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We consider a scenario where a party, say, Alice prepares a pure two-qubit (either maximally entangled or
nonmaximally entangled) state and sends one half of this state to another distant party, say, Bob through a qubit
(either unital or nonunital) channel. Finally, the shared state is used as a teleportation channel. In this scenario,
we focus on characterizing the set of qubit channels with respect to the final state’s efficacy as a resource of
quantum teleportation (QT) in terms of maximal average fidelity and fidelity deviation (fluctuation in fidelity
values over the input states). Importantly, we point out the existence of a subset of qubit channels for which the
final state becomes useful for universal QT (having maximal average fidelity strictly greater than the classical
bound and having zero fidelity deviation) when the initially prepared state is either useful for universal QT (i.e.,
for a maximally entangled state) or not useful for universal QT (i.e., for a subset of nonmaximally entangled
pure states). Interestingly, in the latter case, we show that nonunital channels (dissipative interactions) are more
effective than unital channels (nondissipative interactions) in producing useful states for universal QT from
nonmaximally entangled pure states.
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I. INTRODUCTION

Developments in the understanding of quantum corre-
lations along with the superposition principle have bench-
marked advances in the field of quantum information.
Quantum entanglement is one of the most prominent of quan-
tum correlations which is empowered due to the superposition
principle. Entanglement plays a pivotal role in the success
of a number of quantum information protocols, in particular,
quantum teleportation (QT).

QT [1] can be realized as a strategy between two spatially
separated parties where a sender (say, Alice) transfers an
unknown quantum state to the receiver (say, Bob) using local
operations and classical communications (LOCC) and shared
entanglement without any physical transmission of quantum
systems. QT has played a crucial role in the advancement
of quantum communication. Motivated from QT, innumer-
able quantum information theoretic and communication tasks
ranging from quantum repeaters [2], quantum gate telepor-
tation [3], to measurement-based computing [4] have been
proposed. The idea of QT has been extended to multipartite
systems [5] and continuous variable systems [6]. Experimen-
tal demonstrations of QT have been reported [7–9] which also
include QT over large distances [10] or QT from ground to
satellite [11].

The standard figure of merit for QT is the average fi-
delity [12–15]. It represents the average closeness or overlap
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between the input state at the sender’s end and the output
state at the receiver’s end, where the average is taken over
all possible input states. In the case of perfect QT, the output
state is exactly equal to the input state for all possible input
states. Maximally entangled states are the necessary resource
for perfect QT [1]. However, in reality one cannot expect
maximally entangled states due to environmental interactions
leading to imperfect QT, where the average fidelity is strictly
less than one [12]. In such cases, all input states may not
be teleported equally well, and dispersion or fluctuation in
fidelity over the input states may arise [16,17]. Although the
average fidelity is the standard quantifier for QT, it does not
contain any information about the fluctuation in fidelity or
fidelity deviation [16–21]. Hence, average fidelity associated
with fidelity deviation can completely characterize QT. The
maximal average fidelity is the maximal value of average
fidelity achievable over all possible local unitary operations
within the standard teleportation protocol [12]. On the other
hand, fidelity deviation is something that one would like to
minimize while keeping the average fidelity to the maximal
possible value [17,18]. Any two-qubit entangled state, for
which the maximal fidelity is strictly greater than the clas-
sical bound, is known as an useful state for QT [12,13]. A
useful state for QT is called useful for universal quantum
teleportation (UQT) if and only if the state shows vanishing
fidelity deviation [17]. In other words, a UQT implies that
all input states can be teleported equally well with the same
fidelity value equals to the maximal average fidelity. Hence,
the concept of fidelity deviation can be used as a filter to select
the optimal states for QT [18].

Quantifying the success of QT based only on an average
fidelity has some limitations in practical cases, for example,
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in the context of quantum circuit [19,22,23] consisting of
QT as an intermediate step. In such realistic scenarios, one
may need to teleport a finite number of input states without
considering all possible input states. In such cases, the knowl-
edge of fidelity deviation plays a crucial role to estimate the
individual fidelities for different input states. In particular, if
the entangled channel is useful for UQT, then any input state
is teleported with fidelity equal to the average fidelity.

The necessary resource for QT is entanglement which must
be shared between the sender and the receiver. Sharing of
entanglement can be done by a simple process; Alice prepares
an entangled pair in her laboratory and sends one half to Bob
via a quantum channel. A perfect QT requires a maximally
entangled state which can only be established via noiseless
quantum channels. In practical scenarios, the channels are
noisy, and, hence, these studies need to be considered by tak-
ing into account of the effects of environmental interactions.
This can be done using the tools of open quantum systems
[24,25].

A quantum channel [26–28] is a completely positive and
trace-preserving (CPTP) map � with the operator sum repre-
sentation �(ρ) =∑i KiρK†

i . Here Ki are the Kraus operators
[26,27] obeying the completeness condition,

∑
i K†

i Ki = I .
Any quantum channel is characterized by the following prop-
erties: (a) linearity, (b) Hermiticity preserving, (c) positivity
preserving, and (d) trace preserving. The evolution modeled
by a quantum channel could be, in general, unital or nonunital.

In the present study, we consider the scenario where Alice
prepares either a maximally entangled two-qubit state or a
nonmaximally entangled two-qubit pure state and sends one
half of it via a unital or nonunital qubit channel. The final
state shared between Alice and Bob is used as the teleportation
channel. Since the maximally entangled two-qubit states are
useful for UQT [17], in this case we find the set of unital
as well as nonunital channels for which the final state still
remains useful for UQT. On the other hand, the nonmaximally
entangled two-qubit pure states being not useful for UQT [17],
we work out on finding the subset of unital and nonunital
channels which convert the initial nonmaximally entangled
two-qubit pure states into useful states for UQT by acting on
one half of the states. Our results indicate that both unital and
nonunital qubit channels can decrease the fidelity deviation
(even can eliminate it completely).

Environmental interactions and the effects of quantum
channels inevitably degrade the efficacy of a quantum re-
source. Hence, from a foundational point of view as well as
from an information theoretic perspective it is important to
find the set of quantum channels that preserve the effective-
ness of any quantum resource. QT being one of the primitive
quantum information processing protocols, analyzing the set
of quantum channels preserving the resources for QT is of
paramount significance. Our present study is motivated to
address this practical issue. Most importantly, our results ef-
fectively filter out the set of qubit channels which can be used
in a practical scenario for realizing UQT.

The paper is organized as follows. Section II is dedicated
to the preliminary ideas and definitions useful for our paper.
In particular, we briefly discuss the concept of concurrence
for two-qubit states, the Hilbert-Schmidt representation and
canonical representation of an arbitrary two-qubit state, the

concept of maximal average fidelity and fidelity deviation
for a two-qubit state, and the qubit channels. In Sec. III we
summarize the results obtained in this paper. Next, in Sec. IV
we present the results when the initial state is a Bell state
followed by the results in Sec. V with nonmaximally entan-
gled two-qubit pure states as the initial states. An analysis of
physically motivated noise models is made in Sec. VI. Finally,
we conclude with a brief discussion in Sec. VII. Some of the
technical details are relegated to two Appendixes.

II. PRELIMINARIES

In this section, we will discuss the basic definitions and
preliminaries of quantum entanglement, Hilbert-Schmidt rep-
resentation and canonical representation of a two-qubit state,
maximal average fidelity, and fidelity deviation in QT with a
two-qubit state and qubit channels.

A. Concurrence of a two-qubit state

Entanglement is a fundamental aspect of quantum corre-
lation present in compound quantum systems. There exist a
number of well-known measures of quantum entanglement.
In the present paper, we restrict ourselves to the concurrence
measure [29]. For a two-qubit state ρ, the concurrence C(ρ)
is defined as [29]

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}. (1)

Here λ1 � λ2 � λ3 � λ4 are square roots of the eigenvalues
of ρρ̃, where ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) is the Pauli rotated
state with σy being the Pauli bit-phase flip matrix and ρ∗ being
the complex conjugation of ρ in the computational basis.

B. Hilbert-Schmidt representation and the canonical form
of a two-qubit state

The Hilbert-Schmidt representation of a two-qubit density
matrix ρ is given by [12,30,31]

ρ = 1

4

[
I4 + R · σ ⊗ I2 + I2 ⊗ S · σ +

3∑
i, j=1

Ti jσi ⊗ σ j

]
.

(2)
The terms R, S represent local vectors in R3 in each respective
marginal and R(S) · σ = ∑3

i=1 Ri(Si )σi with σi (i = 1, 2, 3)
being the Pauli matrix; Ti j = Tr(ρσi ⊗ σ j ) are the elements
of the 3 × 3 correlation matrix Tρ , where i, j = 1, 2, 3. Let
t11, t22, t33 are the eigenvalues of Tρ . Then there always exits
a product unitary operation U1 ⊗ U2 that transforms ρ → ρC

such that [13,30,31]

ρC = (U1 ⊗ U2)ρ(U1 ⊗ U2)†

= 1

4

[
I4 + r · σ ⊗ I2 + I2 ⊗ s · σ +

3∑
k=1

λk|tkk| σk ⊗ σk

]
,

(3)

with λk ∈ {−1,+1} for k = 1, 2, 3; r, s represent local vectors
in R3 in each respective marginal and r(s) · σ =∑3

i=1 ri(si )σi.
Now, one can further choose the product unitary U1 ⊗ U2

such that (1) if det(Tρ ) � 0, then λk = −1 for |tkk| �= 0, k =
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1, 2, 3 and (2) if det(Tρ ) > 0, then λi, λ j = −1, λk = +1 for
|tkk| �= 0 for any choice of i �= j �= k ∈ {1, 2, 3} with |tii| �
|t j j | � |tkk|. This transformed ρC is known as the canonical
form of ρ [17,32].

C. Maximal average fidelity and fidelity deviation in QT
with a two-qubit state

Perfect QT is achieved if and only if the shared state is
maximally entangled. In this case, the output state of QT
is exactly equal to the input state. However, in practice, the
available states are mixed entangled, and hence, QT will not
be perfect. The standard figure of merit for QT is expressed
through the concept of average fidelity [12–15], which signi-
fies the closeness between the input and the output states.

The average teleportation fidelity for a two-qubit state ρ is
defined as [12]

〈 fρ〉 =
∫

fψ,ρ dψ, (4)

where fψ,ρ = 〈ψ |χ |ψ〉 is the fidelity between the input-
output pair (|ψ〉〈ψ |, χ ). The above integration is taken over a
uniform distribution of all possible pure qubit input states |ψ〉
(normalized Haar measure,

∫
dψ = 1). In other words, this

integration is over the parameters appearing in |ψ〉. In Bloch
representation, an arbitrary pure qubit input state is given by
|ψ〉〈ψ | = 1

2 (I2 + â · σ), where the unit vector â represents
the Bloch vector of the input state, and it is given by â =
(sin θ cos φ, sin θ sin φ, cos θ ). With such parametrization of
an arbitrary input state, we have dψ = sin θ dθ dφ. Note that
the average fidelity 〈 fρ〉 is defined when the standard pro-
tocol for QT proposed by Bennett et al. [1] is adopted. As
mentioned earlier, 〈 fρ〉 = 1 is possible if and only if ρ is
maximally entangled.

Fidelity deviation δρ is a secondary quantifier of QT which
measures fluctuations in fidelity over the input states. It is
defined as the standard deviation of fidelity values over all
possible input states given by [16–19]

δρ =
√〈

f 2
ρ

〉− 〈 fρ 〉2, (5)

where 〈 f 2
ρ 〉 = ∫ f 2

ψ,ρ dψ , and 0 � δρ � 1
2 .

For a given two-qubit state ρ, the maximal average fidelity
(or, maximal fidelity) Fρ is defined as the maximal value of
average fidelity obtained over all strategies under the standard
protocol and local unitary operations [12,32],

Fρ = max
LU

〈 fρ〉, (6)

where the maximization is done over all possible local unitary
(LU) strategies. The protocol which maximizes the average
fidelity is known to be the “optimal protocol.” Now, one can
show that [32]

Fρ = 〈 fρC 〉. (7)

Equation (7) indicates that an optimal protocol consists of
two steps: (1) transforming ρ → ρC using an appropriate local
unitary operation, and then (2) using ρC for QT following the
standard protocol proposed by Bennett et al. [1].

Since the primary motivation of QT is to maximize the
average fidelity, fidelity deviation should be analyzed for op-

timal protocol. The fidelity deviation corresponding to the
optimal protocol can be defined as [17,18]

�ρ = δρC . (8)

A two-qubit state ρ is useful for QT iff Fρ > 2
3 [12,13],

where 2
3 is the maximum average fidelity obtained in classical

protocols. On the other hand, a two-qubit state ρ is universal
for QT iff �ρ = 0 [17]. If a two-qubit state satisfies the above
universality condition, then all input states will be teleported
with the same fidelity.

It has been shown earlier [31,32] that useful states for QT
form a subset of the states with the property det(Tρ ) < 0.
The analytical expressions of maximal fidelity and fidelity
deviation for two-qubit states with det(Tρ ) < 0 can be written
as [17,32]

Fρ = 1

2

(
1 + 1

3

3∑
i=1

|tii|
)

,

�ρ = 1

3
√

10

√√√√ 3∑
i< j=1

(|tii| − |t j j |)2. (9)

From the above equations, it follows that a two-qubit state ρ is
useful for UQT (i.e., useful and universal for QT) if and only
if |t11| = |t22| = |t33| > 1

3 [17].
Hence, in order to theoretically determine usefulness and

universality of a two-qubit state ρ in the context of QT, we
only need to find the eigenvalues of the correlation matrix Tρ ,
we don’t need to find the optimal protocol or the canonical
form ρC .

D. Qubit channels

If any qubit state χ is passed through a channel �, the
output state χ� can be written as [26–28]

�(χ ) = χ� =
r�−1∑
i=0

K�
i χK�†

i . (10)

This type of representation is known as the operator sum
representation or the Kraus representation [26,27] where {K�

i }
are known as the Kraus operators. The Kraus operators always
satisfy the completeness property given by

r�−1∑
i=0

K�†

i K�
i = I2, (11)

where the quantity r� represents the number of Kraus
operators.

In general, there is no unique representation of the
Kraus operators corresponding to a particular qubit channel
[26,27,33]. For a qubit channel �, one can find another Kraus
representations {K̃�

i } related with {K�
i } by the relation [34]

K̃�
i =

∑
j

Wi jK
�
j , (12)

where Wi j is any unitary transformation such that W †
i jWi j=

Wi jW
†

i j = I2. Hence, there exist an infinite number of possible
Kraus representations for any given qubit channel �.
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Any qubit channel � can be categorized in two classes:
(1) unital class of channels �u and (2) nonunital class of
channel �nu. Unital channels always preserve the identity
operator, i.e., �u(I2) = I2, whereas, for any nonunital channel
�nu one has �(I2) �= I2. Consequently, for any unital map

�u, the equality
∑

i K�u
i K�†

u
i = I2 always holds. However, for

any nonunital map �nu, the above equality does not hold, i.e.,∑
i K�nu

i K�†
nu

i �= I2.
It can be shown that any convex combination of any two

unital qubit channels also represents a unital qubit channel
[35]. Hence, they form a convex set with four possible extreme
points which are the four Pauli channels. In other words, any
unital qubit channel can be expressed as a convex combina-
tion of four Pauli channels. The Kraus operators associated
with the extreme points are {Uσ0V,Uσ1V,Uσ2V,Uσ3V } [35],
where U and V are unitaries. The action of a unital qubit
channel �u on the state χ can be expressed as [33,35]

�u(χ ) = χ�u

= U

( 3∑
i=0

piσi(V χV †)σi

)
U †, 0 � pi � 1 ∀ i,

(13)

with
∑3

i=0 pi = 1.
When a qubit channel is realized with only one Kraus

operator, then that channel must be unital [35]. In this case,
the only Kraus operator will be unitary, and such a channel is
called a unitary channel.

In general, the number of Kraus operators r� has no spe-
cific upper bound. However, the lower bound on the number
of operators, i.e., rmin

� becomes important while representing
any channel. The minimum number of Kraus operators for
any given channel can be understood from the concept of
Choi states. Let us consider a bipartite scenario where Alice
prepares the Bell state |�1〉 and sends one half to Bob via any
�. Here |�1〉 is one of the states in Bell basis given by

|�1〉 = 1√
2

(|00〉 + |11〉), |�2〉 = 1√
2

(|01〉 + |10〉),

|�3〉 = 1√
2

(|01〉 − |10〉), |�4〉 = 1√
2

(|00〉 − |11〉). (14)

The final state ρ�,�1 shared between Alice and Bob after the
channel interaction is known as the Choi state or dual state of
� given by [28,36,37]

ρ�,�1 = (I ⊗ �)|�1〉〈�1|
= �� |�1〉〈�1|. (15)

A qubit channel � is completely positive if and only if its Choi
state ρ�,�1 is non-negative [28]. The trace-preserving condi-
tion of � implies that the marginal of Alice for ρ�,�1 is always
maximally mixed, i.e., Tr2(ρ�,�1 ) = I2. Equation (15) repre-
sents the Choi-Jamiolkowski isomorphism [28,36] between a
channel � and its dual state ρ�,�1 . Hence, it is obvious that
the inherent geometry of the state ρ�,�1 ∈ L(C2 ⊗ C2) will
be similar with the geometry of I ⊗ � ∈ L(C2 ⊗ C2).

Let us describe the Hilbert-Schmidt decomposition of a
Choi state. Up to unitary rotations, the state ρ�,�1 can be

written in the following canonical form [33,38,39]:

ρ�,�1 = 1

4

[
I4 + I2 ⊗ s · σ +

∑
k

λk|tkk| σk ⊗ σk

]
, (16)

where s ≡ (s1, s2, s3) is the local vector at Bob’s side and
λk|tkk| are the eigenvalues of the correlation matrix Tρ�,�1

such
that λk ∈ {−1,+1}. The rank of the Choi state ρ�,�1 is given
by the the minimal number rmin

� of Kraus operators associated
with the channel �. For qubit channels, we have 1 � rmin

�

� 4.
For a unital channel �u, up to local unitary rota-

tions, the Choi state has the following Bell-diagonal form
[35,40]:

ρ�u,�1 = 1

4

[
I4 +

∑
k

λk|tkk| σk ⊗ σk

]
, (17)

which implies that Tr1(ρ�u,�1 ) = I2 for any unital channel �u.
These Choi states form a convex set with maximally entangled
states being the extreme points. On the other hand, for a
nonunital channel �nu, up to unitary rotations, the Choi state
ρ�nu,�1 has the form given by Eq. (16) with s �= (0, 0, 0), i.e.,
Tr1(ρ�nu,�1 ) �= I2.

Next, we will summarize the results obtained in this paper
followed by detailed proofs and analysis of the results.

III. SUMMARY OF THE RESULTS

In the present study we consider two scenarios.
Scenario 1. Alice prepares a maximally entangled two-

qubit state and sends one half to Bob through a qubit channel.
Here the initial state is useful for UQT [17] and our aim is

to find the set of quantum channels for which the final state
remains useful for UQT. The channel interaction can be either
dissipative (nonunital) or nondissipative (unital). In the case
of unital channels, we show that the final state is useful for
UQT if and only if the channel is unitary for a particular
single-parameter channel associated with a rank-four Choi
state. On the other hand, for nonunital channels, we find that
the final state remains useful for UQT if and only if the
channel belongs to a strict subset associated with rank-three
and rank-four Choi states. In this case, we also derive the
most general form of orthogonal Kraus operators associated
with the nonunital channels that preserve the usefulness and
universality.

Next, we consider another scenario.
Scenario 2. Alice prepares a pure nonmaximally entangled

two-qubit state and sends one half of it to Bob through a qubit
channel.

In this case, the initial state is not useful for UQT (this state
is useful for QT but has nonvanishing fluctuation in fidelity)
[17]. We want to find whether there exists any quantum chan-
nel for which the final state becomes useful for UQT. When
the channel is unital, we show that the final state is useful for
UQT for a strict subset of unital channels if and only if the
concurrence of the initial state is strictly greater than 1

2 . On
the other hand, we demonstrate that the final state is useful
for UQT for a strict subset of nonunital channels when the
concurrence of the initial state is strictly greater than a critical
value. The critical value in this case is less than 1

2 , implying
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an advantage of nonunital channels over unital interactions.
Hence, these results indicate that the local interaction of unital
as well as nonunital channels can eliminate the fluctuation
in fidelity values. Moreover, these results also point out that
nonunital interactions are more effective than unital interac-
tions in producing desirable states for UQT.

Finally, we supplement our studies with some quantum
channels motivated from physical noise models.

IV. BELL STATE AS THE INITIAL STATE

Here we consider the scenario 1, where Alice prepares a
two-qubit Bell state |�1〉 = 1√

2
(|00〉 + |11〉) and sends half

of this state to Bob through a qubit channel �. Hence, in this
case, the initially prepared state is useful for UQT [17]. Here
our goal is to find the class of qubit channels for which the
final state will also be useful for UQT. That is, we want to
characterize the qubit channels that preserve usefulness and
universality in the context of QT.

We will start by analyzing the rank of Choi states associ-
ated with the qubit channels � that preserve usefulness and
universality.

Proposition 1. If Alice sends one half of a Bell state |�1〉
through any qubit channel �1 associated with rank-one Choi
state, then the final shared state will always be useful for UQT.

Proof. Any quantum channel �1 associated with rank-one
Choi state can be implemented with only one Kraus opera-
tor, and that Kraus operator must be a unitary operator [35].
Hence, sending one half of a Bell state |�1〉 through any
quantum channel �1 associated with a rank-one Choi state
is equivalent to applying local unitary operation on the Bell
state. The final shared state, therefore, will be a maximally
entangled state, which is useful for UQT [17]. �

Proposition 2. If Alice sends one half of a Bell state |�1〉
through any qubit channel �2 associated with rank-two Choi
state, then the final shared state will never be useful for UQT.

Proof. This proof mainly follows from results presented in
[33]. Let Alice prepares a Bell state |�1〉 and sends one half
of that state through any qubit channel �2. Then the finally
shared two-qubit state ρ f is nothing but the Choi state ρ�2,�1

of the channel,

ρ f = ρ�2,�1
= 1

4

⎛⎜⎜⎜⎝
1 + s̃3 + t̃33 s̃1 − is̃2 0 t̃11 − t̃22

s̃1 + is̃2 1 − s̃3 − t̃33 t̃11 + t̃22 0

0 t̃11 + t̃22 1 + s̃3 − t̃33 s̃1 − is̃2

t̃11 − t̃22 0 s̃1 + is̃2 1 − s̃3 + t̃33

⎞⎟⎟⎟⎠, (18)

where the above matrix is written in the computational basis
{|00〉, |01〉, |10〉, |11〉}. Henceforth, all 4 × 4 matrices will be
written in this basis.

Since the channel �2 is associated with rank-two Choi
state, rank of ρ f will be two. Hence, linear combinations of
3 × 3 minors of ρ f must be zero, which implies the following
three conditions [33]:

s̃3(t̃33 + t̃11t̃22) = 0,

s̃2(t̃22 + t̃11t̃33) = 0,

s̃1(t̃11 + t̃22t̃33) = 0. (19)

These conditions, together with the fact that diagonal elements
of a positive semidefinite matrix are always greater than the
elements in the same column, lead to the conclusion that
all s̃k but one have to be equal to zero if ρ f is rank-two
[33]. Without loss of generality, one can choose s̃1 = s̃2 =
0 and parametrize t̃11 = cos α, t̃22 = cos β. Hence, we have
t̃33 = − cos α cos β. The state ρ f will be useful for UQT if
and only if |t̃11| = |t̃22| = |t̃33| > 1

3 , where t̃11 = cos α,
t̃22 = cos β, t̃33 = − cos α cos β. This will be satisfied if and
only if | cos α| = | cos β| = 1. But this implies that the state
ρ f is rank-one. Hence proved. �

Next, we provide an example which supports Proposi-
tion 2. Let us consider the dephasing channel �dephasing with

the following Kraus operators: K
�dephasing

0 = √
p I, K

�dephasing

1 =√
1 − pσ3 with 0 < p < 1. Note that this channel is unital as

1∑
i=0

(K
�dephasing

i )(K
�dephasing

i )
† = I2. The final shared state between

Alice and Bob in this case is given by

ρ
f
dephasing =

1∑
i=0

(
I ⊗ K

�dephasing

i

)|�1〉〈�1|
(
I ⊗ K

�
†
dephasing

i

)
= p|�1〉〈�1| + (1 − p)|�4〉〈�4|. (20)

The maximal fidelity and fidelity deviation for ρ
f
dephasing is

given by

F
ρ

f
dephasing

=

⎧⎪⎨⎪⎩
2p+1

3 > 2
3 when 1

2 < p < 1,

2
3 when p = 1

2 ,

1 − 2p
3 > 2

3 when 0 < p < 1
2 ,

�
ρ

f
dephasing

=

⎧⎪⎪⎨⎪⎪⎩
2(1−p)

3
√

5
�= 0 when 1

2 < p < 1,

1
3
√

5
�= 0 when p = 1

2 ,

2p
3
√

5
�= 0 when 0 < p < 1

2 .

Hence, the final shared state in this case is useful, but not
universal for QT.

Proposition 3. If Alice sends one half of a Bell state |�1〉
through any qubit channel �3 associated with rank-three Choi
state, then the final shared state will be useful for UQT when
�3 belongs to a strict subset of all qubit channels associated
with rank-three Choi states.

052422-5



GHOSAL, DAS, AND BANERJEE PHYSICAL REVIEW A 103, 052422 (2021)

Proof. We will prove this proposition by presenting two
examples. Let us consider the qubit channel �3 associ-
ated with a rank-three Choi state with the following Kraus
operators:

K�3

0 =
(√

1 − p 0

0 0

)
,

K�3

1 =
(

0
√

1 − p

0 0

)
, (21)

K�3

2 =
(√

p 0

0
√

p

)
,

with 0 < p < 1. The above matrices are written in the basis
{|0〉, |1〉}. Henceforth, all 2 × 2 matrices will be expressed
in this basis. Here one should note that

∑
i(K

�3

i )(K�3

i )† �= I,
which implies that the above channel is nonunital. In this case,
the final shared state between Alice and Bob is given by

ρ
f
�3 =

2∑
i=0

(
I ⊗ K�3

i

)|�1〉〈�1|
(
I ⊗ K�3†

i

)
= p|�1〉〈�1| + (1 − p)

I2

2
⊗ |0〉〈0|. (22)

One can easily check that the maximal average fidelity F
ρ

f

�3

and fidelity deviation �
ρ

f

�3
of the above state are given by

F
ρ

f

�3
= 1 + p

2

>
2

3
when

1

3
< p < 1,

�
ρ

f

�3
= 0 ∀ p ∈ (0, 1).

Hence, in this case, the final shared state is useful for UQT for
a particular range of the channel parameter. This particular ex-
ample shows that in the whole set of qubit channels associated
with rank-three Choi states, for a subset of channels the final
state will be useful for UQT. Next, we will now show that this
subset is strict by giving another example where the final state
is useful but not universal.

Let us consider the qubit (unital) channel �̃3 associ-
ated with a rank-three Choi state with the following Kraus
operators:

K �̃3

0 = √
p0 I, K �̃3

1 = √
p1 σ1, K �̃3

2 = √
p2 σ2, (23)

where
∑2

i=0 pi = 1 and 1 > p0 � p1 � p2 > 0. The final
shared state between Alice and Bob in this case is given by

ρ
f
�̃3 =

2∑
i=0

pi|�i+1〉〈�i+1|. (24)

When 0 < p0 � 1
2 , the above final state is not entangled and,

hence, is not useful for UQT [17]. When 1
2 < p0 < 1, the

maximal average fidelity and fidelity deviation for this state
are given by

F
ρ

f

�̃3
= 2p0 + 1

3
>

2

3
,

�
ρ

f

�̃3
�= 0.

Hence, in this case, the final state is never useful for UQT. �
Proposition 4. If Alice sends one half of a Bell state |�1〉

through any qubit channel �4 associated with rank-four Choi
state, then the final shared state will be useful for UQT when
�4 belongs to a strict subset of all qubit channels associated
with rank-four Choi states.

Proof. Here also, we will prove the proposition by pre-
senting two examples. Consider the qubit (unital) channel �4

associated with a rank-four Choi state having Kraus operators
given by

K�4

0 = √
p I, K�4

i =
√

1 − p

3
σi, i = 1, 2, 3, (25)

with 0 < p < 1. In this case, the final shared state is a rank-
four Werner state given by

ρ
f
�4 = p|�1〉〈�1| + 1 − p

3

4∑
i=2

|�i〉〈�i|. (26)

When 1
2 < p < 1, the maximal fidelity and the fidelity devia-

tion of ρ
f
�4 is given by

F
ρ

f

�4
= 2p + 1

3
>

2

3
,

�
ρ

f

�4
= 0.

Hence, the final shared state is useful and universal for QT for
a specific range of p.

Next, consider another qubit channel �̃4 associated with a
rank-four Choi state having Kraus operators,

K �̃4

0 = √
p0 I, K �̃4

1 = √
p1 σ1,

K �̃4

2 = √
p2 σ2, K �̃4

3 = √
p3 σ3,

(27)

with
∑3

i=0 pi = 1 and 1 > p0 > p1 > p2 > p3 > 0. The final
shared state is given by

ρ
f
�̃4 =

3∑
i=0

pi|�i+1〉〈�i+1|. (28)

When 0 < p0 � 1
2 , the above final state is not useful for UQT

[17]. On the other hand, for 1
2 < p0 < 1, the maximal fidelity

and fidelity deviation can be written as

F
ρ

f

�̃4
= 2p0 + 1

3
>

2

3
,

�
ρ

f

�̃4
�= 0.

Hence, the final state is not useful for UQT in this case. The
above two examples complete the proof. �

Next, we will characterize the set of unital as well as
nonunital channels for which the final shared state will be
useful for UQT.

A. Alice sends one half of a Bell state via a unital channel

Here we consider the scenario where Alice prepares the
two-qubit Bell state |�1〉 and sends half of this state to Bob
through a unital channel �u. In this case, we present the
following proposition.

Proposition 5. If Alice sends one half of a Bell state |�1〉
via any unital channel �u, then the final shared state will be
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useful for UQT if and only if the channel is either unitary or
a single-parameter unital channel associated with rank-four
Choi state (for a particular range of the channel parameter).

Proof. If one half of the Bell state �1 is sent via a unital
channel �u, then, up to local unitary rotations, the shared state
after the channel interaction is given by [33,35]

ρ f
u = (I ⊗ �u)|�1〉〈�1|

=
∑

i

(
I ⊗ K�u

i

)|�1〉〈�1|
(
I ⊗ K�u

i

)†
=

3∑
i=0

pi(I ⊗ σi )|�1〉〈�1|(I ⊗ σi )

=
3∑

i=0

pi|�i+1〉〈�i+1|, (29)

with 0 � pi � 1 ∀ i,
∑3

i=0 pi = 1. Hence, the final state is
Bell-diagonal up to local unitary rotations. Note that the
above state ρ

f
u is nothing but the Choi state associated with

�u. Now, rank-four Werner states (with a particular range
of the state parameter) and rank-one maximally entangled
pure states are the only useful and universal states within
Bell-diagonal class of states [17]. The final state (40) will be
rank-four Werner state if and only if �u satisfies pi = p j =
pk = 1−pl

3 for any choice of i �= j �= k �= l ∈ {0, 1, 2, 3}. Here
the rank-four Werner state will be useful and universal for QT
when 1

2 < pl < 1. That is, in this case, the unital channel is a
one-parameter channel with rank-four Choi state having pi =
p j = pk = 1−pl

3 for any choice of i �= j �= k �= l ∈ {0, 1, 2, 3}
and 1

2 < pl < 1. On the other hand, the final state (40) will
be a rank-one maximally entangled pure state if and only if
�u satisfies pi = 1 for any choice of i ∈ {0, 1, 2, 3}, which is
nothing but a unitary channel. �

B. Alice sends one half of a Bell state via nonunital channel

Here we focus on nonunital qubit channels. When the
initially prepared state is the Bell state |�1〉, we can state the
following proposition.

Proposition 6. If Alice sends one half of a Bell pair |�1〉
through any nonunital channel �nu, then the final shared state
will be useful and universal for QT if and only if �nu belongs
to a strict subset of nonunital qubit channels associated with
rank-three and rank-four Choi states.

Proof. Let Alice sends one half of a Bell state |�1〉 through
a nonunital channel �nu to Bob. The final shared state ρ

f
nu

between Alice and Bob will be nothing but the Choi state
ρ�nu,�1 associated with the channel �nu. The generic structure
of ρ

f
nu can be written as

ρ f
nu = (I ⊗ �nu)|�1〉〈�1|

= 1

4

[
I4 + I ⊗ s · σ +

3∑
i=1

tii σi ⊗ σi )

]
. (30)

Note here that the marginal at Bob’s end is given by
Tr1(ρ f

nu) = 1
2 (I +∑3

i=1 siσi ), where {s1, s2, s3} are local vec-

tor components with |s| =
√

s2
1 + s2

2 + s2
3 �= 0.

Now, ρ
f
nu cannot be rank-one as channels associated with

rank-one Choi states are unital [35]. Next, if ρ
f
nu is a rank-two

state, then Proposition 2 tells that it will not be useful and
universal for QT. Hence, ρ

f
nu will be useful for UQT if it is

a rank-three or rank-four state. That is, the final state will be
useful and universal for QT if �nu is associated with rank-
three or rank-four Choi states. The set of channels �nu, for
which the final state ρ

f
nu is useful for UQT, is always a strict

subset of nonunital qubit channels associated with rank-three
and rank-four Choi states. The reason for the strictness is
very simple. When Alice sends one half of a Bell state to
Bob through an arbitrary nonunital channel associated with
a rank-four or rank-three Choi state, the final state given by
Eq. (30) may not satisfy the condition |t11| = |t22| = |t33|.
Among them, the set of useful and universal states must sat-
isfy |t11| = |t22| = |t33| = t > 1

3 . �
Next, let us evaluate the orthogonal Kraus operators of the

most general nonunital channels for which the final state will
be useful for UQT.

1. For nonunital channels with rank four Choi states

At first, we consider �nu associated with rank-four Choi
states. In this case, the final state given by Eq. (30) will be
useful for UQT if and only if |t11| = |t22| = |t33| = t > 1

3 .
Without any loss of generality, let us assume the canonical
representation of ρ

f
nu for which t11 = t22 = t33 = −t and 1

3 <

t � 1.
Since, the Choi states of �nu are rank-four states, the final

states will also be rank-four states. This will be satisfied when
ρ

f
nu satisfies the following inequality (see Appendix A for

details):

|s| < 1 − t . (31)

From the above condition and from the condition of nonunital
channel: |s| > 0, one can say that t cannot be equal to one.
Henceforth, we will consider 1

3 < t < 1. Therefore, in the
case of nonunital channels with rank-four Choi states, when
the final state is universal, it cannot have maximal average
fidelity equal to unity.

Now, from the spectral decomposition of the final state
ρ

f
nu with the condition (31), one can construct the set of four

orthogonal Kraus operators {K�4
nu

i }. The explicit expressions
of these Kraus operators are given by (see Appendix A for
details)

K�4
nu

0 = x0

⎛⎜⎜⎜⎝
is1 + s2

s3 − 2t −
√

|s|2 + 4t2

i(|s|2 + s3(s3 + 2
√

|s|2 + 4t2))

|s|2 − s2
3 + 4s3t

−i
is1 − s2

−s3 + 2t +
√

|s|2 + 4t2

⎞⎟⎟⎟⎠,
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K�4
nu

1 = x1

⎛⎜⎝
−i(|s| + s3)

s1 + is2
−i

−i
i(s3 − |s|)
s1 − is2

⎞⎟⎠,

K�4
nu

2 = x2

⎛⎜⎜⎜⎝
is1 + s2

s3 − 2t +
√

|s|2 + 4t2

i(|s|2 + s3(s3 − 2
√

|s|2 + 4t2))

|s|2 − s2
3 + 4s3t

−i
−is1 + s2

s3 − 2t +
√

|s|2 + 4t2

⎞⎟⎟⎟⎠,

K�4
nu

3 = x3

⎛⎜⎝
is1 + s2

|s| + s3
−i

−i
i(|s| + s3)

s1 − is2

⎞⎟⎠, (32)

where 1
3 < t < 1, 0 < |s| =

√
s2

1 + s2
2 + s2

3 < 1 − t , and

x0 = (2t − s3 +
√

|s|2 + 4t2)

2
√

2

√√√√ (1 + t +
√

|s|2 + 4t2)

|s|2 + 2t (2t +
√

|s|2 + 4t2)
,

x1 = 1

2
√

2

√(|s|2 − s2
3

)
(1 + |s| − t )

|s| ,

x2 = (s3 − 2t +
√

|s|2 + 4t2)

2
√

2

√√√√ (1 + t −
√

|s|2 + 4t2)

|s|2 + 2t (2t −
√

|s|2 + 4t2)
,

x3 = 1

2
√

2

√(|s|2 − s2
3

)
(1 − |s| − t )

|s| .

The above matrices given by Eq. (32) representing the Kraus
operators are expressed in the basis {|0〉, |1〉}. Any nonuni-
tal channel with rank-four Choi state, for which the final
state will be useful for UQT, belongs to the set of chan-
nels with the above four orthogonal Kraus operators. It can
be easily checked that the above Kraus operators satisfy

the completeness property,
∑3

i=0(K�4
nu

i )† K�4
nu

i = I. The Choi
states associated with set of the above Kraus operators are
non-negative. Hence, these Kraus operators represent CPTP

maps. Moreover,
∑3

i=0 K�4
nu

i (K�4
nu

i )† �= I holds as long as
|s| > 0.

2. For nonunital channels with rank-three Choi states

Next, we consider �nu associated with rank-three Choi
states. In this case also, the final state given by Eq. (30) will
be useful for UQT if and only if |t11| = |t22| = |t33| = t > 1

3 .
Without any loss of generality, we consider the canonical
representation of ρ

f
nu for which t11 = t22 = t33 = −t . The final

state ρ
f
nu will be a rank-three state if the following condition

is satisfied (for details, see Appendix A):

|s| =
√

s2
1 + s2

2 + s2
3 = 1 − t . (33)

Since |s| > 0, we have t < 1, i.e., the final state cannot have
maximal average fidelity equal to one. From the above condi-
tion, one can parametrize {si} as follows:

s1 = (1 − t ) sin θ cos φ,

s2 = (1 − t ) sin θ sin φ,

s3 = (1 − t ) cos θ,

where θ ∈ [0, π ] and φ ∈ [0, 2π ]. With these, one can con-
struct the following complete set of three orthogonal Kraus

operators {K�3
nu

i } (see Appendix A):

K�3
nu

0 = y0

⎛⎜⎜⎜⎝
i(1 − t ) sin θ e−iφ

(1 − t ) cos θ − 2t −
√

(1 − t )2 + 4t2

i(1 − t )2(1 + cos2 θ ) + 2(1 − t ) cos θ
√

(1 − t )2 + 4t2)

(1 − t )2 sin2 θ + 4t (1 − t ) cos θ

−i
i(1 − t ) sin θeiφ

−(1 − t ) cos θ + 2t +
√

(1 − t )2 + 4t2

⎞⎟⎟⎟⎠,

K�3
nu

1 = y1

⎛⎜⎝−i(1 + cos θ )

sin θeiφ
−i

−i
−i(1 − cos θ )

sin θe−iφ

⎞⎟⎠,

K�3
nu

2 = y2

⎛⎜⎜⎜⎝
i(1 − t ) sin θe−iφ

(1 − t ) cos θ − 2t +
√

(1 − t )2 + 4t2

i((1 − t )2(1 + cos2 θ ) − 2(1 − t ) cos θ
√

(1 − t )2 + 4t2)

(1 − t )2 sin2 θ + 4t (1 − t ) cos θ

−i
−i(1 − t ) sin θeiφ

(1 − t ) cos θ − 2t +
√

(1 − t )2 + 4t2

⎞⎟⎟⎟⎠, (34)
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where 1
3 < t < 1 and

y0 = [2t − (1 − t ) cos θ +
√

(1 − t )2 + 4t2]

2
√

2

√√√√ (1 + t +
√

(1 − t )2 + 4t2)

(1 − t )2 + 2t (2t +
√

(1 − t )2 + 4t2)
,

y1 = sin θ
√

1 − t

2
,

y2 = [(1 − t ) cos θ − 2t +
√

(1 − t )2 + 4t2]

2
√

2

√√√√ (1 + t −
√

(1 − t )2 + 4t2)

(1 − t )2 + 2t (2t −
√

(1 − t )2 + 4t2)
.

Here also, the above matrices given by Eq. (34) repre-
senting the Kraus operators are expressed in the basis

{|0〉, |1〉}. These Kraus operators {K�3
nu

i } always satisfy

the completeness property,
∑2

i=0(K�3
nu

i )† K�3
nu

i = I and the

condition
∑2

i=0 K�3
nu

i (K�3
nu

i )† �= I holds. The Choi states
associated with the above set of Kraus operators are non-
negative. Hence, the set of Kraus operators given by
Eq. (34) represent CPTP maps associated with nonunital
channels.

The above class of channels represents the most general
nonunital channels with rank-three Choi states for which the
final state will be useful for UQT.

Note that the set of Kraus operators associated with any
nonunital channel, for which the final state will be useful for
UQT, are always unitarily connected with the set of orthogo-
nal Kraus operators given by Eq. (32) or Eq. (34).

Now, we will present specific examples of nonunital chan-
nels associated with rank-three and rank-four Choi states. Let
us consider the nonunital quantum channel associated with
rank-four Choi state having the following four orthogonal
Kraus operators:

K�4
nu

0 =
√

6 + √
17

(17 − √
17)

⎛⎝ 0 1
1 − √

17

4
0

⎞⎠,

K�4
nu

1 =
⎛⎝ √

3

2
√

2
0

0 0

⎞⎠,

K�4
nu

2 =
√

6 − √
17

(17 + √
17)

⎛⎝ 0 1
1 + √

17

4
0

⎞⎠,

K�4
nu

3 =
⎛⎝0 0

0
1

2
√

2

⎞⎠. (35)

In this case, the maximal fidelity and fidelity deviation of
the final state ρ

f
�4

nu
are given by

F
ρ

f

�4
nu

= 3
4 > 2

3 , �
ρ

f

�4
nu

= 0,

which imply that the final state is useful for UQT.
Next we will show an example nonunital qubit chan-

nel with rank-four Choi state which does not preserve the

universality criterion. For example, consider the generalized
amplitude-damping channel �GADC [41,42] with the follow-
ing Kraus operators:

KGADC
0 = √

1 − N

(
1 0
0

√
1 − γ

)
,

KGADC
1 = √

1 − N

(
0

√
γ

0 0

)
,

(36)

KGADC
2 =

√
N

(√
1 − γ 0

0 1

)
,

KGADC
3 =

√
N

(
0 0√
γ 0

)
,

where γ , N ∈ [0, 1]. This channel is nonunital when γ (2N −
1) �= 0, i.e., for γ �= 0 and N �= 1

2 . Note that the above Kraus
operators are not orthogonal, but it can be checked that the
Choi state associated with this Channel is rank-four. In this
case, the maximal fidelity and fidelity deviation of the final
state ρ

f
�GADC are given by

F
ρ

f

�GADC
= 1

2
+ 2

√
1 − γ + (1 − γ )

6
,

>
2

3
when γ < 2(

√
2 − 1),

�
ρ

f

�GADC
=

√
1 − γ

3
√

5
(1 −

√
1 − γ ),

where �ρGADC = 0 holds if and only if γ = 0 or γ = 1. But the
final state becomes useless for QT when γ = 1. On the other
hand, for γ = 0, the channel does not remain to be nonunital.
Hence, the final state is not useful for UQT in the case of
nonunital GADC.

The above two examples illustrate that the set of nonunital
qubit channels with rank-four Choi states, for which the final
state remains to be useful for UQT, forms a strict subset of all
nonunital channels associated with rank four Choi states.

Next, let us consider the nonunital channel with rank-three
Choi state having the Kraus operators given by Eq. (21). As
shown earlier, the final state in this case is useful for UQT for
a particular range of the channel parameter.

Next, let us present another example of nonunital chan-
nel with rank-three Choi state having the following three
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orthogonal Kraus operators:

K�3
nu

0 =

⎛⎜⎜⎜⎝
−3 i
20

√
5 + 7

√
5

17
i

20

√
65 + 107

√
5

17

−i
20

√
65 + 107

√
5

17
3 i
20

√
5 + 7

√
5

17

⎞⎟⎟⎟⎠,

K�3
nu

1 =
⎛⎝ −3 i

2
√

10
−3 i

2
√

10

−3 i
2
√

10
−3 i

2
√

10

⎞⎠,

K�3
nu

2 =

⎛⎜⎜⎜⎝
3 i
20

√
5 − 7

√
5

17
i

20

√
65 − 107

√
5

17

−i
20

√
65 − 107

√
5

17
−3 i
20

√
5 − 7

√
5
17

⎞⎟⎟⎟⎠. (37)

In this case, the maximal fidelity and fidelity deviation of the
final state ρ

f
�3

nu
are given by

F
ρ

f

�3
nu

= 11
20 < 2

3 , �
ρ

f

�3
nu

= 0.

Hence, this final state is universal, but not useful for QT, i.e.,
this state is not useful for UQT.

V. TWO-QUBIT PURE NONMAXIMALLY ENTANGLED
STATE AS THE INITIAL STATE

Here we consider the scenario where Alice prepares a
nonmaximally entangled two-qubit pure state given by |�a〉 =√

a|00〉 + √
1 − a|11〉 with 1

2 < a < 1 and sends half of this
state to Bob through a qubit channel �. The concurrence of
the initial state |�a〉 is given by C(|�a〉) = 2

√
a(1 − a) with

0 < C(|�a〉) < 1. In this case, the initially prepared state is
useful and but not universal for QT [17]. Here we want to
analyze in details the characteristics of the final states in terms
of maximal fidelity and fidelity deviation. We start with the
following result.

Proposition 7. When Alice sends one half of a nonmax-
imally entangled two-qubit pure state to Bob via any qubit
channel, then maximal fidelity of the final state will be less
than or equal to that of the initial state.

Proof. Suppose Alice prepares a pure entangled state
|�a〉 = √

a|00〉 + √
1 − a|11〉, such that 1

2 < a < 1. The
maximal fidelity of this initial state is given by [12,17]

F|�a〉 = 2 + C(|�a〉)

3
. (38)

When Alice sends one half of the state |�a〉 to Bob via any
qubit channel, then the final state shared between Alice and
Bob is denoted by ρ f and its concurrence is denoted by C(ρ f ).
Now, we have the relation,C(ρ f ) � C(|�a〉) as concurrence
cannot be increased under local operations and classical com-
munication [29]. It is well known that the maximal average
fidelity Fρ f is always upper bounded by [43]

Fρ f � 2 + C(ρ f )

3
. (39)

Hence, using relations (38) and (39), we have

Fρ f � 2 + C(|�a〉)

3
= F|�a〉.

When the channel is an unitary channel (i.e., a particular unital
channel), the above upper bound is saturated. �

Next, we focus on unital qubit channels.

A. Alice sends one half of a nonmaximally entangled two-qubit
pure state through a unital channel

At first, we present the following proposition which ad-
dresses the issue of usefulness and universality of the final
state.

Proposition 8. If Alice sends one half of any nonmaxi-
mally entangled two-qubit pure state |�a〉 (with concurrence
C(|�a〉) ∈ (0, 1)) to Bob through any unital channel, then the
final shared state will be useful for UQT for a strict subset of
the unital channels if and only if 1

2 < C(|�a〉) < 1.
Proof. If one half of the state |�a〉 is sent via an unital

channel �u, then, up to local unitary rotations, the shared state
after the channel interaction is given by [33,35]

ρ f
u = (I ⊗ �u)|�a〉〈�a|

=
∑

i

(
I ⊗ K�u

i

)|�a〉〈�a|
(
I ⊗ K�u

i

)†
=

3∑
i=0

pi(I ⊗ σi )|�a〉〈�a|(I ⊗ σi ), (40)

with 0 � pi � 1 ∀ i,
∑3

i=0 pi = 1. Up to local unitary trans-
formations, without any loss of generality, we can assume that
p0 � p j ∀ j ∈ {1, 2, 3}. Now, it can be checked that the state
ρ

f
u belongs to the X-class of states [44,45]. The expression

of concurrence for any X-class two-qubit state is known [45].
Using this, the concurrence of the state ρ

f
u can be written as

C
(
ρ f

u

) = max[0, (|p1 − p2| − p0 − p3)C(|�a〉),

(p0 − p1 − p2 − p3)C(|�a〉)]. (41)

Now, we have (|p1 − p2| − p0 − p3) � 0 as long as 0 �
pi � 1 ∀ i ∈ {0, 1, 2, 3} and p0 � p j ∀ j ∈ {1, 2, 3}. Hence,
C(ρ f

u ) > 0 if and only if p0 > p1 + p2 + p3.
When p0 > p1 + p2 + p3 does not hold, the final state will

not be entangled and, therefore, will not be useful for QT.
Henceforth, we will consider p0 > p1 + p2 + p3.

It can be verified that the correlation matrix of ρ
f
u is diago-

nal with the following eigenvalues:

t11 = (p0 + p1 − p2 − p3)C(|�a〉) = |t11|,
t22 = −(p0 − p1 + p2 − p3)C(|�a〉) = −|t22|,
t33 = (p0 − p1 − p2 + p3) = |t33|. (42)

Next, we use the relation p3 = 1 − p0 − p1 − p2. Now, the
final state ρ

f
u will be useful for UQT if and only if |t11| =

|t22| = |t33| = t > 1
3 . Using Eq. (42), it can be checked that

the condition |t11| = |t22| = |t33| = t is satisfied if and only if

p1 = p2 = 1 + (1 − 2p0)C(|�a〉)

4 + 2C(|�a〉)
. (43)

With these, we have

|t11| = |t22| = |t33| = t = (4p0 − 1)C(|�a〉)

2 + C(|�a〉)
. (44)
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Now, t > 1
3 will be satisfied if and only if

1

4
< C(|�a〉) < 1 and

1 + 2C(|�a〉)

6C(|�a〉)
< p0 � 1. (45)

With the above conditions, one can check that the following
conditions hold: 0 � pi � 1 ∀ i ∈ {0, 1, 2, 3} and p0 > p1 +
p2 + p3 if and only if

1

2
< C(|�a〉) < 1 and

1 + 2C(|�a〉)

6C(|�a〉)
<p0 � 1

2 − C(|�a〉)
. (46)

The above conditions imply that, for 1
2 < C(|�a〉) < 1, the

condition |t11| = |t22| = |t33| = t > 1
3 for the final state will

not be satisfied for arbitrary choices of p0, p1, p2, p3. Only
when p0, p1, p2, p3 satisfy some specific conditions, the final
state will be useful for UQT. This completes the proof. �

The above proposition implies that for an arbitrary initial
state |�a〉, one may not find any unital channel for which the
final state is useful for UQT. But when the concurrence of the
initial state is strictly greater than 1

2 , then one can always find
a strict subset of the unital channels, for which the final state
will be useful for UQT. Hence, when one half of a nonmaxi-
mally entangled two-qubit pure state with 1

2 < C(|�a〉) < 1 is
subjected to a particular unital channel, then there will be one
disadvantage and one advantage. The disadvantage is that the
maximal average fidelity of the final state will be less than
or equal to that of the initial state. On the other hand, the
advantage is that the final state will be useful for UQT though
the initial state is not useful for UQT. Therefore, interaction
of unital channel can reduce the fluctuation in fidelity which
may have important information theoretic implications.

Next, we present two examples in support of the above
proposition. Let us consider the unital channel �4

u associ-
ated with rank-four Choi state having the following Kraus
operators:

K�4
u

0 =
√

2

3
I,

K�4
u

1 =
√

3 − p

6(2 + p)
σ1,

(47)

K�4
u

2 =
√

3 − p

6(2 + p)
σ2,

K�4
u

3 =
√

2p − 1

3(2 + p)
σ3,

where 1
2 � p < 1. Note that the above Kraus operators do not

represent any CPTP map for p < 1
2 as the associated Choi

state becomes negative in this range. Now, one half of the non-
maximally entangled two-qubit pure state |�a〉 = √

a|00〉 +√
1 − a|11〉 with C(|�a〉) = 2

√
a(1 − a) = p is sent through

the above channel. The maximal average fidelity and fidelity
deviation of the final shared state are given by

F
ρ

f

�4
u

= 3 + 4C(|�a〉)

6 + 3C(|�a〉)

>
2

3
when

1

2
< C(|�a〉) < 1,

�
ρ

f

�4
u

= 0 ∀C(|�a〉) ∈ (0, 1).

Hence, the final state in this case is useful for UQT when the
concurrence of the initial state is strictly greater than 1

2 .
Next, consider the unital channel �2

u associated with rank-
two Choi state having the following Kraus operators:

K�2
u

0 = √
p I, K�2

u
1 =

√
1 − pσ3, 0 < p < 1. (48)

One half of the state |�a〉 = √
a|00〉 + √

1 − a|11〉 with
C(|�a〉) = 2

√
a(1 − a) ∈ (0, 1) is sent through the above uni-

tal channel. In this case, the maximal average fidelity and
fidelity deviation of the final state are given by

F
ρ

f

�2
u

=

⎧⎪⎪⎨⎪⎪⎩
2+C(|�a〉)(1−2p)

3 > 2
3 when 0 < p < 1

2 ,

2
3 when p = 1

2 ,

2+C(|�a〉)(2p−1)
3 > 2

3 when 1
2 < p < 1,

�
ρ

f

�2
u

=

⎧⎪⎪⎨⎪⎪⎩
1−C(|�a〉)(1−2p)

3
√

5
�= 0 when 0 < p < 1

2 ,

1
3
√

5
�= 0 when p = 1

2 ,

1−C(|�a〉)(2p−1)
3
√

5
�= 0 when 1

2 < p < 1,

Hence, the final state is not useful for UQT for any value of
a ∈ ( 1

2 , 1).

B. Alice sends one half of a nonmaximally entangled two-qubit
pure state through a nonunital channel

Here, we consider that Alice prepares a nonmaximally
entangled two-qubit pure state |�a〉 = √

a|00〉 + √
1 − a|11〉

with 1
2 < a < 1 and sends one half of it to Bob through a

nonunital qubit channel.
At first, let us take the nonunital channel �nu having the

Kraus operators given by Eq. (21). It can be checked that
the maximal average fidelity and fidelity deviation of the final
shared state are given by

F
ρ

f
�nu

= 1

6
(3 + (1 − p)

√
1 − [C(|�a〉)]2 + p + 2pC(|�a〉))

>
2

3
when 0 < C(|�a〉) < 1 and

2 + C(|�a〉) − 2
√

1 − [C(|�a〉)]2

4 + 5C(|�a〉)
< p < 1,

�
ρ

f
�nu

�= 0 ∀C(|�a〉) ∈ (0, 1) and ∀ p ∈ (0, 1).

Hence, the final state is not useful for UQT for all values of the concurrence of the initial state.
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Next, let us take another example of nonunital channel �̃nu having the following Kraus operators:

K �̃nu
0 = 1√

2

√
1 − p2 − p2

√
1 − p1√
1 + p1

(
0 0

0 1

)
,

K �̃nu
1 = 1√

2

√
1 − p2 + p2

√
1 − p1√
1 + p1

(
1 0

0 0

)
,

(49)

K �̃nu
2 =

√
1 + p1 + p2 + p1 p2 − p2

√
1 + p1

√
5 + 3p1

5 + 3p1 + √
1 − p1

√
5 + 3p1

⎛⎜⎝ 0 1
√

1 − p1 + √
5 + 3p1

2
√

1 + p1
0

⎞⎟⎠,

K �̃nu
3 =

√
1 + p1 + p2 + p1 p2 + p2

√
1 + p1

√
5 + 3p1

5 + 3p1 − √
1 − p1

√
5 + 3p1

⎛⎜⎝ 0 1
√

1 − p1 − √
5 + 3p1

2
√

1 + p1
0

⎞⎟⎠,

where 0 < p1 < 1 and 0 < p2 <
1+p1

1+p1+
√

1−p2
1

. In this range, the above Kraus operators form a CPTP map corresponding to

nonunital channel. Suppose, one half of the nonmaximally entangled two-qubit pure state |�a〉 = √
a|00〉 + √

1 − a|11〉 with
C(|�a〉) = 2

√
a(1 − a) = p1 is sent through the above channel. The maximal average fidelity and fidelity deviation of the final

shared state are given by

F
ρ

f
�̃nu

= 1 + p2 C(|�a〉)

2

>
2

3
when

√
17 − 1

6
< C(|�a〉) < 1 and

1

3C(|�a〉)
< p2 <

1 + C(|�a〉)

1 + C(|�a〉) +
√

1 − [C(|�a〉)]2
,

�
ρ

f
�̃nu

= 0 ∀ p1 ∈ (0, 1) and ∀ p2 ∈
(

0,
1 + C(|�a〉)

1 + C(|�a〉) +
√

1 − [C(|�a〉)]2

)
.

Hence, the final state in this case is useful for UQT when the concurrence of the initial state is strictly greater than
√

17−1
6 ≈ 0.52.

Next, we consider another nonunital channel �∗
nu having the following Kraus operators:

K�∗
nu

0 =
(√

1 − γ (p1) 0

0 1

)
,

(50)

K�∗
nu

1 =
(

0 0√
γ (p1) 0

)
,

where γ (p1) = 1+
√

1−p2
1−
√

3p2
1−2+2

√
1−p2

1

2+2
√

1−p2
1

and 0 < p1 < 1. Note that the above Kraus operators are obtained from the generalized

amplitude-damping channel [41] given by Eq. (36) by putting N = 1. Now, one half of the nonmaximally entangled two-qubit
pure state |�a〉 with concurrence C(|�a〉) = 2

√
a(1 − a) = p1 is sent through the above channel. The maximal average fidelity

and fidelity deviation of the final shared state in this case are given by

F
ρ

f
�∗

nu

= 3 −
√

1 − [C(|�a〉)]2 +
√

3[C(|�a〉)]2 − 2 + 2
√

1 − [C(|�a〉)]2

4

>
2

3
when

√
2

3
(4 +

√
3)

[
1 − 1

6
(4 +

√
3)

]
< C(|�a〉) < 1

�
ρ

f
�∗

nu

= 0 ∀ C(|�a〉) ∈ (0, 1).

Hence, the final shared state is useful for UQT when the concurrence of the initial state is strictly greater than√
2
3 (4 + √

3)[1 − 1
6 (4 + √

3)] ≈ 0.41.
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We have analyzed with a number of analytical and numer-
ical examples of nonunital channels. However, we have not
found any nonunital qubit channel for which the final state is
useful for UQT when the concurrence of the initial state is less
than or equal to 0.41. Hence, we can conjecture the following.

Conjecture 1. If Alice sends one half of any pure entangled
state |�a〉 to Bob through any nonunital channel, then the
final shared state will be useful for UQT for a strict subset of
the nonunital channels if and only if CCritical < C(|�a〉) < 1,
where 0 < CCritical � 0.41.

We could not determine the precise value of CCritical; further
investigations are needed.

This conjecture demonstrates that when one half of the
state |�a〉 = √

a|00〉 + √
1 − a|11〉 with concurrence 0.41 <

C(|�a〉) = 2
√

a(1 − a) � 1
2 is sent through a qubit channel,

then the final state will be useful for UQT if and only if the
channel is nonunital. This result is in some sense counter-
intuitive as it shows the advantage of nonunital channels or
dissipative interactions over unital or nondissipative interac-
tions in the context of UQT.

The examples presented here demonstrate that, similar to
the case of unital channels, nonunital channels can decrease
the fidelity deviation while acting upon one half of a nonmax-
imally entangled two-qubit pure state.

VI. ANALYSIS WITH SOME PHYSICAL NOISE MODELS

Here we supplement our above developed results to quan-
tum channels motivated by physical noise models. Quantum
channels modeling these effects can be Markovian or non-
Markovian, both unital as well as nonunital. We consider that
the Bell state |�1〉 is prepared and half of this entangled state
is sent to a distant location through any of these channels. In
this context, we want to find the channels for which the final
shared state will remain useful for UQT.

Among the examples of unital channels, we take the ran-
dom telegraph noise (RTN), the modified Ornstein-Uhlenbeck
noise (OUN), power-law noise (PLN), depolarizing, phase
damping (PD), and non-Markovian dephasing (NMD). As
representatives of nonunital channels, we study the amplitude
damping and the Unruh channels. The Kraus representations
of these channels along with the channel parameters, their
impact on QT are presented in the tables of Appendix B.

Random telegraph noise (RTN) [46] is a local non-
Markovian dephasing noise [47]. The effect of RTN on the
dynamics of quantum systems, specifically quantum cor-
relations and control of open system dynamics, has been
studied in [48–51]. The autocorrelation function for the RTN,
represented by the stochastic variable �(t ), is given by

〈�(t )�(s)〉 = a2e−|t−s|γ , (51)

where a has the significance of the strength of the system-
environment coupling and γ is proportional to the fluctuation
rate of the RTN. The RTN channel poses a well-defined
Markovian limit [47].

The modified Ornstein-Uhlenbeck noise (OUN) is a well-
known stationary Gaussian random process [52] which is
in general a non-Markovian process. This could model, for
example, the spin of an electron interacting with a magnetic
field subjected to random fluctuations [53]. Power-law noise

(PLN), also called 1/ f α noise, is a non-Markovian stationary
noise process, where α is some real number. A functional rela-
tionship exists between the spectral density and the frequency
of the noise [54]. Both the OUN and PLN have well-defined
Markovian limits [55].

The non-Markovian depolarizing channel is a generaliza-
tion of the depolarizing channel to the case of colored noise
[56]. The phase damping channel models the phenomena
where decoherence occurs without dissipation (loss of energy)
[57]. The non-Markovian dephasing channel is an extension
of the dephasing channel to non-Markovian class, identified
with the breakdown in complete positivity of the map [58].

A canonical nonunital channel which models both de-
coherence as well as dissipation is the amplitude damping
channel (ADC). This can be modeled by a standard Lind-
blad type of master equation [25,42] describing the evolution
in the Markovian regime. When the decoherence rate is
time-dependent, with a damped oscillatory behavior, then the
amplitude damping noise is non-Markovian [55]. With an
appropriate change in the parameters, the Markovian limit
of the channel can be easily derived. As another example
of a nonunital channel, we take up the Unruh channel [59].
To an observer undergoing acceleration, the Minkowski vac-
uum appears as a warm gas emitting black-body radiation at
temperature, related to the acceleration, and called the Unruh
temperature. This is known as the Unruh effect.

From the analysis (see Appendix B) it can be seen that,
among the channels considered, only for the unital depolar-
izing (Markovian or non-Markovian) noise channel, the final
state is useful for UQT. The final state in this case is nothing
but a Werner class of state. In contrast, all the nonunital chan-
nels considered here create rank-two final states. As discussed
earlier, these rank-two final states cannot be useful for UQT.

VII. CONCLUSION

Apart from numerous applications, the idea of QT has
refined various fundamental concepts of quantum information
theory. Hence, from a practical as well as from a foundational
perspective, it is relevant to address the issue of suitably real-
izing quantum channels that can be used as the resource of QT.
Motivated by this, in the present study we have considered a
scenario where an observer, say, Alice prepares a two-qubit
pure entangled state and sends one half of it to a distant
observer, say, Bob through a quantum channel. The shared
entangled state thus prepared is then used as a resource for
QT. In this scenario, we have characterized the set of qubit
channels in terms of the final shared state’s performance in
QT.

In order to characterize the efficacy of the shared state
in the context of QT, we have used two quantifiers: maxi-
mal average fidelity [12–15] and fidelity deviation [17,18].
These two quantifiers together help to introduce the notion
of “useful states for universal quantum teleportation (UQT).”
A two-qubit state is called useful for UQT if and only if the
maximal average fidelity is strictly greater than 2

3 (i.e., the
classical bound) and all input states are teleported with the
same fidelity [17]. Let us now explain the significance of UQT
from a practical point of view. In real experiments, quantum
teleportation can be realized as a single-shot quantum gate
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operation with an input and an output [22]. In such realistic
situations, it is not expected that teleportations of all possible
input states will be performed. Rather, teleportations of some
particular input states are executed. In such cases, if the fi-
delity deviation of the two-qubit entangled channel is nonzero,
then those particular input states may be teleported with fi-
delity much less than the desired maximal average fidelity.
However, two-qubit entangled channels with zero fidelity de-
viation can overcome such a drawback: all input states will be
teleported equally well. Most importantly, when the maximal
average fidelity of a two-qubit entangled channel lies near the
classical-quantum boundary (i.e., when the maximal average
fidelity is greater than, but close to, 2

3 ) and fidelity deviation is
nonzero, then some input states may be teleported with fidelity
less than 2

3 . That is why the states with zero fidelity deviation
should be preferred over states with nonzero fidelity deviation,
especially near the quantum-classical boundary. Hence, with
two-qubit entangled states having zero fidelity deviation, the
gate operation will be universal or fluctuation free. Otherwise,
one has to implement different gate operations for different
choices of input states, which is problematic.

Using the above notions, we have shown that when half of
a Bell state (which is useful for UQT) is sent through a unital
or nonunital channel, then the final state is useful for UQT for
a strict subset of channels. We further completely characterize
these channels for which the final states are useful for UQT.
Hence, these results indicate that a subset of unital as well
as nonunital qubit channels can preserve the usefulness and
universality of a maximally entangled state in the context of
QT while acting upon one half of the state.

If one half of a nonmaximally entangled two-qubit pure
state (which is not useful for UQT) is sent to Bob through a
unital or nonunital channel, then we have demonstrated that
the final state may become useful for UQT. It thus signifies
that the action of a qubit channel on one half of a nonmaxi-
mally entangled two-qubit pure state can turn it into useful for
UQT. In case of unital channels, we have completely charac-
terized such channels. On the other hand, we have shown the
above in the case of nonunital channels by presenting some
specific examples. However, a complete characterization of
nonunital channels for which the final state is useful for UQT
when the initial state is a nonmaximally entangled two-qubit
pure state merits further investigation.

The set of channels which converts a pure nonmaximally
entangled two-qubit state into a state useful for UQT becomes
more crucial when the input state is weakly entangled. The
reason is that the maximal average fidelity of a weakly en-
tangled pure two-qubit state lies near the quantum-classical
boundary (i.e., the maximal average fidelity is slightly greater
than 2

3 ). On the other hand, weakly entangled pure two-qubit
states possess a large amount of fidelity deviation. Hence,
some input states in these cases are teleportated with fidelity
less than 2

3 , though the maximal average fidelity is greater than
2
3 . Thus, in these cases, it is much more desirable to choose
quantum channels which completely eliminate the fidelity
deviation and also keep the state useful for QT.

The present study opens up several other directions for
future research. First, one should consider a different scenario
where a two-qubit pure entangled state is initially prepared by

an observer, say, Charlie and then one qubit is sent to Alice,
another one is sent to Bob (where Alice, Bob, and Charlie all
are spatially separated from each other) through two different
quantum channels. In this scenario, it is worth characterizing
the set of qubit channels for which the final state will be useful
for UQT. Apart from pure input states, the initially prepared
state can be a mixed entangled state. It has been shown [32]
that some specific nonunital channel interactions can increase
the maximal average fidelity of some mixed two-qubit states.
Therefore, it would be interesting to characterize quantum
channels which not only increase maximal average fidelity but
also eliminate fidelity deviation. Next, extending the present
study to higher dimensional systems is another area for future
research. Finally, we believe that our results will help in the
experimental implementation of QT in realistic contexts.
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APPENDIX A: NONUNITAL CHANNELS PRESERVING
THE USEFUL AND UNIVERSAL CONDITION WHILE

ACTING ON ONE HALF OF A BELL STATE

Alice prepares a Bell state |�1〉 and sends one half to Bob
via any nonunital channel �nu resulting the final state ρ

f
nu.

Here ρ
f
nu is nothing but the Choi state of the channel �nu. Now,

ρ
f
nu cannot be rank-one as channels associated with rank-one

Choi states are unital [35]. Moreover, Proposition 2 tells us
that ρ

f
nu cannot be a rank-two state if it is useful for UQT.

Henceforth, we will consider that ρ
f
nu is either a rank-three or

rank-four state.
If ρ

f
nu is useful for UQT, then the canonical density matrix

of the state ρ
f
nu is given by

ρ f
nu = 1

4

⎛⎜⎜⎜⎝
1+ s3 − t s1 − i s2 0 0

s1+ i s2 1− s3 + t −2t 0

0 −2t 1+ s3+t s1 − i s2

0 0 s1+i s2 1− s3 − t

⎞⎟⎟⎟⎠,

(A1)

where |s| =
√

s2
1 + s2

2 + s2
3 > 0 (as the Channel is nonunital)

and we have taken t11 = t22 = t33 = −t with 1
3 < t � 1. The

spectral decomposition of ρ
f
nu is given by

ρ f
nu =

3∑
i=0

qi|χi〉〈χi|,
∑

i

qi = 1, (A2)
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where {qi} is the set of eigenvalues of ρ
f
nu given by

q0 = q0(s1, s2, s3, t ) = 1
4 [1 + t +

√
|s|2 + 4t2],

q1 = q1(s1, s2, s3, t ) = 1
4 [1 + |s| − t],

q2 = q2(s1, s2, s3, t ) = 1
4 [1 + t −

√
|s|2 + 4t2],

q3 = q3(s1, s2, s3, t ) = 1
4 [1 − |s| − t]. (A3)

And the set of eigenvectors {|χi〉} of ρ
f
nu are given by

|χ0〉 = 1√
n0

[
is1 + s2

s3 − 2t −
√

|s|2 + 4t2
|00〉 − i |01〉 + i(|s|2 + s3(s3 + 2

√
|s|2 + 4t2))

|s|2 − s2
3 + 4s3t

|10〉 + is1 − s2

−s3 + 2t +
√

|s|2 + 4t2
|11〉
]
,

|χ1〉 = 1√
n1

[−i(|s| + s3)

s1 + is2
|00〉 − i |01〉 − i |10〉 + i(s3 − |s|)

s1 − is2
|11〉
]
,

|χ2〉 = 1√
n2

[
is1 + s2

s3 − 2t +
√

|s|2 + 4t2
|00〉 − i |01〉 + i(|s|2 + s3(s3 − 2

√
|s|2 + 4t2))

|s|2 − s2
3 + 4s3t

|10〉 + −is1 + s2

s3 − 2t +
√

|s|2 + 4t2
|11〉
]
,

|χ3〉 = 1√
n3

[
is1 + s2

|s| + s3
|00〉 − i |01〉 − i |10〉 + i(s3 + |s|)

s1 − is2
|11〉
]
, (A4)

where {n0, n1, n2, n3} are the normalization factors of the
eigenstates. The set of the normalized eigenstates {|χi〉}
forms an orthonormal basis. Let us now define δ1 = q0 − q1,
δ2 = q1 − q2, and δ3 = q2 − q3. Since the parameters |s| and t
are always non-negative numbers, one can verify that the
conditions

δ1 = 2t +
√

|s|2 + 4t2 − |s| > 0, (A5)

δ2 = |s| +
√

|s|2 + 4t2 − 2t > 0, (A6)

δ3 = |s| + 2t −
√

|s|2 + 4t2 > 0 (A7)

always hold. The proof is straightforward. For any two
positive real numbers x and y with 0 < x < 1 and 0 < y < 1,
one can always verify that the set of inequalities

x +
√

x2 + y2 > y, y +
√

x2 + y2 > x, and

x + y >
√

x2 + y2

always hold. Now substituting x = 2t and y = |s|, we obtain
the three conditions (A5), (A6), and (A7). Hence, the
ordering of the eigenvalues are given by, q0 > q1 > q2 > q3.
Therefore, the positivity of ρ

f
nu implies that

q3 � 0 ⇒ |s| � 1 − t .

Now, if the final state is rank four, then we have q3 > 0
implying |s| < 1 − t whereas for a rank-three final state we
have q3 = 0 implying |s| = 1 − t .

1. Estimation of the orthogonal Kraus operators

Next, we will evaluate the orthogonal Kraus operators as-
sociated with the nonunital channels preserving the useful and
universal condition while acting on one half of a Bell state
|�1〉 following the approach mentioned in [13,33].

After the action of an arbitrary nonunital channel, any
eigenvector of the final state ρ

f
nu can be written as

|χi〉 =
1∑

m,n=0

a(i)
mn|m〉|n〉, with

1∑
m,n=0

∣∣a(i)
mn

∣∣2 = 1.

Now, one can define a 2 × 2 complex matrix Ai given by

Ai =
√

2

(
a(i)

00 a(i)
01

a(i)
10 a(i)

11

)
, i = 0, 1, 2, 3. (A8)

It can be easily checked that

|χi〉 = (Ai ⊗ I)|�1〉 = (I ⊗ AT
i

)|�1〉, (A9)

where AT
i is the transposition of Ai. Hence, from Eq. (A9), we

can write

ρ f
nu =

3∑
i=0

qi|χi〉〈χi|

=
3∑

i=0

(
I ⊗ √

qiA
T
i

)|�1〉〈�1|
(
I ⊗ √

qiA
T
i

)†
, (A10)

where qi are real positive numbers denoting the eigenvalues of
ρ

f
nu with

∑
i qi = 1; {|χi〉} are the orthonormal eigenvectors of

ρ
f
nu. Here {√qiAT

i } denotes the Kraus operators of the channel
�nu. Note that the Kraus operators {√qiAT

i } correspond to
completely positive trace-preserving maps [13,33].

Next, one can easily verify the following condition:

Tr
[(√

qiA
T
i

)†(√
q jA

T
j

)] = qiδi j, (A11)

where δi j is the Kronecker δ function. In the above, we have
used the fact that the eigenvectors {|χi〉} are orthonormal.
Hence, the Kraus operators {√qiAT

i } are orthogonal Kraus
operators.

Now, using the expressions of eigenvalues and eigenvec-
tors given by (A3) and (A4), and using the condition |s| <

1 − t for nonunital channels with rank-four Choi states and
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TABLE I. Details of some physically motivated noise models.

Type of noise Nature Kraus operators Channel parameters

Depolarizing (Markovian) Unital M0 = √
1 − p I, Mi =

√
p
3 σi, i = 1, 2, 3 p ∈ [0, 1]

Dephasing (Markovian) Unital M0 = √
1 − p I, M1 = √

pσ3 p ∈ [0, 1]

ADC (Markovian) Nonunital M0 =
(

1 0
0

√
1 − p(t )

)
, M1 =

(
0

√
p(t )

0 0

)
p(t ) = 1 − exp [−γ t]

PLN (Markovian) Unital M0 = √
1 − p(t ) I, M1 = √

p(t )σ3 p(t ) = exp [−Gt]

OUN (Markovian) Unital M0 = √
1 − p(t ) I, M1 = √

p(t )σ3 p(t ) = exp
[− Gt

2

]
Unruh (Markovian) Nonunital M0 =

(
cos r 0

0 1

)
, M1 =

(
0 0

sin r 0

)
r ∈ (0, π

4 ]

Depolarizing (Non-Markovian) Unital M0 = √
[(1 − 3αp)(1 − p)] I, 0 < α � 1,

Mi =
√

[1 + 3α(1 − p)] p
3 σi, i = 1, 2, 3 0 � p � 1

2

Dephasing (Non-Markovian) Unital M0 = √
(1 − α p)(1 − p)I, 0 < α � 1,

M3 = √
p[1 + α (1 − p)]σ3 0 � p � 1

2

ADC (Non-Markovian) Nonunital M0 =
(

1 0
0

√
1 − p(t )

)
, M1 =

(
0

√
p(t )

0 0

)
p(t ) = 1 − exp

[
−2Rγ

ω0 coth ( gω0t
2 )+1

]
PLN (Non-Markovian) Unital M0 = √

1 − p(t ) I, M1 = √
p(t )σ3 p(t ) = exp [ Gt (gt+2)

2(gt+1)2 ]

OUN (Non-Markovian) Unital M0 = √
1 − p(t ) I, M1 = √

p(t )σ3 p(t ) = exp [ −G(g−1(e−gt −1)+t )
2 ]

RTN (Non-Markovian) Unital M0 = √
1 − p(t ) I, M1 = √

p(t )σ3 p(t ) = exp [−gt]
(

cos(gωt ) + sin(gωt )

ω

)

the condition |s| = 1 − t for nonunital channels with rank-three Choi states, one can evaluate the most general form of orthogonal
Kraus operators {√qiAT

i } of nonunital channels that preserve the usefulness and universality condition.

APPENDIX B: DETAILS OF PHYSICAL NOISE MODELS AND THEIR IMPACT ON QT

The details of some physically motivated noise models, as discussed in Sec. VI, are summarized in Table I.
Next, in Table II, we present the maximal fidelity and fidelity deviation of the final states when one half of the state |�1〉

is subjected to the aforementioned channels. Note that if a state ρ has det(Tρ ) � 0 (with Tρ being the correlation matrix of ρ),

TABLE II. The maximal fidelity and fidelity deviation of the final states when one half of the Bell state |�1〉 is subjected to various channels.

Whether the final state is

Maximal fidelity Fidelity deviation useful for UQT for some

of the of the specific ranges of the
Type of noise final state final state channel parameters

Depolarizing 1 − 2p
3 0 Yes

(M) > 2
3 when 0 � p < 1

2

Dephasing 2p+1
3 > 2

3 when 1
2 < p < 1; 2(1−p)

3
√

5
�= 0 when 1

2 < p < 1;

(M) 2
3 when p = 1

2 ; 1
3
√

5
�= 0 when p = 1

2 ; No

1 − 2p
3 > 2

3 when 0 < p < 1
2 . 2p

3
√

5
�= 0 when 0 < p < 1

2 .

ADC (M) 1
2 + exp [−γ t]+2 exp [− γ t

2 ]
6

exp [− γ t
2 ]−exp [−γ t]

3
√

5

> 2
3 if and only if �= 0 when No

0 < t < −ln(3−2
√

2)
γ

0 < t < −ln(3−2
√

2)
γ

PLN (M) 2e−Gt +1
3 > 2

3 when 0 � t < ln 2
G ; 2(1−e−Gt )

3
√

5
�= 0 when 0 � t < ln 2

G ;
2
3 when t = ln 2

G ; 1
3
√

5
�= 0 when t = ln 2

G ; No

1 − 2e−Gt

3 > 2
3 when ln 2

G < t < ∞. 2e−Gt

3
√

5
�= 0 when ln 2

G < t < ∞.
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TABLE II. (Continued.)

Whether the final state

is useful for UQT

Maximal fidelity Fidelity deviation for some specific ranges
Type of noise of the final state of the final state the channel parameters

OUN (M) 2e− Gt
2 +1
3 > 2

3

2
(

1−e− Gt
2
)

3
√

5
�= 0

when 0 � t < ln 2
G ; when 0 � t < 2ln 2

G ;
2
3 when t = 2ln 2

G ; 1
3
√

5
�= 0 when t = 2ln 2

G ; No

1 − 2e− Gt
2

3 > 2
3

2e− Gt
2

3
√

5
�= 0

when 2ln 2
G < t < ∞. when 2ln 2

G < t < ∞.

Unruh(M) 1
2 + cos2 r+2 cos r

6
cos r−cos2 r

3
√

5

> 2
3 if and only if 0 < r � π

4 �= 0 when 0 < r � π

4 No

Depolarizing 1 − 2p
3 [1 + 3α (1 − p)]

(NM) > 2
3 when 0 Yes

0 � p < 1
6α

[1 + 3α − √
1 + 9α2],

0 < α � 1

Dephasing 1 − 2p[1+α (1−p)]
3 > 2

3
2[1−(1−p)(1−α p)]

3
√

5
�= 0

(NM) when when

0 � p < 1
2α

[1 + α − √
1 + α2]; 0 � p < 1

2α
[1 + α − √

1 + α2];
2
3 when p = 1

2α
[1 + α − √

1 + α2];
√

5
3 when p = 1

2α
[1 + α − √

1 + α2];
1
3 [1 + 2p(1 + α − α p)] > 2

3
2[1−(p)(1+α−α p)]

3
√

5
�= 0

when when No
1

2α
[1 + α − √

1 + α2] < p < 1
2 ; 1

2α
[1 + α − √

1 + α2] < p < 1
2 ;

0 < α � 1 0 < α � 1

ADC (NM) 1
2 + 2

√
1−p(t )+1−p(t )

6

√
1−p(t )(1−√

1−p(t ))
3
√

5
�= 0

> 2
3 if and only if when No

0 < p(t ) � 1 − exp
[−2Rγ

ω0+1

]
0 < p(t ) � 1 − exp

[−2Rγ

ω0+1

]
<2(

√
2 − 1) <2(

√
2 − 1)

where where

p(t ) = 1 − exp
[

−2Rγ

ω0 coth ( gω0t
2 )+1

]
p(t ) = 1 − exp

[
−2Rγ

ω0 coth ( gω0t
2 )+1

]
PLN (NM) 2p(t )+1

3 > 2
3 when 1

2 < p(t ) < 1, 2(1−p(t ))
3
√

5
�= 0 when 1

2 < p(t ) < 1,
2
3 when p(t ) = 1

2 , 1
3
√

5
�= 0 when p(t ) = 1

2 , No

1 − 2p(t )
3 > 2

3 when 0 < p(t ) < 1
2 , 2p(t )

3
√

5
�= 0 when 0 < p(t ) < 1

2

where where

p(t ) = exp
[Gt (gt+2)

2(gt+1)2

]
p(t ) = exp

[Gt (gt+2)
2(gt+1)2

]
OUN (NM) 2p(t )+1

3 > 2
3 when 1

2 < p(t ) < 1, 2(1−p(t ))
3
√

5
�= 0 when 1

2 < p(t ) < 1,
2
3 when p(t ) = 1

2 , 1
3
√

5
�= 0 when p(t ) = 1

2 , No

1 − 2p(t )
3 > 2

3 when 0 < p(t ) < 1
2 , 2p(t )

3
√

5
�= 0 when 0 < p(t ) < 1

2

where where

p(t ) = exp [ −G(g−1(e−gt −1)+t )
2 ] p(t ) = exp [ −G(g−1(e−gt −1)+t )

2 ]

RTN (NM) 2p(t )+1
3 > 2

3 when 1
2 < p(t ) < 1, 2(1−p(t ))

3
√

5
�= 0 when 1

2 < p(t ) < 1,
2
3 when p(t ) = 1

2 , 1
3
√

5
�= 0 when p(t ) = 1

2 , No

1 − 2p(t )
3 > 2

3 when 0 < p(t ) < 1
2 , 2p(t )

3
√

5
�= 0 when 0 < p(t ) < 1

2

where where

p(t ) = exp [−gt]
(
cos(gωt ) + sin(gωt )

ω

)
p(t ) = exp [−gt]

(
cos(gωt ) + sin(gωt )

ω

)
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then that state is not useful for QT [31,32]. That is why, in Table II, we present the expressions for maximal fidelity and fidelity
deviation of the final states only for those ranges of channel parameters where the final states satisfy det(Tρ ) < 0. In Table II,
“M” stands for Markovian channels and “NM” stands for non-Markovian channels.
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