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Variational quantum simulations of stochastic differential equations
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Stochastic differential equations (SDEs), which model uncertain phenomena as the time evolution of random
variables, are exploited in various fields of natural and social sciences such as finance. Since SDEs rarely admit
analytical solutions and must usually be solved numerically with huge classical-computational resources in
practical applications, there is strong motivation to use quantum computation to accelerate the calculation. Here,
we propose a quantum-classical hybrid algorithm that solves SDEs based on variational quantum simulation.
We first approximate the target SDE by a trinomial tree structure with discretization and then formulate it
as the time-evolution of a quantum state embedding the probability distributions of the SDE variables. We
embed the probability distribution directly in the amplitudes of the quantum state whereas the previous studies
took the square-root of the probability distribution in the amplitudes. Our embedding enables us to construct
simple quantum circuits that simulate the time-evolution of the state for general SDEs. We also develop a
scheme to compute the expectation values of the SDE variables and discuss whether our scheme can achieve
quantum speedup for the expectation-value evaluations of the SDE variables. Finally, we numerically validate
our algorithm by simulating several types of stochastic processes. Our proposal provides a new direction for
simulating SDEs on quantum computers.
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I. INTRODUCTION

Stochastic differential equations (SDEs), which describe
the time evolution of random variables, are among the most
important mathematical tools for modeling uncertain systems
in diverse fields, such as finance [1], physics [2], and biology
[3]. From the expectation values of the simulated random
variables, we can often extract information about the sys-
tem of interest. Since the expectation values rarely admit
analytical solutions, they are usually obtained by numerical
methods such as the Monte Carlo method [4]. However, those
numerical methods incur high computational costs, especially
in high-dimensional problems such as the SDEs of financial
applications [5–7]. Therefore, a method that can speed-up
SDE simulations is urgently demanded.

Such a speed up can be achieved on quantum comput-
ers. Throughout the past decade, technological developments
have realized a primitive form of quantum computers called
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noisy intermediate-scale quantum (NISQ) devices [8], which
can handle problems that are intractably large for classi-
cal computers [9]. NISQ devices can operate only a few
tens to hundreds of qubits without error correction, so they
cannot run quantum algorithms requiring deep and compli-
cated quantum circuits. Although quantum algorithms are
expected to outperform classical ones on specific computing
tasks [10–13], they usually exceed the capability of NISQ
devices. Accordingly, NISQ devices have been leveraged with
heuristic algorithms that solve real-world problems. For ex-
ample, in quantum chemistry and condensed-matter physics,
the variational quantum eigensolver (VQE) algorithm [14,15]
can calculate the ground-state energies of given Hamiltonians
[16,17]. Another example is quantum machine learning with
variational quantum circuits [18–21]. Both algorithms varia-
tionally optimize the tuneable classical parameters in quantum
circuits, so the speedups of the computation over classical
computers and the precision of the obtained results are not
guaranteed in general.

Several quantum-computing-based methods obtain the ex-
pectation value of a function that takes a SDE solution as
its argument. However, all of these methods require pre-
requisite knowledge of the SDE solution. In Ref. [22], the
partial differential equation describing the time evolution of
the expectation value was simulated by a variational quan-
tum computation, which requires prederivation of the partial
differential equation of the expectation value. In Refs. [23]
and [24], the probability distribution of the SDE solution was
embedded in the quantum state, and the expectation value
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was calculated by a quantum amplitude estimation algorithm
(QAE). In this case, the probability distribution of the SDE
solutions must be known in advance. As the solution to the
SDE is not found, the partial differential equation of the
expectation value must also be derived, or the SDE solved
beforehand.

In this study, to solve a SDE with quantum algorithms, we
apply a tree model approximation [25] and hence obtain a lin-
ear differential equation describing the probability distribution
of SDE solutions. This differential equation is then solved by
a variational quantum simulation (VQS) [26–30]. Note that
linear differential equations can be solved by a quantum linear
solver algorithm (QLSA) [12,31,32], which is expected to be
quantum-accelerated. However, the QLSA requires a large
number of ancilla qubits and deep circuits and is possibly
executable only on quantum computers with error correction.
Our proposed method possesses several desirable features.
First, the probability distribution is simulated by the tree-
model approximation, so the model requires only the SDE.
No prior knowledge of the probability distribution or expecta-
tion value is required. Therefore, our method is applicable to
more general SDEs than previous methods. Second, once the
VQS is performed, the variational parameters are obtained as
classical information, and the probability distribution of the
simulation results can be used to compute various expectation
values. We can also compute path-dependent expectation val-
ues because the time series of the probability distribution is
obtained. Third, the algorithm is less resource-intensive than
the QLSA. Since VQS is a variational algorithm, it is difficult
to estimate the exact computational cost, but VQS requires
only a few ancilla qubits and calculates the expectation value
for relatively shallow unitary gates at each time step. The
number of qubits and the depth of the circuit are expected
to be much smaller than QLSA. As our method uses a new
scheme for embedding probability distributions in quantum
states, the method for computing expectation values is also
new. We additionally found that the expectation values are
more simply determined by our method than by the QAE.
The proposed method facilitates the application of SDEs in
quantum computing simulations and is expected to impact
various scientific fields.

The remainder of this paper is organized as follows.
Section II reviews the trinomial tree-model approximation and
the VQS before introducing our method. Our main theoretical
results are contained in Secs. III and IV. Section III proposes
a VQS-based method that simulates the dynamics of the prob-
ability distribution of the stochastic process in the trinomial
tree model. The quantum circuits and operators that perform
the VQS are also constructed in this section. Section IV cal-
culates the expectation value of the random variable using the
state obtained by simulating SDE with the VQS. Section V
discusses the advantages of our method and compares them
with previous studies. Section VI numerically evaluates our
algorithm on two SDE prototypes: the geometric Brownian
motion and the Ornstein-Uhlenbeck process. Conclusions are
presented in Section VII. Appendix A analyses the complexity
of calculating the expectation value, and Appendix B gener-
alizes our result to a multiple-variable process. Appendix C
evaluates the error of expectation values from piecewise poly-
nomial approximation.

…

FIG. 1. Lattice of the trinomial tree model. Nodes (circles) at
(t, x) represent the events in which X (t ) takes the value x. Edges
represent the transition probabilities between the nodes. The stochas-
tic process starts at node (t0, x0 ) and “hops” to the other nodes
depending on the transition probabilities.

II. PRELIMINARIES

This section reviews the main ingredients of this paper:
the trinomial tree-model approximation of the SDE [25] and
the VQS algorithm [26–29]. In Sec. III, we combine both
ingredients into a method that simulates the SDE by the VQS.

A. Trinomial tree-model approximation
of the stochastic differential equation

Let us consider a random variable X (t ) taking values on an
interval I ⊂ R. We refer to I as an event space. The SDE of a
single process {X (t )}t∈[0,T ], which is a time series of random
variables from t = 0 to t = T , is defined as [1]

dX (t ) = μ(X (t ), t )dt + σ (X (t ), t )dW, X (0) = xini ∈ I,
(1)

where μ(X (t ), t ), σ (X (t ), t ) are real-valued functions of time
t and the variable X (t ), and W denotes the Brownian mo-
tion. In the main text, our proposal is applied to a single
process (extensions to multivariable cases are described in
Appendix B).

The tree model numerically simulates the time evolution of
a SDE. Let us consider a SDE simulation of the process with
event space [0, xmax] from t = 0 to t = T . We discretize the
time as ti ≡ i�t (i = 0, 1, . . . , Nt ) and the event space as xi ≡
i�x (i = 0, 1, . . . , Nx ), where Nt�t = T and Nx�x = xmax.
In this discretization scheme, we define a (Nx + 1) × (Nt + 1)
lattice on which each node (i, j) is associated with a proba-
bility Prob[X (t j ) = xi] and each edge represents a transition
between two nodes, as shown in Fig. 1. Here, we adopt the
trinomial tree model, which has three transition probabilities
as follows:

pu(x, t ) = Prob[X (t + �t ) = x + �x | X (t ) = x],

pd (x, t ) = Prob[X (t + �t ) = x − �x | X (t ) = x],

pm(x, t ) = Prob[X (t + �t ) = x | X (t ) = x].
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These probabilities were chosen to reproduce the first and
second moment (mean and variance, respectively) of the ran-
dom variable X (t ) in Eq. (1). Following the Euler-Maruyama
method [7], the SDE is discretized as

X (t j+1) − X (t j ) = μ{X (t j ), t}�t + σ {X (t j ), t}
√

�tz, (2)

where z ∼ N (0, 1) and O(�t2) terms are ignored. The
conditional expectation value and variance are respectively
expressed as

E [X (t j+1) − X (t j )|X (t j ) = x] = μ(x, t j )�t,

Var[X (t j+1) − X (t j )|X (t j ) = x] = σ 2(x, t j )�t .

The corresponding moments on the trinomial tree model are

E [X (t j+1) − X (t j )|X (t j ) = xi]

= [pu(xi, t j ) − pd (xi, t j )]�x,

Var[X (t j+1) − X (t j )|X (t j ) = xi]

= [pu(xi, t j ) + pd (x j, t j )]�x2.

Equating these moments and considering the normalization
condition pu(x, t ) + pm(x, t ) + pd (x, t ) = 1, we obtain

pu(xi, t j ) = 1

2

(
σ 2(xi, t j )

�x2
+ μ(xi, t j )

�x

)
�t, (3)

pd (xi, t j ) = 1

2

(
σ 2(xi, t j )

�x2
− μ(xi, t j )

�x

)
�t, (4)

pm(xi, t j ) = 1 − σ 2(xi, t j )

�x2
�t . (5)

In summary, the trinomial tree model approximates the orig-
inal SDE by discretizing it on the lattice and setting the
transition probabilities between the nodes to reproduce the
first and the second moments of the process.

The trinomial tree model simulates the SDE as follows.
First, the closest value to xini in {xi}i∈[0,Nx] is set to xi0 , and the
probabilities are set as Prob[X (t0) = xi0 ] = 1, Prob[X (t0) =
xi �=i0 ] = 0. Next, the probability distribution of X (t1 = �t ) is
calculated using the transition probabilities given by Eqs. (3)–
(5). Repeating this step for X (t j ) ( j = 2, 3, . . . , Nt − 1) yields
all probabilities Prob[X (t j ) = xi] at node (i, j), from which
any properties related to the process X (t ), such as the expec-
tation values of X (T ) under some function f , E [ f (X (T ))],
can be determined. In option-pricing financial problems, the
nodes of the tree model denote the prices of the option, and
the problems are sometimes to be solved in the backward
direction from time t . In such cases, the boundary condition is
set at t = T .

B. Variational quantum simulation

This section introduces the VQS algorithm [26–29], a
quantum-classical hybrid algorithm that simulates both uni-
tary and nonunitary time evolution with possibly shallow
quantum circuits. Therefore, the VQS algorithms is especially
suitable for NISQ devices.

We are interested in the nonunitary time evolution of an
unnormalized quantum state |ψ̃ (t )〉 on an n-qubit system,

defined as

d

dt
|ψ̃ (t )〉 = L(t )|ψ̃ (t )〉, (6)

where L(t ) is a time-dependent (possibly non-Hermitian)
linear operator. To simulate the dynamics of |ψ̃ (t )〉, let us
introduce the following ansatz quantum state |ṽ(θ(t ))〉:

|ṽ(θ(t ))〉 ≡ α(t )R{θ1(t )}|0〉, (7)

where α(t ) is a real number, θ(t ) ≡ (α(t ), θ1(t )) ≡
(α(t ), θ1(t ), . . . , θM (t )) are variational parameters of
the ansatz, |0〉 is some reference state, and R(θ1) ≡
R1(θ1)R2(θ2) · · · RM (θM ) is a product of M parametric
circuits (unitaries) composed of one parametric rotation gates
eiθk Gk (G†

k = Gk ). The gates depend on their parameters and
on other nonparametric gates. In particular, Gk is assumed as
a multiqubit Pauli gate {I, X,Y, Z}⊗n.

The VQS algorithm maps the dynamics of the quantum
state, Eq. (6), to those of the variational parameters θ(t ) of the
ansatz. The mapping is performed by McLachlan’s variational
principle [33]

min
θ(t )

∥∥∥∥ d

dt
|ṽ{θ(t )}〉 − L(t )|ṽ{θ(t )}〉

∥∥∥∥, (8)

where ‖|ϕ〉‖ ≡ √〈ϕ|ϕ〉. This equation reduces to an Euler-
Lagrange equation,

M∑
j=0

Mk, j θ̇ j (t ) = Vk, (9)

for k = 0, . . . , M, where

Mk, j ≡ Re

(
∂〈ṽ{θ(t )}|

∂θk

∂|ṽ{θ(t )}〉
∂θ j

)
, (10)

Vk ≡ Re

(
∂〈ṽ{θ(t )}|

∂θk
L(t )|ṽ{θ(t )}〉

)
. (11)

We define θ0(t ) ≡ α(t ) for notational simplicity. When sim-
ulating the dynamic Eq. (6), one starts from the initial
parameters θini corresponding to the initial state |ψ̃ (t = 0)〉 =
|ṽ(θini )〉. The time derivative θ̇(t = 0) is calculated by Eq. (9)
with |ṽ(θini )〉 in Eqs. (10) and (11). After a small time step
δt , the parameters are obtained as θ(δt ) = θini + δt · θ̇(t = 0).
Repeating this procedure obtains the dynamics of θ(t ) and the
state |ṽ(θ(t ))〉.

The terms Mk, j and Vk can be evaluated by the quantum cir-
cuits depicted in Fig. 2 [29]. The normalized state |v(θ(t ))〉 ≡
R(θ1(t ))|0〉 is actually prepared on quantum computers and is
multiplied by the normalization constant α(t ) in postprocesses
of the result of the circuit measurements. Decomposing the
operator L(t ) as L(t ) = ∑kterm (t )

k=1 λkUk , where Uk is an eas-
ily implementable unitary operator (e.g., a multiqubit Pauli
operator) and λk is a complex coefficient, we must evaluate
O(M2) + O(Mkterm(t )) distinct quantum circuits. The circuits
need an ancilla qubit other than the qubits of the system of in-
terest, along with control operations of Gk and Uk . Therefore,
to ensure a feasible VQS algorithm, both M, kterm(t ), and the
depth of the unitaries Uk must be O(Poly(n)).
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FIG. 2. Quantum circuits for evaluating (a) Mk, j and (b) Vk .

III. SOLVING STOCHASTIC DIFFERENTIAL EQUATIONS
BY VARIATIONAL QUANTUM SIMULATION

This section presents one of our main results. The SDE
simulated by the above-described trinomial tree model is re-
formulated as the nonunitary dynamics of a quantum state
|ψ̃ (t )〉 embedding the probability distribution of the random
variable X (t ). We explicitly state for the L(t ) operator of the
VQS and decompose it by the polynomial number of the sum
of easily implementable unitaries.

A. Embedding the probability distribution into a quantum state

To simulate the trinomial tree model of the target SDE by
VQS, we define an unnormalized quantum state containing
the discretized probability distribution of the random variable
X (t j ):

|ψ̃ (t )〉 ≡
Nx∑

i=0

Prob[X (t ) = xi]|i〉, (12)

where {|i〉}Nx
i=0 is the computational basis. We call this state

a directly embedded state. For simplicity, we assume that
Nx = 2n − 1, where n is the number of qubits.

Note that this embedding of the probability distribution
into the quantum state differs from most of the literature,
in which (aiming for a quantum advantage) the expectation
values of a probability distribution are calculated using QAE
[34]. In the literature, the probability distribution is expressed
as a normalized quantum state

|ψsqrt〉 ≡
∑

i

√
Prob[X (t j ) = xi]|i〉. (13)

The expectation value of the distribution, E [ f (X (t j ))] ≡∑
i f (xi )Prob[X (t j ) = xi] for some function f , is computed

by the QAE. In this embedding method, VQS cannot be used
because the differential equation describing the time evolution
of the probability distribution is nonlinear. There are ways to
solve the nonlinear differential equation with a quantum al-
gorithm [35–38], but they require more complicated quantum
circuits.

Because our embedding (12) differs from this embedding
scheme, we also developed a method for evaluating its ex-
pectation values (see Sec. IV). Note that the normalization

constant α in Eq. (7) may be exponentially small. In fact, for a
uniform distribution Prob[X (t j ) = xi] = 1/2n, the normaliza-
tion constant is 2−n/2.

B. Reformulating the trinomial tree model and applying
the variational quantum simulation

In the trinomial tree model, the probability
Prob[X (t j+1)=xi] is calculated as

Prob[X (t j+1) = xi] = pu(xi−1, t j )Prob[X (t j ) = xi−1]

+ pd (xi+1, t j )Prob[X (t j ) = xi+1]

+ pm(xi, t j )Prob[X (t j ) = xi]. (14)

Substituting the transition probabilities (3)–(5) into this ex-
pression and denoting P(x, t ) ≡ Prob[X (t ) = x], we get

P(xi, t j+1) − P(xi, t j )

�t

= 1

2

(
σ 2(xi−1, t j )

�x2
+ μ(xi−1, t j )

�x

)
P(xi−1, t j )

+1

2

(
σ 2(xi+1, t j )

�x2
− μ(xi+1, t j )

�x

)
P(xi+1, t j )

−σ 2(xi, t j )

�x2
P(xi, t j ). (15)

In the limit �t → 0, one obtains

d P(t )

dt
= L(t ) P(t ), (16)

(L(t ))i,k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

(
σ 2(xk ,t )

�x2 + μ(xk ,t )
�x

)
(i = k + 1)

1
2

(
σ 2(xk ,t )

�x2 − μ(xk ,t )
�x

)
(i = k − 1)

− σ 2(xk ,t )
�x2 (i = k)

0 otherwise,

(17)

where P(t ) ≡ (P(x0, t ), P(x1, t ), . . . , P(x2n−1, t ))T .
As shown in Eq. (16), the time evolution of the state |ψ̃ (t )〉,

or

d

dt
|ψ̃ (t )〉 = L̂(t )|ψ̃ (t )〉, (18)

052425-4



VARIATIONAL QUANTUM SIMULATIONS OF STOCHASTIC … PHYSICAL REVIEW A 103, 052425 (2021)

where

L̂(t ) ≡
2n−1∑
i,k=0

{L(t )}i,k|i〉〈k|, (19)

corresponds to the time evolution of the probability distribu-
tion {Prob[X (t ) = xi]}2n−1

i=0 . Equation (18) is the essence of our
proposal to simulate VQS-based SDE simulation: specifically,
the VQS algorithm applied to Eq. (18) obtains the time-
evolved probability distribution as the quantum state |ψ̃ (t )〉.
Hereafter, when the distinction is clear in context, we denote
the operator L̂(t ) by L(t ) as in Eq. (16).

C. Construction of L(t )

As explained in the previous section, in the VQS, we
evaluate Eqs. (10) and (11) and decompose L(t ) into a sum
of easily implementable unitaries (composed of single-qubit,
two-qubit, and few-qubit gates). These evaluations are impor-
tant for a feasible VQS. This section discusses the explicit
decomposition of L(t ) given by Eq. (19).

To express the operator L(t ) in Eq. (19), we define opera-
tors

V+(n) ≡
2n−2∑
i=0

|i + 1〉〈i|, V−(n) ≡
2n−1∑
i=1

|i − 1〉〈i|. (20)

These operators can be constructed from the n-qubit cyclic
increment or decrement operator

CycInc(n) ≡
2n−1∑
i=0

|i + 1〉〈i|, CycDec(n) ≡
2n−1∑
i=0

|i − 1〉〈i|,
(21)

where |−1〉, |2n〉 are identified with |2n − 1〉, |0〉, respec-
tively. These gates are implemented as a product of O(n)
Toffoli, controlled-NOT (CNOT), and X gates with O(n)
ancilla qubits [39]. V+(n) [V−(n)] is constructed from
CycInc(n) [CycDec(n)] and an n-qubit-control Z gate CnZ ≡∑2n−2

i=0 |i〉〈i| − |2n − 1〉〈2n − 1|, which can be implemented
[13] as a product of O(n2) Toffoli, CNOT, and single-qubit
gates. Using 1

2 (CnZ + I⊗n) = ∑2n−2
i=0 |i〉〈i|, we can show that

V+(n) = CycInc(n) 1
2 (CnZ + I⊗n), (22)

V−(n) = 1
2 (CnZ + I⊗n)CycDec(n), (23)

meaning that V±(n) can be decomposed into a sum of two uni-
taries composed of O(n2) few-qubit gates. Finally, we define
the operator D(n) by

D(n) =
2n−1∑
i=0

i|i〉〈i| = 2n − 1

2
I⊗n −

n∑
i=1

2n−i−1Zi, (24)

where Zi is a Z gate acting on the ith qubit. Therefore, D(n)
is a sum of O(n) unitaries composed of a single-qubit gate. It
follows that

V+(n)[D(n)]m =
2n−2∑
i=0

im|i + 1〉〈i|, (25)

V−(n)[D(n)]m =
2n−1∑
i=1

im|i − 1〉〈i|. (26)

Let us recall

L(t ) =
2n−2∑
i=0

1

2

(
σ 2(xi, t )

�x2
+ μ(xi, t )

�x

)
|i + 1〉〈i|

+
2n−1∑
i=1

1

2

(
σ 2(xi, t )

�x2
− μ(xi, t )

�x

)
|i − 1〉〈i|

−
2n−1∑
i=0

σ 2(xi, t )

�x2
|i〉〈i|.

Expanding σ 2(xi, t ) and μ(xi, t ) as

σ 2(xi, t ) =
mσ∑

m=0

aσ,m(t )xm
i , μ(xi, t ) =

mμ∑
m=0

aμ,m(t )xm
i , (27)

we can decompose L(t ) as follows:

L(t ) =
mσ∑

m=0

aσ,m(t )(�x)m−2

(
V+(n) + V−(n)

2
− I

)
[D(n)]m

+
mμ∑

m=0

aμ,m(t )(�x)m−1

(
V+(n) − V−(n)

2
− I

)
[D(n)]m.

V+(n)[D(n)]m, V−(n)[D(n)]m, and [D(n)]m are composed of
the sum of O(nm) unitaries, each composed of O(n2) few-
qubit gates. In typical SDEs, the orders mσ , mμ can be set
to small values. For example, geometric Brownian motion
case, m = 1 (see Sec. VI). Therefore, the L(t ) decomposition
realizes a feasible VQE [Eq. (18)].

IV. CALCULATION OF EXPECTATION VALUES

In the previous section, we propose a method to simulate
the SDE by calculating the dynamics of the probability dis-
tribution of a random variable X (t ) using VQS. However,
in many cases, the goal of the SDE simulation is not the
probability distribution of X (t ), but the expectation value
E [ f (X (t ))] of X (t ) for some function f . In this section, we
introduce a means of calculating this expectation value.

A. Problem setting

Given a function f (x) : R → R, we try to calculate the
expectation value E [ f (X (T ))] of the SDE (1) at time t = T .
The expectation value can be explicitly written as

E [ f {X (T )}] ≡
2n−1∑
i=0

f (xi )Prob[X (T ) = xi]. (28)

Here, we assume that f (x) in the interval [ak, ak+1] ∈
{[0, a1], [a1, a2], . . . , [ad−1, xmax]} (k = 0, . . . , d − 1) is
well approximated by Lth-order polynomials fk (x) =∑L

m=0 a(k)
m xm. The additional error from this piecewise

polynomial approximation is evaluated in Appendix C. Given
that x is finite, the range of f is also finite. Thus, by shifting
the function f by a constant, we can ensure that the range of
f is positive and that the expectation value is also positive,
i.e., E [ f (X (T ))] � 0. In most situations (such as the pricing
of European call options, as we see in Sec. IV C) the number
of intervals d does not scale with the number of qubits n.
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FIG. 3. Quantum circuit for evaluating the real part of an
expectation value Re〈ψ̃ (t )|U |ψ̃ (t )〉 of a unitary operator U =
QiQ

†
i′ , QiCnZ · X ⊗nQ†

i′ . The imaginary part of the expectation value
Im〈ψ̃ (t )|U |ψ̃ (t )〉 is evaluated by the circuit with an S† gate inserted
to the left of the second H gate.

B. General formula for calculating expectation values

We now on compute the expectation value (28) using the
quantum state |ψ̃ (t )〉 [Eq. (12)]. First, we consider a nonuni-
tary operator satisfying

S f |0〉 =
2n−1∑
i=0

f (xi )|i〉 (29)

and decompose S f into a sum of easily implementable uni-
taries as S f = ∑

i ξiQi with complex coefficients ξi. It follows
that

〈ψ̃ (t )|(S f |0〉〈0|S†
f

)|ψ̃ (t )〉 = {E [ f {X (T )}]}2. (30)

As |0〉〈0| = 1
2 (I − CnZ · Z⊗n) is also a sum of easily imple-

mentable unitaries, as explained in the previous section, the
Hermitian observable S f |0〉〈0|S†

f is decomposed as

S f |0〉〈0|S†
f =

∑
i,i′

ξiξ
∗
i′
(
QiQ

†
i′ − Qi(C

nZ · Z⊗n)Q†
i′
)
, (31)

which is again a sum of unitaries. With this decompo-
sition, the left-hand side of Eq. (30) is computed by
evaluating 〈ψ̃ (t )|QiQ

†
i′ |ψ̃ (t )〉, 〈ψ̃ (t )|Qi(CnZ · Z⊗n)Q†

i′ |ψ̃ (t )〉.
Because we set E [ f (X (T ))] � 0, the left-hand side of
Eq. (30) will determine the expectation value.

There are two options to evaluate the quantities
〈ψ̃ (t )|QiQ

†
i′ |ψ̃ (t )〉 and 〈ψ̃ (t )|Qi(CnZ · Z⊗n)Q†

i′ |ψ̃ (t )〉. The
first one is to use the Hadamard test depicted in Fig. 3.
The second one is to use quantum phase estimation [40,41].
The former requires shallower quantum circuits but is ineffi-
cient in terms of the number of measurements to determine
the quantities with fixed precision. The detailed computa-
tional complexity of these methods is given in Sec. V and
Appendix A.

Next, we explain the construction of the operator S f in
Eq. (29) and its decomposition. We first define an operator

Sχ[0,a] |0〉 =
2n−1∑
i=0

χ[0,a](xi )|i〉 =
∑

xi∈[0,a]

|i〉, (32)

where χ[0,a](x) is the indicator function valued as 1 for x ∈
[0, a] and 0 for otherwise. Using the binary expansion of
a/�x, we can obtain the decomposition of Sχ[0,a] hence the
decomposition of S f . As a ∈ [0, xmax], there exists ka ∈ N
such that �x2ka−1 � a < �x2ka , 0 < ka � n. The binary ex-
pansion of a/�x is given by a/�x = ∑ka−1

j=0 s j2 j , s j ∈ {0, 1}.
We define the list of l as l1, l2, . . . , lB (=ka − 1) satisfying

sl = 1 in ascending order, and also define an interval

χa
l =

[
2lB +

l−1∑
j=0

s j2
j + 1, 2lB +

l∑
j=0

s j2
j

]
(33)

for l ∈ {l1, l2, . . . , lB}. Using χa
l , we divide [0, a/�x] into

disjoint intervals as follows:

[0, a/�x] = [0, 2lB ] ∪ χa
l1 ∪ · · · ∪ χa

lB . (34)

The indicator operator Sχ[0,a] is obtained by summing the in-
dicator operators on each interval. In the binary expansion,
the kath and the lth bit of i ∈ χa

l are 1, and the bit below l is
either 0 or 1. Accordingly, X should act on the bit taking 1, and
H should act on the bit taking either of {0, 1}. The indicator
operator Sχa

l
on χa

l is defined as follows:

Sχa
l
|0〉 = |0〉⊗ka−1 ⊗ |1〉

n−ka−l−1⊗
j=0

|sn−ka− j〉 ⊗
(

l∑
j=0

| j〉
)

= 2l/2I⊗ka−1 ⊗ X
n−ka−l−1⊗

j=0

Xsn−ka− j ⊗ H⊗l |0〉, (35)

where

Xs =
{

X (s = 1)

I (s = 0).
(36)

In addition, we define

Sχ[0,2ka−1]
|0〉 = 2(ka−1)/2I⊗n−ka+1H⊗ka−1|0〉. (37)

We can construct Sχ[0,a] by summing Eqs. (35) and (37) on each
interval. Sχαk

on the interval αk ≡ [ak, ak+1] is

Sχαk
= Sχ[0,ak+1] − Sχ[0,ak ] , (38)

which is a sum of at most O(n) unitaries composed of O(n)
gates. Using Sχαk

, we obtain

S f |0〉 =
d−1∑
k=0

∑
xi∈αk

f (xi )Sχαk
|0〉, (39)

and S f is constructed as

S f =
d−1∑
k=0

L∑
m=0

a(k)
m [D(n)]mSχαk

. (40)

In summary, evaluation of the expectation value is calcu-
lated by the following steps:

(1) Divide the domain of the target function [0, xmax] into
intervals [ak, ak+1] ∈ {[0, a1], [a1, a2], . . . , [ad−1, xmax]}.

(2) Approximate the function in each interval [ak, ak+1] by
Eq. (40).

(3) Decompose S f |0〉〈0|S†
f into a sum of unitary terms and

calculate each term using the circuits in Fig. 3.
As Sχ[ak ,ak+1] , [D(n)]m, |0〉〈0| is the sum of O(n), O(nm), and
O(1) unitaries composed of O(n), O(1), and O(n2) gates,
respectively, S f |0〉〈0|S†

f is the sum of O(d2n2L+2) unitaries
and each Qi is composed of at most O(n4) gates.

When the target function f on each interval is written
by a low-degree polynomial (i.e., L is small), especially
by a linear function (as in the pricing of European call
options shown below), our algorithm can efficiently calculate
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the expectation value because the number of unitaries
O(d2n2L+2) gets not so large. When the function f is
approximated by the polynomial, we can estimate the error of
the expectation value stemming from that approximation. If
we want to suppress the error below ε, the number of unitaries
becomes O(x2

maxε
− 2

L+1 n2L+2) (the derivation is presented in
Appendix C). Note that, as L is increased, ε− 2

L+1 becomes
smaller while n2L+2 becomes larger. The number of unitaries,
therefore, is not monotonic with respect to L, and there may
be an optimal L for the desired accuracy. We note that the
evaluation of the expectation values of those unitaries can be
performed completely in parallel by independent quantum
devices.

C. Pricing of the European call option

As a concrete example, we present the pricing of a Euro-
pean call option with the Black-Scholes (BS) model, which
is one of the simplest financial derivatives. The holder of a
European call option is entitled to buy the asset at a prede-
termined strike price at maturity. The price of a European
call option with strike price K � 0, interest rate r � 0, and
maturity T � 0 is defined by the conditional probability

e−rT EQ[max (XT − K, 0)|X0 = x0]. (41)

Here, EQ denotes the expectation value under the risk-neutral
probability measure. Stochastic processes are assumed to fol-
low geometric Brownian motion in the BS model but are
described by more complex mechanisms in other models.
Even in these models, the expression (41) of the price of the
European call option is the same with the present case.

Setting the probability distribution of XT conditioned
by X0 = x0 as {Prob[XT = xi|X0 = x0]}2n−1

i=0 , the expectation
value is

e−rT EQ[max (XT − K, 0)|X0 = x0]

= e−rT
2n−1∑
i=0

Prob[XT = xi|X0 = x0] max (xi − K, 0). (42)

For simplicity, we assume �x=1 and K=2k < 2n−1, k ∈N.
We thus obtain

Smax (i−K,0) = [D(n) − KI]Sχ[K,2n−1]
. (43)

In this case, there are only two intervals [0, K − 1] and
[K, 2n−1], and the polynomial in each interval is of first-order
degree at most. Therefore, we can calculate the price of the
European call option by Eq. (30).

V. POSSIBLE ADVANTAGES OF OUR METHOD

In this section, we discuss the advantages of our method
compared with previous studies, as well as the possible quan-
tum advantages.

In general, the SDEs addressed in this paper can be
transformed into a partial differential equation (PDE) of the
function e f (x, t ), where e f (x, t ) gives the expectation value
E [ f (X (T − t ))|X (0) = x], by the Feynman-Kac formula [1].
In fact, the authors of Ref. [22] performed a variational quan-
tum computation of a PDE of this function. We point out
two advantages of our method compared with this strategy

using the Feynman-Kac formula: First, the resulting PDE by
the Feynman-Kac formula must be solved backwards in time
from t = T to t = 0, with the initial condition at t = T being
related to the functional form of f (X ). It is not trivial to
prepare the initial state |ψ (T )〉 corresponding to the initial
condition; the authors of Ref. [22] executed an additional
VQE to prepare the initial state. Second, when using the
Feynman-Kac formula, the initial condition of the PDE is
different for each function f for which we want to calculate
the expectation value E [ f (X (T ))]. If we want to calculate a
different expectation value E [ f ′(X (T ))], we need to run the
whole algorithm simulating the PDE with the different initial
state corresponding to f ′. On the other hand, in our method,
once we perform VQS, we obtain the probability distribution
of X (T ) as a quantum state and the corresponding variational
parameters to reproduce it. We only need to redo the part of
the expectation value calculation (Sec. IV) for different f ′.

The authors of Ref. [23] embedded the probability distri-
bution by quantum arithmetic. Their embedding, proposed in
Ref. [42], requires O(2n) gates to embed the probability dis-
tribution into an n-qubit quantum state. To moderate the gate
complexity, the authors of Ref. [24] embedded the probability
distribution using a quantum generative adversarial network,
which requires only O(Poly(n)) gates. The probability dis-
tribution function can also be approximated by an lth-order
piecewise polynomial, which can be embedded with O(ln2)
gates even in quantum arithmetic [43]. However, both meth-
ods require prior knowledge of the probability distribution to
be embedded. In contrast, our method does not require prior
knowledge of the embedding probability distribution since our
method simulates the time evolution of a given SDE.

We now compare the computational cost to calculate ex-
pectation values with previous studies. In Refs. [23] and [24],
by employing QAE, the expectation value [Eq. (28)] was
calculated by using an oracle that is a complex quantum gate
reflecting the functional form of f for O(1/ε) times, where
ε is the precision for the expectation values. The classical
Monte Carlo method requires O(1/ε2) sampling for precision
ε, so their methods provide a second-order acceleration. On
the other hand, our method measures the expectation value
of each term of Eq. (31) using the Hadamard test (Fig. 3)
or the quantum phase estimation (QPE) [40,41]. As shown
in Appendix A, the total number of measurements to obtain
the expectation value with precision ε is O(1/γ ε2) for the
Hadamard test and O(log(1/γ ε)) for QPE, where γ is some
factor. We note that the depth of the circuit is O(1/γ ε) in
QPE, which is of the same order as the QAE whereas our
method requires not a complicated oracle but a relatively small
unitary. Hence, when the factor γ is not too small, our method
combined with QPE can also exhibit a quantum advantage
for the evaluation of the expectation values. The factor γ

depends on the parameters of the polynomial approximation
(a(m)

k , d, L), the domain of the approximated function xmax,
and the probability distribution {Prob[X = xi]}2n−1

i=0 . The de-
tailed evaluation of γ is described in Appendix A.

VI. NUMERICAL RESULTS

In this section, our algorithm is applied to two stochas-
tic processes, namely, geometric Brownian motion and an
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FIG. 4. In a depth-k circuit, CNOT and RY gates (enclosed
by dashed lines) are repeated k times. The circuit has 4(k + 1)
parameters.

Ornstein-Uhlenbeck process, which are commonly assumed
in financial engineering problems. Geometric Brownian mo-
tion simply models the fluctuations of asset prices, and the
Ornstein-Uhlenbeck process is a popular model of interest
rates.

A. Models

Geometric Brownian motion is equivalent to setting
μ(X (t ), t ) = rX (t ), σ (X (t ), t ) = σX (t ) in Eq. (1), where r
and σ are positive constants.

The Ornstein–Uhlenbeck process is equivalent to setting
μ(X (t ), t ) = −η(X (t ) − r), σ (X (t ), t ) = σ in Eq. (1), where
η, r and σ > 0 are constants.

The ansatz circuit is identical for both models and shown in
Fig. 4. As the amplitudes of the quantum state must be real, the
ansatz contains only CNOT and RY gates. This depth-k circuit
repeats the entangle blocks composed of CNOTs and RY gates
k times. The parameters of geometric Brownian motion were
r = 0.1, σ = 0.2, �x = 1, and t ∈ [0, 4] and those of the
Ornstein–Uhlenbeck process were r = 7, σ = 0.5, η = 0.01,
�x = 1, and t ∈ [0, 4]. We simulate the quantum circuits
without noise using numpy [44] or jax [45]. We set the number
of qubits n = 4 and the number of repetitions of entangle
blocks k = 2, 3.

B. Results

Figures 5(a) and 5(b) present the numerical simulations
of geometric Brownian motion and the Ornstein-Uhlenbeck
process, respectively. For comparison, we also provide a prob-
ability density function (PDF) for the solution of the SDE
equation obtained by solving the Fokker–Planck equation [46]
analytically. We can see that our method well describes the
time evolution of the probability distribution.

We calculated the means [Figs. 5(c) and 5(d)] and vari-
ances [Figs. 5(e) and 5(f)] of the resulting distributions. We
also present the mean and variance obtained from the analyti-
cal solution and the solution of Eq. (16) using the Runge-Kutta
method. Because of the approximation with the tree model,
even the results of the Runge-Kutta method slightly differ
from the analytical solution. In the case of VQS with k = 2,
we see that the error from the analytical solution is larger than
that of the k = 3 case. This is because the number of VQS
parameters is less than the number of lattice points in the event
space when k = 2, i.e., the degrees of freedom of the ansatz

are less than the degrees of freedom of the system, and thus
the errors due to the ansatz appear. In the case of k = 3, the
number of parameters in the ansatz is sufficient, and thus the
results are closer to the results of the Runge-Kutta method.

VII. CONCLUSION

This paper proposed a quantum-classical hybrid algorithm
that simulates SDEs based on VQS. A continuous stochastic
process was discretized in a trinomial tree model and was
reformulated as a linear differential equation. The obtained
differential equation was solved with VQS, obtaining quan-
tum states representing the probability distribution of the
stochastic processes. As our method can embed the proba-
bility distribution of the solution of a given SDE into the
quantum state, it is applicable to general SDEs. We note that
our methods can apply to the Fokker–Plank equation, which
also gives the time evolution of the probability distributions of
SDE solutions.

Because the embedding methods of the probability dis-
tribution of the proposed method differ from those in
the conventional quantum algorithm, we proposed another
method for computing the expectation value. We approx-
imated the functions to calculate expectation values by
piecewise polynomials and constructed operators correspond-
ing to the polynomial in each interval. The operators were
constructed as sums of unitary operators, which are com-
posed of easily implementable gates. The expectation value
was then computed using the sum of unitary operators. Our
algorithm was validated in classical simulations of geomet-
ric Brownian motion and the Ornstein-Uhlenbeck process.
Both processes were well simulated by the algorithm. Our
algorithm is expected to efficiently simulate other stochastic
processes provided that L(t ) can be written as a polynomial
linear combination of unitary matrices.

Let us summarize the computational cost of our method
presented in this work. Our method consists of two parts:
one is to perform VQS to simulate the SDE, and the other
is to calculate the expectation value of the SDE solution. In
the part involving VQS, we decompose the matrix L(t ) in
Eq. (16) into a sum of O(nmmax ) different unitaries composed
of O(n2) few-qubit gates, where mmax is the largest order of
the polynomial expansion of μ, σ in Eq. (27). At each time
step of VQS, the vector Vk in Eq. (11) is evaluated as a sum of
O(nmmax ) measurement results of the circuits depicted in Fig. 2.
As mmax is typically finite and small (≈1, 2) in most practical
applications, the computational cost (i.e., the number of gates
in quantum circuits, the number of different circuits to run)
of the simulation of SDE is O(Poly(n)). In contrast, QLSA
[12,31,32] requires much deeper and more complex quantum
circuits and a large number of ancilla qubits because it uses the
Hamiltonian simulation and the quantum Fourier transform.
This is an advantage of our method leveraging the variational
quantum algorithm.

In the part of the expectation value evaluation of the SDE
solution, we evaluate it by running different O(d2n2L+2) quan-
tum circuits, where d and L are the number of intervals
and the order of the piecewise polynomial approximation
of the function f in Eq. (28), respectively. Each circuit is
constructed to compute an expectation value 〈ψ |U |ψ〉 of a

052425-8



VARIATIONAL QUANTUM SIMULATIONS OF STOCHASTIC … PHYSICAL REVIEW A 103, 052425 (2021)

FIG. 5. (a) Dynamics of geometric Brownian motion and (b) dynamics of Ornstein-Uhlenbeck process. Solid lines shoe exact solutions of
the SDE and circles show numerical simulations of our algorithm. (c) Time dependence of mean in geometric Brownian motion and (d) time
dependence of mean in Ornstein-Uhlenbeck process. (e) Time dependence of variances of geometric Brownian motion and (f) time dependence
of Ornstein-Uhlenbeck process. Dashed lines show the numerical solutions of VQS with a k = 2-depth and 3-depth ansatz. Dotted lines show
the numerical Runge-Kutta solutions of the linear differential equation [Eq. (16)]. Solid lines show the exact solutions of the SDE. (a), (c),
(e) Geometric Brownian motion with parameters r = 0.1, σ = 0.2. (b), (d), (f) Ornstein–Uhlenbeck Process with parameters r = 7, σ = 0.5,
η = 0.01.
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unitary U that contains O(n4) quantum gates. When we adopt
the Hadamard test (Fig. 3) as such a quantum circuit, the
number of measurements to suppress statistical error of the
expectation value below ε is O(1/γ ε2), where γ is a factor
defined in Appendix A. This O(1/ε2) scaling is the same as
the classical Monte Carlo method to compute the expectation
values from the probability distribution of the SDE solution.
When we choose the QPE-type circuit to evaluate 〈ψ |U |ψ〉,
the number of measurements becomes O(log(1/γ ε)) while
the depth of the circuit in terms of U is O(1/γ ε). This sit-
uation can provide a quantum advantage for computing the
expectation value of the SDE solution. The error from the
piecewise polynomial approximation of f can be made small
by increasing d or L, which is detailed in Appendix C. Since
it is difficult to accurately estimate the error caused by ansatz,
it is also difficult to accurately estimate the overall error.
Therefore, quantum speedup is not mathematically rigorous
as with other variational quantum algorithms.

This study focused on computational finance because fi-
nancial engineering is among the most popular applications
of stochastic processes. Pricing of derivatives and many other
problems in financial engineering satisfy the conditions of the
proposed method. However, because the stochastic processes
themselves are quite general, the proposed method is expected
to contribute to solving problems in various fields.
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APPENDIX A: COMPLEXITY OF CALCULATING
EXPECTATION VALUE

This Appendix derives the computational complexity of
calculating the expectation by Eq. (30). To limit the error ε

in the expectation value E = (〈ψ̃ |S f |0〉〈0|S†
f |ψ̃〉)1/2, we show

the upper limit of error ε′ of the expectation value for each
term in Eq. (31) and find the number of measurements and
gate complexity required to achieve this error. We assume
that S f |0〉〈0|S†

f can be written as a linear combination of NU

unitary operators as follows:

S f |0〉〈0|S†
f =

NU∑
i=1

βiUi, (A1)

where {Ui} are unitary operators. We denote the error of ex-
pectation values 〈ψ |Ui|ψ〉, where |ψ〉 is the normalized state,

|ψ〉 = 1√∑2n−1
j=0 p2

j

|ψ̃〉, (A2)

where p j = Prob[X (t ) = xi]. We define the error as ε′ of the
expectation value of each term in a state |ψ〉. That is, the
estimated expectation value of each term ũi satisfies

|ũi − 〈ψ |Ui|ψ〉| � ε′. (A3)

The error in the linear combination of expectation values is
determined as∣∣∣∣∣

NU∑
i=1

βiũi − 〈ψ |
NU∑
i=1

βiUi|ψ〉
∣∣∣∣∣ =

∣∣∣∣∣
NU∑
i=1

βi(ũi − 〈ψ |Ui|ψ〉)

∣∣∣∣∣
�

NU∑
i=1

|βi||(ũi − 〈ψ |Ui|ψ〉)|

� ε′
NU∑
i=1

|βi|. (A4)

Denoting the estimation of E as Ẽ , we have

|Ẽ − E | �
2n−1∑
j=0

p2
j

ε′ ∑NU
i=1 |βi|

Ẽ + E
∼

2n−1∑
j=0

p2
j

ε′ ∑NU
i=1 |βi|
2E

. (A5)

To upper limit the error ε in E , the error ε′ must satisfy
following condition:

ε′ � 2εE∑2n−1
j=0 p2

j

∑NU
i=1 |βi|

= γ ε, (A6)

where γ ≡ (2E/
∑2n−1

j=0 p2
j

∑NU
i=1 |βi|).

The Hadamard test (Fig. 3) requires O(1/ε′2) measure-
ments to limit the error in the expectation value to ε′, and the
depth of the quantum circuit is O(1) in terms of the unitary
U (= QiQ

†
i′ , QiCnZ · X ⊗nQ†

i′ ) except for the circuit to prepare
the quantum state. On the other hand, the number of measure-
ments to achieve the same accuracy with QPE is O(log(1/ε′)),
but the depth of the quantum circuit in terms of the unitary U
is O(1/ε′) [40,41]. The total number of measurements is equal
to the number of measurements for each term multiplied by
NU . Note that NU = O(d2n2L+2) with an Lth-order piecewise
polynomial approximation of the function f with d intervals
(see Sec. IV B). Therefore, the total number of measurements
required to calculate the expectation value is O(d2n2L+2/γ ε2)
by the Hadamard test and O(d2n2L+2 log(1/γ ε)) by QPE.
QPE requires extra U gates, the number of which is O(1/γ ε).

Finally, we provide the estimation of the value of γ as
follows: The factor

∑2n−1
j=0 p2

j satisfies
∑2n−1

j=0 p2
j � 1 and then

γ � 2E/
∑NU

i=1 |βi|. To evaluate
∑NU

i=1 |βi|, we use Eq. (31)
and obtain

NU∑
i=1

|βi| = 2
∑
l,l ′

|ξlξ
∗
l ′ | = 2

∑
l,l ′

|ξl ||ξl ′ |. (A7)

We estimate the upper limit of sum of absolute values of
coefficients in Eq. (40) to evaluate

∑
l |ξl |. From Eq. (24),

the absolute values of the coefficients of [D(n)]m are at
most O(2nm) = O(xm

max). As Sχαk
is a linear combination of

Sχα
l
, the absolute values of coefficients of Sχαk

is at most
O(2(ka−1)/2) from Eq. (37). Since ka satisfies 0 < ka � n
by definition, O(2(ka−1)/2) = O(

√
xmax). The largest |ξl | is

as large as (maxk maxm(|a(k)
m |xm

max))O(
√

xmax) from Eq. (40).
Thus, we obtain

NU∑
i=1

|βi| � O
([

max
k

max
m

∣∣a(k)
m

∣∣xm
max

]2
d2n2L+2xmax

)
. (A8)
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Therefore, γ is larger than the ratio of E and the right-hand
side of Eq. (A8).

APPENDIX B: MULTIVARIATE STOCHASTIC
DIFFERENTIAL EQUATION

In this Appendix, we apply our proposed method to a SDE
with multiple variables.

1. Definition and construction of the tree-model approximation

Let us consider a SDE with D variables,

dXd (t ) = μd (Xd , t )dt + σd (Xd , t )dWd , (B1)

for X1(t ), . . . , XD(t ), where {Wd}D
d=1 describes the Brownian

motion with correlation Corr[Wk,Wl ] = ρkl . For simplicity,
we assume an event space of each variable Xd (t ) as [0, x(d )

max]
and divide it into Nx + 1 points; that is, x(d )

i ≡ i�x(d ), �x(d ) ≡
x(d )

max/Nx (d = 1, . . . , D). The time period of the simulation,
t ∈ [0, T ], is divided into Nt + 1 points, t j ≡ j�t ; that is
�t ≡ T/Nt .

We define a lattice of the tree model for Eq. (B1)
with nodes (i1, . . . , iD; j) representing the random variables
(X1(t j ), . . . , XD(t j )) = (x(1)

i1
, . . . , x(D)

iD
), where id = 0, . . . , Nx,

j = 0, . . . , Nt , d = 1, . . . , D. The node transitions during
time t j → t j+1 are of three types:

(1) (i1, . . . , iD; j)→ (i1, . . . , iD; j + 1),

(2) (i1, . . . , iD; j)→ (i1, . . . , ik ± 1, . . . , iD; j + 1),

(3) (i1, . . . , iD; j)→ (i1, . . . , ik ± 1, . . . , il ± 1, . . . , iD; j+1),

where 1 � k < l � D. Type (1)–(3) transitions occur to nodes
with identical variable values, to nodes where one-variable
Xk hops to its adjacent values, and to nodes where two vari-
ables (Xk and Xl ) hop to their adjacent values. The transition
probabilities associated with type (1)–(3) transitions are re-
spectively given by

pm
(
x(1)

i1
, . . . , x(D)

iD
, t

)
,

p(k)
u,d

(
x(1)

i1
, . . . , x(D)

iD
, t

)
,

p(k,l )
uu,ud,du,dd

(
x(1)

i1
, . . . , x(D)

iD
, t

)
,

where the subscript u (d) corresponds to the sign + (−).
The transition probabilities can be determined identi-

cally to those of the one-variable SDE. The SDE (B1) at
(X1(t j ), . . . , XD(t j )) = (x(1)

i1
, . . . , x(D)

iD
) is discretized as

Xd (t j+1) − Xd (t j ) = μd (Xd (t j ), t )�t + σd (Xd (t j ), t )
√

�tzd ,

(B2)

where {zd}D
d=1 is sampled from the multivariable Gaussian

distribution, E[zd ] = 0, Var[zd ] = 1, Corr[zk, zk] = ρkl . The
first and second conditional moments satisfy

E [Xd (t j+1) − Xd (t j )|Xd (t j ) = x] = μd (x, t j )�t, (B3)

Var[Xd (t j+1) − Xd (t j )|Xd (t j ) = x] = σ 2
d (x, t j )�t (B4)

for d = 1, . . . , D and the covariance of the variables satisfies

Cov[Xk (t j+1) − Xk (t j ), Xl (t j+1) − Xl (t j )

|Xk (t j ) = x, Xl (t j ) = y] = σk (x, t j )σl (y, t j )ρkl�t (B5)

for 1 � k < l � D. The corresponding quantities in the tree
model are

E [Xd (t j+1) − Xd (t j )|Xd (t j ) = x]

=
[

p(d )
u − p(d )

d +
d−1∑
k=1

(
p(k,d )

uu − p(k,d )
ud + p(k,d )

du − p(k,d )
dd

)

+
D∑

l=d+1

(
p(d,l )

uu + p(d,l )
ud − p(d,l )

du − p(d,l )
dd

)]
�x(d ), (B6)

Var[Xd (t j+1) − Xd (t j )|Xd (t j ) = x]

=
[

p(d )
u + p(d )

d +
d−1∑
k=1

(
p(k,d )

uu + p(k,d )
ud + p(k,d )

du + p(k,d )
dd

)

+
D∑

l=d+1

(
p(d,l )

uu + p(d,l )
ud + p(d,l )

du + p(d,l )
dd

)]
(�x(d ) )2

(B7)

for d = 1, . . . , D and

Cov[Xk (t j+1) − Xk (t j ), Xl (t j+1) − Xl (t j )

|Xk (t j ) = x, Xl (t j ) = y]

= (
p(k,l )

uu − p(k,l )
ud − p(k,l )

du + p(k,l )
dd

)
�x(k)�x(l ). (B8)

As is the same for the case of a single variable we set
the transition amplitudes by equating Eqs. (B3)–(B5) with
(B6)–(B8). If the solutions of p(k)

u,d , p(k,l )
uu,ud,du,dd are propor-

tional to �t , the linear differential equation can be derived
by taking the limit of �t → 0 [as in the one-dimensional case
of Eq. (16)].

When D > 1, one should note the numbers of variables
and conditional expressions. As the numbers of pm, p(k)

u,d ,

p(k,l )
uu,ud,du,dd are 1, 2D, 2D(D − 1), respectively, the number of

independent variables is 2D2 under the normalized probability
conditions. On the other hand, the number of equations of
the mean, variance, and covariance are D, D, D(D − 1)/2,
respectively, so the total number of equations is D(D + 3)/2.
When D > 1, the number of variables exceeds the number of
conditions, so an infinite number of transition probabilities
satisfy the condition.

Here, we show there is indeed a solution of the transition
amplitudes which admit taking limit �t → 0 and obtain the
linear differential equitation of the probability distributions
of the SDE. Fixing p(k)

dd = p(k)
ud = p(k)

du = 0, the number of
variables becomes D(D + 3)/2, which is slightly asymmetric
(because we consider only pk

uu to be nonzero) but agrees
with the number of conditional expressions. In this case, the
transition probabilities are

p(k,l )
uu = σkσlρkl

�x(k)�x(l )
�t, (B9)

p(d )
u = 1

2

(
σ 2

d

(�x(d ) )2 + μd

�x(d )

)
−

∑
k �=d

σkσdρkd

�x(k)�x(d )
, (B10)
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p(d )
d = 1

2

(
σ 2

d

(�x(d ) )2 − μd

�x(d )

)
, (B11)

pm = 1 −
[

D∑
d=1

(
σ 2

d

(�x(d ) )2 −
∑
k �=d

σkσdρkd

�x(k)�x(d )

)
−

∑
k �=l

σkσlρkl

�x(k)�x(l )

]
�t = 1 −

D∑
d=1

σ 2
d

(�x(d ) )2 �t . (B12)

Here, we omit the arguments of μd and σd to simplify the notation.

2. Mapping to variational quantum simulation and construction of L(t )

In the multivariate case, we can construct L(t ) as described in Sec. III. For notational simplicity, we denote |i1, . . . , iD〉 =
|i〉, |i1, . . . , id−1, id ± 1, id+1, . . . , iD〉 = |i ± ed〉, |i1, . . . , ik + 1, . . . , il + 1, . . . iD〉 = |i + ek + el〉. Using Eqs. (B9)–(B11) and
(B12), we obtain

L(t ) = 1

2

D∑
d=1

2n−2∑
id =0

∑
i−d

[
σ 2

d

(�x(d ) )2 + μd

�x(d )
−

∑
k �=d

σkσdρkd

�x(k)�x(d )

]
|i + ed〉〈i| + 1

2

D∑
d=1

2n−1∑
id =1

∑
i−d

(
σ 2

d

(�x(d ) )2 − μd

�x(d )

)

× |i − ed〉〈i| +
∑
k �=l

2n−2∑
ik,l =0

∑
i−k ,i−l

σkσlρkl

�x(k)�x(l )
|i + ek + el〉〈i| −

D∑
k=1

∑
i

σ 2
d

(�x(d ) )2 |i〉〈i|, (B13)

where
∑

i denotes the sum of im ∈ {0, . . . , 2n − 1} for all m ∈ {1, . . . , D}, ∑i−d
is the sum of im ∈ {0, . . . , 2n − 1} for all m �= d ,

and
∑

i−k,−l
is the sum for im ∈ {0, . . . , 2n − 1} for all m �= k, l .

Here, we expand σk (x(k), t ), μk (x(k), t ) as

σk (x(k), t ) =
mσk∑
m=0

a(k)
σ,m(t )(x(k) )m, (B14)

μk (x(k), t ) =
mμk∑
m=0

a(k)
μ,m(t )(x(k) )m. (B15)

We also define the operators

V (k)
+ (n) = I⊗k−1 ⊗ V+(n) ⊗ I⊗D−k, (B16)

V (k)
− (n) = I⊗k−1 ⊗ V−(n) ⊗ I⊗D−k, (B17)

D(k)(n) = I⊗k−1 ⊗ D(n) ⊗ I⊗D−k . (B18)

These operators satisfy the following equations:

V (k)
+ (n)[D(k)(n)]m =

2n−2∑
ik=0

∑
i−k

im
k |i + ek〉〈i|, (B19)

V (k)
− (n)[D(k)(n)]m =

2n−1∑
ik=1

∑
i−k

im
k |i − ek〉〈i|, (B20)

V (k)
+ (n)[D(k)(n)]mkV (l )

+ (n)[D(l )(n)]ml =
2n−2∑
ik=1

2n−2∑
il =1

∑
i−k,−l

imk
k iml

l |i + ek + el〉〈i|. (B21)

Using these operators, we can rewrite L(t ) as

L(t ) =
D∑

d=1

mσd∑
mk=0

mσd∑
ml =0

a(d )
σ,mk

a(d )
σ,ml

(�x(d ) )mk+ml −2

(
V (k)

+ + V (k)
−

2
− I

)
[D(d )(n)]mk+ml +

D∑
d=1

mμd∑
mk=0

mμd∑
ml =0

a(d )
μ,mk

a(d )
μ,ml

(�x(d ) )mk+ml −1

×
(

V (k)
+ − V (k)

−
2

)
[D(d )(n)]mk+ml +

∑
k �=d

mσk∑
mk=0

mσl∑
ml =0

a(k)
σ,mk

a(l )
σ,ml

(�x(k)�x(l ) )−1V (k)
+ (n)[D(k)(n)]mkV (l )

+ (n)[D(l )(n)]ml . (B22)
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Because V (k)
+ (n)[D(k)(n)]m, V (k)

− (n)[D(k)(n)]m are the sums
of O(nm) unitaries composed of O(n2) few-qubit gates,
Eq. (B22) is a feasible decomposition of L(t ).

3. Evaluating the expectation value

To perform computation of the expectation value, we
construct a multivariate indicator operator. In the D-
dimensional case, the domain of the function is

∏D
i=1[0, x(i)

max].
In each dimension, we divide [0, x(i)

max] into d inter-
vals {[a(i)

0 , a(i)
1 ], , . . . , [a(i)

d−1, x(i)
max]} and obtain dD regions

I ({ki}) = ∏D
i=1[a(i)

ki
, a(i)

ki+1]. The indicator operator on I ({ki})
is represented by the tensor product of the one-dimensional
indicator operator Eq. (29), i.e.,

SχI ({ki }) =
D⊗

i=1

Sχ
[a(i)

ki
,a(i)

ki+1]
. (B23)

Thus, we can construct

S f =
∑
{ki}

mki∑
m=0

a(ki )
m [D(n)]mSχI ({ki }) . (B24)

Note that S f |0〉〈0|S†
f is the sum of O(n2D(m+1)) unitaries and

each Qk in Eq. (31) is composed of O(n4) gates. In general,
the number of sums grows exponentially with the dimen-
sions. However, even if the correlations between multivariate
stochastic processes are important, exponential growth is in-
consequential if the function depends on a small number
of random variables. These issues are not unique to our al-
gorithm. When calculating expectations using QAE, if the

arguments of the function are multidimensional, exponentially
greater resources are required to build a multidimensional
oracle.

Thus, when the number of sums required to construct S f is
independent of the dimension D of the random variable, our
algorithm may be particularly effective.

APPENDIX C: ERROR FROM PIECEWISE
POLYNOMIAL APPROXIMATION

In this section, we evaluate the error of the expectation
value E [ f (X (T ))] from the polynomial approximation of the
function f .

As in the main text, we divide [0, xmax] into d intervals
{[0, a1], [a1, a2], . . . , [ad−1, xmax]}. For simplicity, we assume
the equally spaced intervals, so the width of the intervals is
h = xmax/d . We ignore the errors in the probability density
function p(x) that come from the tree model approximation of
the SDE and the incompleteness of the ansatz of VQS because
we focus on the error derived from the piecewise polynomial
approximation of f .

We define the Lth-order residual term of the Taylor expan-
sion of f around ak = kh as

RL
k (x) = 1

(L + 1)!
f (n)(c)(x − kh)L+1, (C1)

where x ∈ [ak, ak+1] = [kh, (k + 1)h] and c ∈ [x, (k + 1)h].
Because x − kh � h, RL

k (x) is O(hL+1). When we approximate
f on [ak, ak+1] by the Lth-order Taylor expansion gL(x), the
error of the expectation value E f = ∑2n−1

i=0 f (xi )p(xi ) is

|E f − Eg| =
∣∣∣∣∣

d−1∑
k=1

∫ (k+1)h

kh
f (x)p(x)dx −

d−1∑
k=1

∫ (k+1)h

kh
gL(x)p(x)dx

∣∣∣∣∣
=

∣∣∣∣∣
d−1∑
k=1

∫ (k+1)h

kh
RL

k (x)p(x)dx

∣∣∣∣∣
� max

k

[
max

kh�x�(k+1)h

{∣∣RL
k (x)

∣∣}] d−1∑
k′=1

∫ (k′+1)h

k′h
p(x)dx

= max
k

[
max

kh�x�(k+1)h

{∣∣RL
k (x)

∣∣}]

= O(hL+1).

To suppress the error below ε, it is necessary to set d > xmaxε
− 1

L+1 . From the discussion in Sec. IV, S f |0〉〈0|S†
f is the sum of

O(d2n2L+2) unitaries. Thus, we can see that S f |0〉〈0|S†
f is the sum of O(x2

maxε
− 2

L+1 n2L+2) unitaries.
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