) is the expansion form of the iden-
tity 1 in terms of Wm,n. When (m, n) 
= (0, 0), the co-
efficients 〈φ|W †

m,n|φ〉 κmn should vanish. Evidently there
are some (m, n) 
= (0, 0) such that 〈φ|W †

m,n|φ〉 
= 0, which
requires κmn = 0.

Here we employ the following lemma:
Lemma 2. Let ωd = e2π i/d , with d being a prime. Assume

d∑
i=1

ω
νi
d = 0, (33)
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for some d integers, 0 � νi � d − 1. This is possible if and
only if all νi are distinct, i.e., {νi}d

i=1 = {0, 1, . . . , d − 1}.
The proof of Lemma 2 will be given at the end of this

section. We have shown that if the GBS set W is one-way dis-
tinguishable, then κm,n = 0 for some integers m, n. According
to Lemma 2, this implies that nim − min (i = 1, . . . , d ) are
distinct modulo d for some integers m, n, and therefore, by
Theorem 1, we conclude that the set W is F equivalent.

Thus we have shown that a set of d GBSs W in prime
dimension is one-way LOCC distinguishable if and only if W
is F equivalent.

As shown in the following, the restriction “one way” can
actually be removed. For that, we employ the lemma of Yu
and Oh [20].

Lemma: Yu and Oh. Assume that a set of d GBSs
W = {Wmi,ni}d

i=1 in Cd ⊗ Cd satisfies the following
conditions: If

∑d
i=1 ω

mni−nmi
d = 0, then (m, n) ≡ (mi −

mj, ni − n j ) (mod d ) for some i 
= j. This is possible only
when W is not distinguishable by LOCC.

Here LOCC is not restricted to be one way. This lemma
was derived by a method of detecting the local indistinguisha-
bility proposed by Horodecki et al. [21]. It is based on the fact
that the LOCC transition of bipartite states |ψ〉 → {pi, |ψi〉} is
possible if and only if the vector

∑
i piλ(ψi ) majorizes λ(ψ )

[22], where λ is the vector of squared Schmidt coefficients.
This is the reason why LOCC in this lemma is not restricted
to be one way.

Suppose that the set W is not F equivalent. As shown
before, this implies that there are no integers m, n such that∑d

i=1 ω
mni−nmi
d = 0. The lemma of Yu and Oh tells that the set

W is not distinguishable by LOCC. We thus obtain the main
result of this paper.

Theorem 2. A d-GBS set W = {Wmi,ni}d
i=1 in Cd ⊗ Cd with

d being prime is distinguishable by LOCC if and only if W is
F equivalent; that is,

miα + niβ (i = 1, . . . , d ), (34)

are all distinct modulo d for some integers α and β.
The rest of this section is devoted to the proof of Lemma 2.

In the complex plane, the points {ων
d}d−1

ν=0 are at the vertices of
a regular d-sided polygon inscribed in the unit circle. The “if”
part of the lemma is evident. For small primes (d = 2,3), the
“only if” part also appears to be evident. For larger primes,
however, some knowledge of the cyclotomic polynomials is
needed.

The nth cyclotomic polynomial is defined to be

�n(x) ≡
∏

1 � ν � n
gcd(ν, n) = 1

(
x − e

2π i
n ν

)
. (35)

Its roots are all nth primitive roots of unity. It can be shown
that the coefficients of the cyclotomic polynomials are inte-
gers. For example, we find

�1(x) = x − 1, �2(x) = x + 1, �3(x) = x2 + x + 1,

�4(x) = x2 + 1, �5(x) = x4 + x3 + x2 + x + 1,

�6(x) = x2 − x + 1, . . . . (36)

For a prime n, �n(x) is clearly given by

�n(x) = xn − 1

x − 1
=

n−1∑
ν=0

xν, (37)

since all nth roots of unity are primitive except for unity itself.
One of the remarkable properties of the cyclotomic polyno-
mials is that �n(x) is irreducible over Q[x] (all polynomials
with rational coefficients) [23,24]. It has no nontrivial factors
in Q[x] with smaller degree, and therefore it is the unique
minimal polynomial of e

2π i
n over Q[x]. This means that if

a polynomial f (x) in Q[x] is monic (the leading coefficient
is 1) and it satisfies f (e

2π i
n ) = 0, then we have deg f (x) >

deg �n(x) or f (x) = �n(x).
Suppose that the relation

∑d
i=1 ω

νi
d = 0 holds, and consider

the following polynomial of x:

fd (x) ≡
∑d

i=1 xνi

the leading coefficient of
∑d

i=1 xνi
. (38)

We then observe
(i) fd (x) is a polynomial of x with rational coefficients, and

it is monic.
(ii) fd (ωd ) = 0.
(iii) deg fd (x) � d − 1.
Since deg �d (x) = d − 1 for a prime d , we conclude

fd (x) = �d (x), which is possible only if all νi are distinct.
This completes the proof of Lemma 2.

V. DISCUSSION AND CONCLUDING REMARKS

We have shown that local distinguishability is equivalent
to F equivalence for a set of d GBSs in Cd ⊗ Cd with prime
d . Here it should be emphasized that the GBS set that cannot
be transformed to be F type is not distinguishable even with
two-way LOCC. Theorems 1 and 2 provide a computable sim-
ple criterion for that: a finite number of integer calculations
are sufficient to test whether a GBS set is F equivalent.

It is not straightforward to extend this conclusion to general
� < d cases. One reason for this can be seen in the rewriting
of “orthogonality” in Eq. (28) to “completeness” in Eq. (29),
which is possible only if the number of states is equal to the
space dimension.

Let us take some cases where the dimension d is not
prime. Consider d-GBS sets with d = d2

1 . In the case of
d = 4, there are two types of one-way LOCC distinguishable
GBS sets that are not F equivalent [12,13]. One of them
is W = {(0, 0), (0, 2), (2, 0), (2, 2)}. This set can easily be
generalized to general d = d2

1 cases. Consider the GBS set
given by

W = {X μd1 Zνd1}d1−1
μ,ν=0. (39)

Clearly the set W is not F type. It is not even F equivalent
since it is invariant under the Sp(d ) transformations given in
Eq. (22). However, the set W is one-way LOCC distinguish-
able. To see this, take

|φ〉 = 1√
d1

(

d1︷ ︸︸ ︷
1, 1, . . . , 1,

d2
1 −d1︷ ︸︸ ︷

0, 0, . . . . . . . . . , 0). (40)
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Then we find that d states given by

X μd1 Zνd1 |φ〉 = 0, μ, ν = 0, . . . , d1 − 1, (41)

are pairwise orthogonal, showing that W is one-way LOCC
distinguishable. When d = d2

1 , we thus found that distin-
guishability by one-way LOCC � F equivalence.

We performed some numerical analysis to test distin-
guishability by one-way LOCC for all sets of six GBSs in
6 × 6 dimension, which is the simplest example for d =
d1d2 with relatively prime d1 and d2. The results indicate
that distinguishability by one-way LOCC is equivalent to F
equivalence in this example. Further studies are needed in
order to clarify how this equivalence persists in general d =
d1d2 cases.
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