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Impact of correlations and heavy tails on quantum error correction
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We show that space- and time-correlated single-qubit rotation errors can lead to high-weight errors in a
quantum circuit when the rotation angles are drawn from heavy-tailed distributions. This leads to a breakdown
of quantum error correction, yielding reduced or, in some cases, no protection of the encoded logical qubits.
While heavy-tailed phenomena are prevalent in the natural world, there is very little research as to whether noise
with these statistics exists in current quantum processing devices. Furthermore, it is an open problem to develop
tomographic or noise spectroscopy protocols that could test for the existence of noise with such statistics. These
results suggest the need for quantum characterization methods that can reliably detect or reject the presence of
such errors together with continued first-principles studies of the origins of space- and time-correlated noise in
quantum processors. If such noise does exist, physical or control-based mitigation protocols must be developed
to mitigate this noise as it would severely hinder the performance of fault-tolerant quantum computers.
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I. INTRODUCTION

The theory of fault tolerance and the associated threshold
theorem demonstrate that if the physical error rate per gate
can be lowered below some threshold, then one can perform
quantum computation with arbitrary accuracy with polyno-
mial overhead (see, e.g., [1–5]). The prevailing noise model
for analyzing quantum error correcting codes is noise that
manifests itself as bit flips and phase flips that are local in
both time and space, meaning there are no spatial or temporal
correlations [6]. However, it is well known that at least some
spatial correlations are inevitable in a quantum system due to
such physical effects as common baths shared among qubits
or control-line crosstalk [7]. In addition, time-correlated noise
is generally always present (e.g., 1/ f α-type noise in a super-
conducting qubit system [8–13]).

For these reasons, there have been a number of stud-
ies that have examined the impact of spatial and temporal
noise correlations on quantum error correction (see, e.g.,
[3,14–21]). Despite the proliferation of studies examining
noise correlations, the complete impact on error correction
is mixed. Some studies suggest that noise correlations are
fairly detrimental [14,15,18,20,22], while others suggest that
most realistic models of correlated noise can still be handled
via quantum error correction with a manageable overhead
[3,14,16,17,19,21].

These disagreements arise due to the difficulty in analyz-
ing and simulating a quantum error correction (QEC) code
operating on realistic multilevel quantum systems interacting
with a general open quantum system bath. Approximations
are always required to create manageable calculations such as
considering only the two-level subspace of the multilevel sys-
tem and severe approximations as to the impact of the bath on
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the qubits. The most restrictive of these bath approximations
is the assumption that it can be modeled using the Pauli error
model, where random bit flips and phase flips are inserted
stochastically into the circuit. Despite the simple nature of
this error model, it has proven highly useful in the general
theory of fault-tolerant quantum error correction (QEC) and
the development of new QEC codes.

The standard theory of fault-tolerant QEC assumes that
if a weight-one Pauli error occurs with probability p, then
a weight-two Pauli error occurs with probability of order p2

and so on. Under these assumptions, a QEC code will yield
a logical error rate proportional to p(d+1)/2, where d is the
code distance. Correlated Pauli errors are clearly detrimental
and reduce the effectiveness of the QEC code. If a weight-
two error occurs with an error rate proportional to p, then
the effective distance of the code is reduced by 1 and so
on. Generating these types of errors can happen if the in-
teraction Hamiltonian contains entangling terms (sometimes
called weight-two generators). These types of errors might
arise from a common bath shared by all qubits that generates
entanglement or residual coupling between qubits that cannot
be effectively turned off to a sufficient level. It is generally
assumed that qubits, at best, might share some portion of
the bath, but that the correlations would be short range at
worst. Unfortunately, models of open quantum systems with
spatially correlated baths are not well studied, although some
progress has been made [23]. Despite this, it is generally
assumed that these higher-weight errors can be effectively
controlled and mitigated in future quantum systems.

In this paper, we analyze a related model of decoherence,
but one that avoids the difficulties required when performing
general open quantum system calculations. The errors are
modeled as classical random variables within the Hamilto-
nian. This model is often called the semiclassical system bath
model. It is an alternative model to a general open quan-
tum system coupled to a quantum bath, and is considered a
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reasonable approximation in certain instances. In particular,
the bath must be in thermal equilibrium, there is no back
action on the environment from the qubits (i.e., the bath
dephases instantly), and the bath is at infinite temperature
yielding equal populations of the qubit states after long term
decay [24–30]. These assumptions apply directly to classical
noise from the classical control system. The advantage to such
a model from our perspective is that spatial and temporal
correlations are fairly straightforward to model in this manner.
There are known situations where this approximation breaks
down and the quantum nature of the bath leads to observable
signatures such as nontrivial phase evolution in addition to
pure decoherence [31]. This can occur, for example, for baths
at low temperature or systems that are strongly coupled. We
do not consider these more general quantum bath models here,
and leave that for future work.

Using the semiclassical noise model allows us to demon-
strate a rather surprising result. We show that single-qubit
rotation errors arising from weight-one error generators can
lead to high-weight errors in a quantum system when the noise
is either spatially or temporally correlated and drawn from
certain types of heavy-tailed distributions [32]. This results
in a reduction in the effective distance of the QEC code that
depends on the tails of the distribution. Various definitions of
heavy-tailed (sometimes referred to as fat-tailed) distributions
exist. Generally speaking, they are distributions whose tails
decay more slowly than exponential (e.g., as a power law)
and they have undefined (or infinite) variance. They are well
studied in the quantitative finance literature [33] as they are
routinely used to model things such as exogenous shocks to
financial markets (see, e.g., Refs. [34–37]) or even the value
of returns for asset prices recognized early on with the seminal
work of Mandelbrot [38].

Relatively little research has been conducted as to whether
semiclassical noise with heavy-tailed distributions exists in
quantum computing devices, but this is not true for quan-
tum systems in general. Events with heavy-tailed distributions
have been discussed extensively in the context of physical
models that generate 1/ f α noise spectra. It has been shown
that signals from systems with dynamics that adhere to fam-
ilies of point process models [39–44] and linear/nonlinear
stochastic differential equations (SDEs) [45,46] generate
1/ f α spectra when the signal probability density functions
(PDFs) obey heavy-tailed statistics. Various physical systems
have exhibited signals with power-law statistics. Similar point
process models have been utilized to describe the power-law
behavior of fluorescent blinking in quantum dots [47–54] and
single-molecule fluorescence of organic molecules [55–58].
Power-law behavior has been observed in trapping times for
charge transport in amorphous semiconductors [43,59–62]
and nanoscale electrodes [63]. The family of SDEs that ex-
hibits power-law behavior generates dynamics that violate the
fluctuation dissipation and equipartition of energy theorems,
which has been observed in finite-dimensional spin glasses
[64]. Furthermore, spin glasses exhibit random couplings and
relaxation rates that obey power-law behavior [65–70].

For quantum processors, non-Gaussian noise spectroscopy
techniques have been developed [71] and demonstrated ex-
perimentally [72], but this approach only applies to noise
with distributions tighter than Gaussian. The difficulty in

developing characterization techniques for heavy-tailed dis-
tributions is that most quantum characterization techniques
that seek to characterize the statistics of noise correlations
rely on expanding the statistics of the noise into moments (or
cumulants) [73–75]. Since higher-order moments are unde-
fined or infinite for heavy-tailed distributions, these existing
techniques do not apply. Our results show that a new charac-
terization technique is needed to test for this type of harmful
noise in quantum systems. If this type of noise is present, it is
imperative that physical or control-based mitigation schemes
are developed to reduce its effect as QEC will not suffice.

II. IMPACT OF CORRELATED NOISE ON QEC:
ANALYTIC MODEL

We begin our analysis by considering an analytic model
of QEC where we consider noise arising from stochastic
unitary rotation errors on the data qubits only in an n-qubit
perfect code. This model is referred to as the code-capacity
error model. Physically, these correlations would correspond
to spatial correlations between qubits. The term perfect here
refers to the fact that our analytical analysis assumes that a
distance-d code can correct exactly (d − 1)/2 errors on the
encoded qubits and no more. Certain codes, such as surface
codes, can correct certain types of high-weight errors that
will break this assumption. Numerical simulations shown later
demonstrate that our code-capacity model accurately predicts
the behavior of fully fault-tolerant implementations of QEC
with noise affecting data and ancilla qubits at all locations in
the circuit.

Our model starts by assuming that we have perfectly en-
coded an n-qubit logical state into a QEC code denoted as
|ψL〉. We then apply a single-qubit rotation about an arbitrary
axis to all of the data qubits in the encoded state, yielding

|ψL〉 →
n∏

j=1

[
cos

(
θ j

2

)
Î − i sin

(
θ j

2

)
�v · �̂σ ( j)

]
|ψL〉 , (1)

where Î is the identity matrix, �v is an arbitrary unit three vector
of real numbers specifying the direction of rotation, �̂σ ( j) is a
three vector containing the Pauli x, y, and z operators, and θ j

is the angle of rotation for qubit j. We consider two cases. In
the uncorrelated case, each angle of rotation is drawn from a
probability distribution and taken to be independent for a total
of n independent random variables. In the correlated case, we
assume that a single angle is drawn from the same probability
distribution and applied to each qubit. The average probability
of a logical error is then given by

Punc = 1 −
w∑

k=0

(
n

k

)〈
cos2

(
θ

2

)〉n−k〈
sin2

(
θ

2

)〉k

, (2a)

Pcor = 1 −
w∑

k=0

(
n

k

)〈
cos2(n−k)

(
θ

2

)
sin2k

(
θ

2

)〉
, (2b)

where we have assumed that our error correcting code can cor-
rect all Pauli errors of weight w = (d − 1)/2, θ is a random
variable, and the angular brackets 〈·〉 denote an ensemble av-
erage. After some algebraic manipulations, we can transform
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Eqs. (2) into

Punc = 1 − 1

2n

w∑
k=0

n−k∑
l=0

k∑
m=0

(
n

k

)(
n − k

l

)(
k

m

)
(−1)m−k f (t = 1)n−l−m, (3a)

Pcor = 1 − 1

22n

w∑
k=0

2(n−k)∑
l=0

2k∑
m=0

(
n

k

)(
2(n − k)

l

)(
2k

m

)
(−1)m−k f (t = n − l − m), (3b)

where f (t ) is the characteristic function of the probability
distribution. In deriving Eqs. (3), we have assumed distribu-
tions that are symmetric about 0 such that the characteristic
function is even, f (t ) = f (−t ). For a single physical qubit,
we define the failure probability to be the probability that upon
measurement, we get either a bit-flip or phase-flip error. For a
qubit rotated by an angle θ , this is given by

P = sin2

(
θ

2

)
, (4)

with the corresponding expectation value in terms of the char-
acteristic function given by

〈P〉 ≡ Pph = 1
2 [1 − f (t = 1)], (5)

where Pph stands for the probability of a physical error oc-
curring. An evaluation and comparison of Eqs. (3) and (5)
allow us to examine the impact of various noise distributions
by inserting the known characteristic function and computing
the formula for given code sizes and comparing the logical
error rate with the physical error rate. For the purpose of
our analysis, the number of qubits in the code will be equal
to the Knill-Laflamme bound n � 4w + 1, unless otherwise
specified.

A. Gaussian

First, we examine the case where the noise is drawn from a
Gaussian distribution with zero mean and standard deviation
σ . The characteristic function of a Gaussian random variable
with zero mean is

f (t ; σ ) = e− 1
2 σ 2t2

. (6)

To understand the impact on QEC, we study the low noise
scaling of the physical and logical error rates with respect to
the width parameter of the probability distribution. For the
Gaussian distribution, this implies taking a series expansion
about σ → 0 for Eqs. (3). Evaluation of the leading order
terms for both correlated and uncorrelated noise reveals logi-
cal error rates that scale as σ 2(w+1), where w is the number of
correctable errors for a code of distance d = 2w + 1. Thus,
Gaussian correlated noise does not yield high-weight errors
that might impact the code distance; however, it does affect
the series coefficient. To see this, we plot the ratio of the
first nonzero term for correlated noise to uncorrelated noise
in Fig. 1. As the distance of the code increases, the ratio
of the series coefficient grows at a rate proportional to d!!,
implying that the logical error rate is increased by a related
factor for correlated noise. This implies that if correlated
single-qubit rotation noise drawn from a Gaussian distribution
is present, its impact may be minor for small codes, but grows

as code distance increases. We note as an aside that the σ → 0
approximation of Eqs. (2) must be done with care as the
number of terms in the binomial expansion grows for larger
codes. Thus the approximation must technically be in the
regime where σ � (1/d!!)2/(d+1). These results agree with
previously published work and imply that a threshold does not
exist [14]. Despite this, the code can still suppress noise and a
pseudothreshold does exist for each distance.

For a code of distance 3, the leading order terms, assuming
σ � 1, are

Pph ≈ σ 2

4
,

Punc ≈ 5σ 4

8
,

Pcor ≈ 15σ 4

8
. (7)

The logical error rate for both correlated and uncorrelated
noise is reduced by a squared factor of σ , while the prefactor
of the correlated noise logical error rate increases by a factor
of three relative to the uncorrelated case. The quadratic reduc-
tion of the logical error rate suggests that the code is behaving
as expected by a distance-3 code in both cases.

B. Student’s t

Next, we examine the Student’s t-distribution to see what
impact varying the probability distribution of the random vari-
able has on the physical and logical error rates. The Student’s
t-distribution is an example of a heavy-tailed distribution
with a discrete parameter ν that governs the heaviness of the
tails of the distribution. This can be seen by considering the

FIG. 1. Ratio of Pcor/Punc of the leading order term in powers of
σ in the error expansion of Eqs. (3) for correlated and uncorrelated
Gaussian noise, assuming σ � 1. The labels on the data points
correspond to the numerical value of the ratio. As the code distance
increases, the ratio increases as d!!.
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TABLE I. Comparison of the leading order term in a σ � 1 expansion of the failure probability for a physical qubit and various distance
perfect codes with uncorrelated and correlate noise. The rows are for various ν = 2r − 1 parameters in the Student’s t-distribution as given in
Eq. (8). As r increases, the tails of the distribution are reduced, resulting in a tighter distribution. As this occurs, the reduction in the effective
code distance is pushed out to higher distances. As an example, for a d = 3 code at r = 3, the effective distances are equivalent for uncorrelated
(Unc.) and correlated (Cor.) noise. We find that when d � 2r − 3, the code distance is equal for correlated and uncorrelated noise, but when
d > 2r − 3, the effective distance is reduced for correlated noise. For all code distances, we set the number of qubits to n = 4w + 1, which is
the minimum Knill-Laflamme bound.

d = 3 d = 5 d = 7 d = 9

r Physical Unc. Cor. Unc. Cor. Unc. Cor. Unc. Cor.

1 1
2 σ 5

2 σ 2 35
64 σ 21

2 σ 3 9009
16384 σ 715

16 σ 4 1154725
2097152 σ 1547

8 σ 5 591534125
1073741824 σ

2 3
4 σ 2 45

8 σ 4 175
√

3
64 σ 3 567

16 σ 6 27027
√

3
16384 σ 3 57915

256 σ 8 3002285
√

3
2097152 σ 3 375921

256 σ 10 1436582875
√

3
1073741824 σ 3

3 5
12 σ 2 125

72 σ 4 125
8 σ 4 875

144 σ 6 705705
√

5
16384 σ 5 446875

20736 σ 8 345262775
√

5
18874368 σ 5 4834375

62208 σ 10 130729041625
√

5
9663676416 σ 5

4 7
20 σ 2 49

40 σ 4 49
8 σ 4 7203

2000 σ 6 7203
16 σ 6 343343

32000 σ 8 113011411513
√

7
94371840 σ 7 26000429

800000 σ 10 3787119775075
√

7
9663676416 σ 7

5 9
28 σ 2 405

392 σ 4 243
56 σ 4 2187

784 σ 6 2187
16 σ 6 4691115

614656 σ 8 4691115
256 σ 8 13049829

614656 σ 10 1086610719708657
7516192768 σ 9

6 11
36 σ 2 605

648 σ 4 605
168 σ 4 9317

3888 σ 6 1331
16 σ 6 10468315

1679616 σ 8 10468315
2304 σ 8 249145897

15116544 σ 10 249145897
256 σ 10

probability density function of the Student’s t-distribution,

PDFt (θ ; ν, σ ) = (νσ 2)
ν
2 �

(
ν+1

2

)
√

π�
(

ν
2

) 1

(νσ 2 + θ2)
ν+1

2

. (8)

Here, ν � 1 is an integer corresponding to the number of
degrees of freedom of the distribution and �(x) is the gamma
function. We will restrict our attention to cases where ν is odd.
Taking ν = 1 gives exactly the Cauchy distribution, while
larger values of ν tighten the tails of the probability distri-
bution via this discrete parameter. In the limit of ν → ∞, the
Gaussian distribution is recovered. The characteristic function
of a Student’s t-distribution is

f (t ; σ, ν) = σ
ν
2 ν

ν
4 |t | ν

2

2
ν
2 −1�

(
ν
2

)Kν/2(σ
√

ν|t |), (9)

where Kn(x) is the modified Bessel function of the second
kind.

Again, we just report the approximate expressions in the
σ � 1 limit. For additional ease of analysis, we take ν to be
odd, but we lift this restriction in our numerical simulations.
We display the results in Table I for the physical and logical
errors rates with both correlated and uncorrelated noise, where
we have replaced ν with ν = 2r − 1 and r � 1 is a positive
integer. For correlated Cauchy random noise (r = 1), error
correction provides no error suppression as the effective code
distance is reduced to 1 for all code distances considered.
We conjecture that this extends to arbitrary code distance.
This implies that single-qubit rotations with correlated ro-
tation angles drawn from a Cauchy distribution result in at
least weight-(d + 1)/2 errors in the quantum circuit. As r
increases, the tails of the distribution are tightened, and the re-
duction in the code distance is pushed out to higher distances.
We find that when the distance is d � 2r − 3, for positive
d , the effective distance of the QEC is equivalent for the
correlated and uncorrelated cases. However, once d > 2r − 3,
the effective distance begins to be reduced for correlated noise
with the maximum exponent on σ appearing to be 2r − 1 for
correlated noise. These results imply that correlated single-
qubit noise drawn from the Student’s t-distribution yields

higher-weight Pauli errors, with the weight of the error related
to the tail index of the distribution.

C. Lévy α-stable

Finally, we consider the Lévy α-stable distributions. These
are a family of probability distributions that contain the
Gaussian and Cauchy distributions and allow for continuous
interpolation between them. It is also useful as it is a stable
distribution, meaning that the sums of the independent random
variates have the same distribution up to location and scale
parameters. This allows us to efficiently model time corre-
lations in our numerical simulations, which we show in the
next section. The probability density function for the stable
distribution is not analytically expressible. However, the char-
acteristic function is expressible. We write a simplified form
of the characteristic function where we take the skewness and
location parameters to be zero, yielding

f (t ; σ, α) = e−|σ t |α . (10)

The parameter α is the stability parameter and it lies in the
range (0,2]. The stable distribution corresponds to a Gaus-
sian when α = 2 and a Cauchy when α = 1, and allows for
continuous interpolation between Gaussian and heavy-tailed
distributions. The formulas are complicated for the general
case, so we examine the simplest case for a distance-3 code.
The leading order terms, assuming σ � 1, for the physical
and logical error rates are

Pph ≈ σα

2
,

Punc ≈ 5σ 2α

2
,

Pcor ≈ 1

128
[5(2α+2) − 5(3α ) − 5(4α ) − 5α + 70]σα

+ 1

256
[5(−4α+1 + 9α + 16α − 14) + 25α]σ 2α. (11)

Only for exactly α = 2, which corresponds to a Gaussian
distribution, does the lowest order term (the term proportional
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FIG. 2. The various plots correspond to the value of the error
term proportional to σα for all valid values of α in the correlated
noise error expansion, Pcor. The dashed line is the first order term of
the physical error rate Pph = 0.5 of Eqs. (3). Code distance does not
have a large impact as seen by the nearly indistinguishable curves.
For all cases plotted, the logical error rate containing correlated
noise from an α-stable distribution will not provide protection of
the encoded logical qubits as this distribution results in errors with
weight of (d + 1)/2 or greater expect at the exact point where α = 2,
which corresponds to the Gaussian distribution.

to σα) of the correlated error rate disappear. Any α < 2 yields
a term that is proportional to the physical error rate, causing
the error correcting code to become ineffective against this
type of noise. To examine larger code distances, we plot
the value of the term proportional to σα for the correlated
noise logical error rate in Fig. 2. The figure shows that for
all code distances considered, the logical error rate scaling is
proportional to the physical error rate scaling. In other words,
the QEC code offers no protection for this type of noise, no
matter how large of a code is used. Only exactly when α = 2
does the term disappear and we recover protection of the
encoded logical state, as shown previously in the discussion
on Gaussian noise.

III. NUMERICAL SIMULATIONS

Our analytic model has shown the detrimental effect of spa-
tially correlated noise on the data qubits within a single error
correction block, with correlated single-qubit (weight-one) ro-
tation errors leading to uncorrectable multiqubit (high-weight)
errors. However, determining fault tolerance also requires the
accounting of errors within the time length of a decoding
block [3]. Therefore, we anticipate that time correlations of
weight-one error generators would have an equally harmful
impact on quantum error correction as they would lead to a
breakdown of fault tolerance due to high-weight errors occur-
ring in time across the decoding boundaries. To study this,
we use numerical simulations of low-distance surface codes
to examine the case of time-correlated errors from heavy-
tailed distributions. In addition to perfect correlations that we
studied with our analytical model, we also generalize to the
situation where the noise correlations are defined by a correla-
tion function. Our simulations show that time correlations do
result in a similar breakdown as our analytical results predict
for spatially correlated noise on the data qubits only, but with
nontrivial dependence on the correlation function of the noise.

Because our errors are stochastic unitary errors, we must
simulate the entire state vector. This limits us to low-distance

codes and, for this report, we limit ourselves to just simula-
tions of a distance-3 rotated surface code. We make use of the
same simulation framework and circuits that we used in our
study of random coherent errors [76]. We model the errors as
random unitary gates U (	)

k (θ (	)
k ) = exp(−iθ (	)

k σ (	)
y ) that create

a rotation by a random angle θ
(	)
k (here drawn from Gaussian,

Cauchy, Student’s t, and Lévy α-stable distributions) about
the Y axis at a circuit time location k for qubit 	. We insert
these errors across all the qubits in the code (both data and
ancilla) after every single gate in the circuit. To compute the
performance of the code, we start with a random initial state,

|ψ0〉 = cos α |0〉 + eiβ sin α |1〉 , (12)

where 0 � α < 2π and 0 � β < 2π are both uniform random
variables. This random initialization covers the Bloch sphere,
but it is not uniform. We define the fidelity to be

F2 = 1

(2π )2

∫∫ 2π

0
dαdβ

∫ ∞

−∞
dθ p(θ )| 〈ψ0|e−iθσy |ψ0〉 |2,

(13)

where p(θ ) is the probability distribution for the error terms.
This expression simply computes the overlap of the initial
state and the final state and averages over the probability
distributions. We note, as before, that this is not the standard
definition of fidelity; since the distribution of α and β is
uniform, this is not a Haar average over the Bloch sphere.
This yields slightly different error rates for different errors
on different axes, but this does not have any meaningful
impact on our overall results. Using Eqs. (12) and (13), it is
straightforward to analytically calculate the physical fidelity
for the various probability distributions considered in this
manuscript. It is

F2 = 5
8 + 3

8 f (t = 2), (14)

where f (t = 2) is the characteristic function of the probability
distribution and is given in Eqs. (6), (9), and (10) for the
Gaussian, Student’s t, and stable distributions, respectively.

To calculate the logical fidelity, we perfectly encode the
random state defined in Eq. (12), simulate three rounds of
faulty syndrome extraction with errors inserted after every
location where a gate exists (a circuit-level noise model), and
follow that by decoding and perfect correction. We conclude
the simulation with a round of perfect error correction to
correct any trailing errors. We estimate the logical fidelity
by numerically estimating the integral given in Eq. (13) by
computing the overlap of the final decoded logical state with
the initial state and Monte Carlo sampling over the initial
random states and error terms. We use bootstrap resampling
to report the 95% confidence intervals with 103 samples with
replacement used. Each data point is the result of 107 inde-
pendent trials.

For arbitrary time correlations, we leverage SchWARMA
[77] to simulate time-correlated noise in quantum circuits.
The SchWARMA method leverages a classical time-series
modeling approach called autoregressive-moving-average
(ARMA) models, where the angle of rotation at circuit time
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location k is an ARMA model,

θ
(	)
k =

p∑
i=1

aiθ
(	)
k−i

︸ ︷︷ ︸
AR

+
q∑

j=0

b jx
(	)
k− j

︸ ︷︷ ︸
MA

. (15)

The set {ai} defines the autoregressive portion of the model,
and {b j} the moving-average portion with p and q + 1 el-
ements of each set, respectively, and the x(	)

k− j are random
variables drawn from the user-defined probability distribution.
Because ARMA models require one to add random variates,
we must restrict ourselves to stable distributions when us-
ing this method to ensure that the probability distribution of
the output model remains the same as the random variables.
The Student’s t-distribution is not stable. Therefore, in that
case, we consider white noise (uncorrelated in time) and
direct-current (DC) noise, in which we draw a single random
variable at the beginning of the quantum circuit for each qubit
and we use that same angle at all subsequent times in the
circuit. These two limits correspond to an ARMA model with
p = 0, q = 0 and p = 0, q → ∞, respectively. For the other
cases, we can consider more general time correlations. For
the purposes of this study, we interpolate between white noise
and DC noise by considering exponential moving averages
(EMAs), where the terms bj = N exp[− ln(2) j/Th], where N
is chosen such that

∑
j b j = 1 and Th is the “half life” of the

moving average. We do not consider the AR portion in this
paper, so p = 0. We set each gate in the circuit to take a single
unit of time, so the parameter j corresponds exactly to the
circuit depth to that point and we set the number of terms
in the moving average to q = 10�Th�. The various syndrome
extraction circuits for the surface code take anywhere from 2
to 6 time ticks in those units.

A. Gaussian

The results for Gaussian noise are plotted in Fig. 3, where
we plot the logical infidelity versus the physical infidelity.
There is no discernible difference between the DC and white
noise case. Below the pseudothreshold, the logical error rate
is reduced relative to the physical error rate and the reduction
is quadratic as expected for a distance-three code. This is all
in agreement with our analytical results given in Eq. (7).

B. Student’s t

Next, we consider the Student’s t-distribution. We plot the
simulation results in Fig. 4. We consider the white noise and
DC noise cases and vary the tail index ν for each simulation.
The results are consistent with our analytical predictions. For
white (uncorrelated) noise, the code suppresses the logical
error rate and is relatively immune to different tail indices.
Meanwhile, for DC noise (infinite time correlation), the slope
of the logical to physical infidelity depends on the tail index.
When ν = 1, the distributions have the fattest tails and the
simulations show that the logical infidelity is proportional to
the physical infidelity. This implies that the QEC code pro-
vides no protection for the encoded qubits. For ν = {2, 3}, the
code offers some protection, but not full protection. Finally,
when ν � 4, the code offers full protection, with the logical
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FIG. 3. Pseudothreshold plots obtained from simulating the ro-
tated distance-3 surface code with independent and time-correlated
single-qubit rotation errors drawn from a Gaussian distribution. The
SchWARMA simulations denoted with titles EMA Th interpolate
between the white and DC noise cases by using an exponential
moving-average filter. The various curves are denoted by their color,
but are indistinguishable on this scale. This demonstrates that time-
correlated noise drawn from a Gaussian distribution has minimal
impact on low-distance QEC codes. The top and bottom dashed lines
show slopes where the logical infidelity is proportional to the phys-
ical infidelity and the square of the physical infidelity, respectively.
Error bars are the 95% confidence intervals obtained from bootstrap
resampling. They are cut off at the lowest error rates for display
purposes.

10−5 10−4

Physical Infidelity

10−8

10−6

10−4

10−2

L
o
g
ic

a
l
In

fi
d
e
li
ty

Student’s t White Noise

ν = 1

ν = 2

ν = 3

ν = 4

ν = 5

10−5 10−4

Physical Infidelity

10−8

10−6

10−4

10−2

L
o
g
ic

a
l
In

fi
d
e
li
ty

Student’s t DC Noise

ν = 1

ν = 2

ν = 3

ν = 4

ν = 5

FIG. 4. Pseudothreshold plots obtained from simulating the ro-
tated distance-3 surface code with independent (top) and DC
correlated (bottom) single-qubit rotation errors drawn from a Stu-
dent’s t-distribution for multiple values of the tail index ν denoted
in the legend. For the DC noise case, the curves move from top to
bottom in the same order as the displayed legend, with ν = 1 having
the highest logical error rate and ν = 5 the lowest. For white noise,
the curves are indistinguishable on this scale. Odd values of ν corre-
spond to the analytical calculations shown in Table I. The numerical
results agree with our analytical results presented in Table I, with
the slope of the correlated DC noise logical error rate varying as
the tail index increases, while the slope of the uncorrelated white
noise is not impacted. Once ν � 4, the correlated logical infidelity
scales as the square of the physical infidelity, in agreement with our
analytical predictions. The top and bottom dashed lines show slopes
where the logical infidelity is proportional to the physical infidelity
and the square of the physical infidelity, respectively. Error bars are
the 95% confidence intervals obtained from bootstrap resampling.
They are cut off at the lowest error rates for display purposes.
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FIG. 5. Pseudothreshold plots obtained from simulating the
rotated distance-3 surface code with DC, time-correlated, and in-
dependent single-qubit rotation errors drawn from an α-stable
distribution with α = 1.5. The curves move from top to bottom in the
same order as the displayed legend, with DC noise having the highest
logical error rate and white noise the lowest. The numerical results
agree with our analytical results with the uncorrelated white-noise
case yielding a pseudothreshold. For DC noise, the code offers no
protection with the logical error rate scaling proportionally to the
physical error rate. The SchWARMA simulations, denoted by EMA
Th, interpolate between the white and DC noise cases by using an
exponential moving-average filter. These simulations show that time-
correlated noise drawn from a non-Gaussian heavy-tailed distribution
can have a strongly detrimental impact to QEC. The top and bottom
dashed lines show slopes where the logical infidelity is proportional
to the physical infidelity and the square of the physical infidelity,
respectively. Error bars are the 95% confidence intervals obtained
from bootstrap resampling.

infidelity scaling quadratically with the physical infidelity. We
note that our analytical results only considered odd values of
ν, so the appearance of full code protection was only predicted
for ν � 5 from our analytical results.

C. Lévy α-stable

Finally, we show simulations of correlated noise drawn
from the Lévy α-stable distribution. Since the distribution
is stable, we can use the SchWARMA formalism to simu-
late time-correlated noise that interpolates between the white
noise and DC noise cases. We plot these results in Fig. 5.
The results once again agree with the analytical results for the
white-noise and DC-noise cases. For intermediate correlations
times, enabled by our SchWARMA simulations, we observe
that the slope of the logical error rate is related to the half
life of the exponential moving average. The time units of the
half life correspond exactly to the gate ticks of the circuit.
For the surface code, the syndrome extraction cycles take
between 2 and 6 ticks (2–4 CNOT gates for the weight-two
and weight-four operators and two rotation gates for the X
syndrome), so the slope reduction occurs as the half life ap-
proaches the syndrome cycle, as one would expect. The noise
begins to generate weight-two errors across syndrome bound-
aries. We have not examined any mitigation schemes in this
paper, but our results suggest that if the noise correlations can
be mitigated, through decoupling techniques as one example,
then these effects can be reduced and fault-tolerant quantum
computing could be realized even if heavy-tailed noise exists.

IV. CONCLUSIONS

We have presented analytical evidence that space- or
time-correlated single-qubit noise drawn from heavy-tailed
distributions can lead to high-weight errors in a quantum cir-
cuit. This can lead to a breakdown of quantum error correction
via a reduced code distance (in some instances yielding no
protection at all). The exact predictions depend upon the type
of distribution used for the noise.

For Gaussian noise, correlations cause a reduction in the
leading order coefficient of the pseudothreshold, but the code
can still suppress the noise. This leads to logical error rates
scaling as expected, with a slope proportional to σ (d+1)/2 for
a distance-d code. Meanwhile, for noise with heavy-tailed
behavior such as Cauchy, Student’s t , or Lévy α-stable dis-
tributions, we find more interesting behavior. The quantum
error correcting codes that we considered could not correct
correlated noise drawn from Cauchy distribution. This leads
to logical failure rates that scale proportionally to the physical
error rate. There is no suppression relative to σ for any code
distance. The Student’s t-distribution allows us to interpolate
between the Gaussian and Cauchy cases via the tail-index
parameter r. As r increases, the error correcting code is able to
suppress the logical error rate relative to the physical error rate
with increasing power. Once the code distance d � 2r − 3,
the code achieves its expected error suppression. Finally, the
Lévy α-stable distribution also allows us to interpolate be-
tween the Gaussian and Cauchy distributions, but since it
is a stable distribution, we can also consider arbitrary time
correlations. Here we find that the correlation time of the noise
has a direct impact on the slope of the logical error rate, with
longer correlation times leading to more reduction in error
suppression ability.

These results all reinforce the notion that the ability of
quantum error correction to suppress noise is highly depen-
dent on the physical noise model [76,78,79]. It is known that
many complex physical systems have non-Gaussian noise and
we have pointed to many examples in Sec. I of quantum
systems where noise with heavy-tailed statistics is present
[39–43,43–70,72]. Our results suggest that it is important to
develop quantum characterization techniques that can reliably
determine the distribution of the underlying noise to ensure
the performance of future quantum error corrected systems.
Finally, we close with a positive note. Even if heavy-tailed
noise with correlations are present in quantum computing
systems, our results do not in any way preclude the possibility
that quantum control or other physical-level noise mitigation
schemes may be able to reduce or eliminate their detrimen-
tal impact. We leave that as an another avenue for further
research.
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