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Solving nonlinear differential equations with differentiable quantum circuits
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We propose a quantum algorithm to solve systems of nonlinear differential equations. Using a quantum
feature map encoding, we define functions as expectation values of parametrized quantum circuits. We use
automatic differentiation to represent function derivatives in an analytical form as differentiable quantum circuits
(DQCs), thus avoiding inaccurate finite difference procedures for calculating gradients. We describe a hybrid
quantum-classical workflow where DQCs are trained to satisfy differential equations and specified boundary
conditions. As a particular example setting, we show how this approach can implement a spectral method for
solving differential equations in a high-dimensional feature space. From a technical perspective, we design
a Chebyshev quantum feature map that offers a powerful basis set of fitting polynomials and possesses rich
expressivity. We simulate the algorithm to solve an instance of Navier-Stokes equations and compute density,
temperature, and velocity profiles for the fluid flow in a convergent-divergent nozzle.
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I. INTRODUCTION

Differential equations are ubiquitous in various fields of
science [1]. Their applications range from predicting motion
in mechanics and fluid dynamics [2], to describing reactions
in chemistry, ecosystem balance in ecology, market dynamics
in finance, and disease spreading in epidemiology. In many
cases, finding solutions to nonlinear systems of differential
equations (DEs) is challenging, and requires advanced nu-
merical techniques [3,4]. The difficulties arise in DEs for
many functions and variables (known as “the curse of dimen-
sionality”), models with high degree of nonlinearity, optimal
control problems, as well as stiff and numerically unstable
systems [5,6]. Classical numerical methods for solving DEs
can be divided into local and global methods. Local ap-
proaches rely on discretization of the space of variables, with
derivatives being approximated with numerical differentiation
techniques (finite differencing and Runge-Kutta methods).
Often a fine grid for multivariable functions is required to rep-
resent a solution qualitatively and quantitatively [3], leading
to increasing computational cost. Global methods represent
the solution in terms of a suitable basis set [4]. This recasts
the problem to finding optimal coefficients for the polynomial
approximation (e.g., Fourier or Chebyshev) of the sought
function. Finding spectral solutions for complex problems
may require ever-increasing basis sets to achieve high accu-
racy, enlarging the global differential operator, and introduces
difficulties when dealing deterministically with boundary
conditions.

Quantum computers offer a fundamentally different ap-
proach to perform computation, and possess algorithmically
superior scaling for certain problems that include amplitude
amplification and Abelian hidden subgroup problems [7,8].
For prototypical linear algebra tasks, quantum computers can
be used as exponential accelerators for solving linear system

of equations (LSE), as offered by the HHL algorithm [9]
and other quantum LSE approaches with improved scal-
ing [10–14]. These developments, among others, have led
to the nascent field of quantum machine learning [15–24].
Quantum LSE solvers can be applied to linear differential
equations that are rewritten as systems of algebraic equations
using a finite differencing scheme (Euler’s method). Several
studies have developed generic quantum solvers for linear
differential equations, and have shown algorithmic improve-
ments in terms of accessed quantum oracles [25–33]. For the
global numerical differentiation methods a spectral solver was
proposed in Ref. [34]. The power of HHL-based algorithms
relies on amplitude encoding, where a function is represented
as a quantum state |u〉 = ∑2N

k=1 uk|k〉 encoded in complex uk

amplitudes of computational basis states |k〉 for N qubits.
This allows for compressing large grids into a small qubit
register, providing exponential memory advantage. However,
there are several caveats that should be considered [9]. First,
the proposed quantum algorithms solve an equivalent quan-
tum task of finding a state |u〉 = Â−1|b〉 given the matrix Â
acting on predefined (boundary) state |b〉. Reading out the
function values from the quantum state |u〉 in general requires
exponential sampling, representing a so-called data “output
problem.” Second, the preparation of a generic input state |b〉
requires sophisticated techniques such as quantum random
access memory (QRAM) [35], thus leading to a so-called
data “input problem.” Finally, translating quantum oracles that
encode DEs (matrix Â) can introduce huge computational
overheads, making simulation infeasible even for a fault-
tolerant quantum computer [36].

Modern quantum processors are not perfect, and hard-
ware available today correspond to noisy intermediate scale
quantum (NISQ) devices [37]. They operate for a limited
circuit depth, but still enjoy a Hilbert space that increases
exponentially with the number of qubits. Recently, such a
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setup was shown to provide advantage over classical methods
for a tailored problem [38]. However, finding NISQ proto-
cols that can offer advantage for industrially relevant tasks
represents an open challenge. One promising direction cor-
responds to simulation of material science and chemistry,
where hybrid quantum-classical approaches are developed for
preparing ground states of correlated molecules [39–41]. The
paradigmatic hybrid algorithm corresponds to the variational
quantum eigensolver (VQE) [42,43], where a quantum com-
puter is used to prepare parametrized quantum states and
measure their energy, while classical optimization is used for
finding the best variational parameters. This strategy enables
quantum calculations with relatively noisy devices, and allows
for numerous advances from the experimental [44–52] and
theoretical [53–66] perspectives.

The rise of VQE has launched further development of
variational quantum algorithms (VQAs) [67–71], targeting
generic data analysis and machine learning tasks. Performed
by parametrized quantum circuits, also dubbed as quantum
neural networks (QNNs) [67], VQAs rapidly expand ap-
plications to include classification [72–78], regression [73],
generative modeling [79–87], clustering [88,89], reinforce-
ment learning [90–95], quantum simulation [96–99], quantum
metrology [100–102], and other tasks. The power of VQAs
for machine learning (ML) tasks comes from the high ex-
pressibility of quantum circuits, where data points are mapped
to quantum states. Also, a large role for designing effi-
cient algorithms is played by automatic differentiation and
natural gradient techniques [73,103–111], developing deep
networks and new QNN architectures [112–115], as well as
proposing operationally meaningful cost functions for op-
timization [70,116], and optimal ansatz search [117–122].
First experiments show promising results for systems of small
and increasing size [74,123,124]. Various strategies of error
mitigation were proposed that can further improve the perfor-
mance of algorithms when run on physical devices [125–132].
Finally, considering linear algebra problems, several VQAs
were also proposed to solve LSEs [133–138], and ongo-
ing efforts are directed towards improving their workflow.
To date, several small scale linear equation solvers have
been implemented using a nuclear magnetic resonance-based
setup [139,140].

As for nonlinear differential equation solvers, available
quantum protocols remain scarce and the field is only starting
to grow. An intriguing approach was proposed in Ref. [141],
where nonlinearity is introduced using quantum nonlinear
processing units realized by ancillary quantum registers and
controlled-multiqubit operations. The approach uses ampli-
tude encoding, offering memory saving while potentially
facing the data input and output problems. Another hybrid
quantum-classical approach is presented in Ref. [142], where
computational fluid dynamics applications are considered.
This relies heavily on classical computation, with the quan-
tum processor being delegated to perform function averaging
(using amplitude estimation as subroutine). Using an oracle-
based approach, amplitude-encoded states, and two quantum
Fourier transforms, the discussed algorithm remains an option
more suitable for future fault-tolerant devices.

In the classical computational methods, the advanced
methods for solving differential equations are also currently

developed based on machine learning techniques. The so-
lutions are encoded by deep neural networks as universal
function approximators [143], advancing on the original
steps with shallow artificial neural networks [144]. The
approach relies on training physically informed neural net-
works [145,146], Fourier neural operators [147] or universal
differential equation networks [148]. Recently, it has be-
come a part of scientific machine learning ecosystem [149].
Another intriguing direction of contemporary research in dif-
ferential calculus is representation of solutions using tensor
networks [150]. This was also considered as a quantum-
inspired and quantum approach to provide speedup for certain
problems [151].

We propose to solve nonlinear differential equations (DEs)
of a general form in a radically different way, where we
construct solutions using differentiable quantum circuits (or
equivalently, derivative quantum circuits) that we refer to
as DQCs in the following [152]. These can be viewed as
quantum neural network circuits that are designed to deal with
functions and their derivatives using automatic differentiation
rules. The overview of our approach is outlined in Fig. 1. It re-
lies on defining the DQC structure, choosing the optimization
strategy, and training of the circuit parameters that allows for
reproducing the solution function. The required elements and
workflow are detailed in the next section.

Our approach targets near-term quantum devices, where
hybrid quantum-classical computing can work with noisy
operation and reasonably shallow circuit depth. We allevi-
ate the data input problem, as we do not rely on amplitude
encoding, but use a latent space representation defined in
the high-dimensional Hilbert space. This brings advantage in
finding solutions of differential equations, as we use the large
expressive power of quantum feature maps and parametrized
quantum circuits. For efficient readout, we project the high-
dimensional function representation to its scalar values by
measuring the expectation of an observable (cost operator),
and separate evaluation of quantum circuits, offering a NISQ-
friendly implementation. We note that our approach also can
work with quantum kernels [153], an advantageous choice for
the loss function that allows for efficient multipoint training.
However, this approach is more suitable for future highly
coherent quantum devices, and will be considered in forth-
coming studies.

II. DQC-BASED DIFFERENTIAL EQUATIONS SOLVER:
GENERAL OVERVIEW

We start with an overview description of the differential
equation solver based on derivative circuits. To solve DEs, we
prepare trial solutions of the differential equation(s) as quan-
tum circuits parametrized by a variable x ∈ R (or a collection
of v variables, x ∈ Rv). As the discussion is generalized
straightforwardly to the case of v variables, for brevity we
henceforth use the simplified single variable notation x. We
use a quantum feature map circuit Ûϕ (x) to encode the pre-
defined nonlinear function of variables ϕ(x) to amplitudes of
the quantum state Ûϕ (x)|Ø〉 prepared from some initial state
|Ø〉. A quantum feature map represents a latent space encod-
ing that, unlike amplitude encoding, does not require access to
each amplitude and is controlled by classical gate parameters,
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FIG. 1. DQC optimization workflow. The problem is set as a system of differential equations for functions u, variables x, and specified
boundary conditions. The derivative quantum circuit is constructed by choosing the encoding circuit and optimization schedule. The solution
is optimized by evaluating the function and derivative circuits at the defined grid of points X (which may be multidimensional), and using
these values to calculate the loss function derivative. The variational angles are updated in the hybrid quantum-classical loop until a specified
exit condition is reached.

mapping real parameter x to the corresponding variable value.
Sometimes this is also called a quantum embedding [154,155],
referring to the way data is embedded in the circuit. This
follows the steps of quantum circuit learning (QCL) [73],
shown to work well for solving problems of regression and
classification. Next, we add a variational quantum circuit Ûθ

parametrized by a vector of variational parameters θ that can
be adjusted in a quantum-classical optimization loop. The
resulting state | fϕ,θ (x)〉 = ÛθÛϕ (x)|Ø〉 for optimal angles
contains the x-dependent amplitudes sculptured to represent
the sought function. Finally, the real valued function can be
read out as an expectation value of a predefined Hermitian
cost operator Ĉ, such that the trial function that aims to ap-
proximate the solution u(x) reads [Fig. 2(a)]

f (x) = 〈 fϕ,θ (x)|Ĉ| fϕ,θ (x)〉. (1)

One crucial step of our algorithm is the differentiation of
the quantum feature map circuit, dÛϕ (x)/dx = ∑

j Ûdϕ, j (x),
where the action differential can be represented as a sum of
modified circuits Ûdϕ, j . This allows function derivatives to
be represented using the product derivative rule. In the case
of quantum feature map generated by strings of Pauli matri-

ces or any involutory matrix we can use the parameter shift
rule [73,103] such that the function derivative is expressed as
a sum of expectations [Fig. 2(b)]

df (x)/dx = 1

2

∑
j

(〈 f +
dϕ, j,θ (x)|Ĉ| f +

dϕ, j,θ (x)〉

− 〈 f −
dϕ, j,θ (x)|Ĉ| f −

dϕ, j,θ (x)〉), (2)

with | f ±
dϕ, j,θ (x)〉 defined through the parameter shifting, and

index j running through the individual quantum operations
used in the feature map encoding. Applying the param-
eter shift rule once again we can get the second-order
derivative d2 f (x)/dx2 with four shifted terms for each gener-
ator [104,156]. Importantly, as described we use the automatic
differentiation (AD) technique to perform quantum circuit
differentiation. AD allows the function derivative to be rep-
resented by the exact analytical formula using a set of simple
computational rules, as opposed to numerical differentiation.
Since automatic differentiation provides an analytical deriva-
tive of the circuit at any value of variable x, our scheme
does not take on the accumulated error from approximating
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FIG. 2. Differentiable quantum circuits. (a) Quantum circuit used for encoding the value of a function at a specific value of the variable
x = xi. The circuit consists of a feature map Ûϕ that encodes the x-dependence, followed by variational ansatz Ûθ , and an observable-based
readout for the set of operators Ĉ�. The measurement result is classically post-processed to provide a quantum function representation f (x)
as a sum of expectations, where coefficients α� can be optimized in a quantum-classical hybrid loop. To compose the loss function circuit
measurements for different points of optimization grid X are required. (b) Derivative of the sought function f (x) evaluated at specific point
x = xi is estimated as a sum of expectations for derivative quantum circuits. The full structure follows from the feature map differentiation
described in the text and shown for example in Fig. 3.

the derivatives. Notably, typical schemes for quantum ODE
solvers involve numerical differentiation using Euler’s method
and finite difference schemes that suffer from approximation
errors, and often require a fine discretization grid. This prob-
lem is alleviated in our approach.

Our goal is to construct and define the conditions for the
quantum circuit to represent the solution of differential equa-
tions, generally written as

F [{dm fn/dxm}m,n, { fn(x)}n, x] = 0, (3)

where the functional F [·] is provided by the problem for
function derivatives of different order m and function/variable
polynomials of varying degree n. For simplicity we refer to f
as a function, and show that the same analysis holds for a vec-
tor of functions. The condition above demands that derivatives
and nonlinear functions give a net zero contribution. Thus we
can rewrite the task as an optimization problem and use the
loss function Lθ[dx f , f , x]. This corresponds to minimization
of F [x]|x→xi at points in the set X = {xi}M

i=1, and additionally
ensuring that the boundary conditions are satisfied. Once the
optimal angles

θopt = argmin
θ

(Lθ[dx f , f , x]) (4)

are found, we can reproduce the solution from Eq. (1) as a
function f (x)|θ→θopt ≈ u(x).

Summarizing the high level description of the proposed ap-
proach we note that we (1) use quantum feature map encoding,
thus overcoming the complexity of amplitude encoding for
preparing the solution at the boundary; (2) perform automatic
differentiation of the quantum feature map circuit, allowing
us to represent function derivatives without the imprecision
error characteristic to numerical differentiation (finite differ-
encing); (3) search for the suitable solution in the exponential
space of fitting polynomials, thus resembling the spectral and
finite element methods with improved scaling; and (4) avoid
the data readout problem, as the solution is encoded in the
observable of an operator, such that expectation can be rou-
tinely calculated. For the latter point, it differs from amplitude

encoding |u〉 in HHL and related methods, where getting
the full solution from amplitudes is exponentially costly and
requires tomographic measurements. Finally, we note that
our goal is to construct circuits that can work for quantum
processors with limited computational power, meaning the
gate depth (number of operations to performed in series) is
limited to a certain amount. This largely defines the train-
ing procedure, where we rely on the classical optimization
loop. Once deep circuits can be implemented, we can also
exploit parallel training strategies for the quantum circuit and
quantum state encoding, coming closer to the ideal quantum
operation regime.

III. METHODS

Below we discuss the set of tools that are required to
build a differentiable circuit as a solution of differential equa-
tions. This corresponds to the main ingredients of the circuit
with Sec. III A describing quantum feature maps and their
derivatives; Sec. III B variational quantum circuits (ansatze);
Sec. III C cost functions; and Sec. III D loss functions for the
optimization loop. Additionally we detail proposed bound-
ary handling techniques in Sec. III E, possible strategies for
regularization in Sec. III F, encoding multiple functions in
Sec. III G, and summarize a complete optimization schedule
in Sec. III H.

A. Quantum feature maps and their derivatives

A quantum feature map is a unitary circuit Ûϕ (x) that is
parametrized by the variable x and typically nonlinear func-
tion ϕ(x). Acting on the state it maps x to Ûϕ (x)|Ø〉 such
that the x dependence is translated into quantum state ampli-
tudes [67]. This is also referred to as a latent space mapping.
There exist different ways of feature map encoding. Below we
describe some possible choices and propose a distinct Cheby-
shev quantum feature map that allows the approximation of
highly nonlinear functions. We also describe the procedure
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FIG. 3. Product feature map and its derivative. (a) Quantum feature map of a product type, where single qubit rotations (here chosen as
R̂y) act at each qubit individually and are parametrized by a function of variable x. Specifically, the expectation value of the circuit is shown,
with thin pink and green blocks depicting the variational ansatz and the cost function measurement respectively. For the nonlinear feature
encoding the nonlinear function ϕ(x) is used as an angle of rotation. The product feature map can be further generalized to several layers,
and different functions {ϕ}. Several feature maps can be concatenated to represent a multivariable function. (b) shows the derivative quantum
circuit for the product feature map. Differentiation over variable x follows the chain rule, with the expectation value of the derivative written
as a sum of separate expectations with shifted phases, repeated for each x-dependent rotation. (c) Generalized product feature map, which we
refer to as evolution-enhanced feature map, where the layer of rotation is followed by the unitary evolution generated by Hamiltonian Ĥ . For
complicated multiqubit Hamiltonians the encoded state comprises of exponentially many unique x-dependent amplitudes. Time interval τ can
be set variationally, or annealed from zero to finite value during the optimization procedure.

of feature map differentiation, the crucial step of constructing
quantum circuits for solutions of differential equations.

1. Product feature maps

First, we consider a product feature map that uses qubit ro-
tations, but has nonlinear dependence on the encoded variable
x. In the simplest case, this corresponds to a single layer of
rotations written in the form

Ûϕ (x) =
N ′⊗
j=1

R̂α, j (ϕ[x]), (5)

where N ′ � N is the number of qubits used for the encoding.
R̂α, j (ϕ) := exp (−i ϕ

2 P̂α, j ) is a Pauli rotation operator for Pauli
matrices P̂α, j = X̂ j , Ŷj , or Ẑ j (α = x, y, z, respectively) acting
on qubit j with phase ϕ. This represents the feature map
choice used in quantum circuit learning [73], and several sim-
ilar encodings were discussed in Refs. [86,157], and reviewed
in Ref. [67]. The next step is to assign a nonlinear function
for rotation, with a popular choice being ϕ(x) = arcsin x and
α = y such that only real amplitudes are generated. The cor-
responding circuit is shown in Fig. 3(a). The unitary operator
Eq. (5) is then rewritten as

Ûϕ (x) =
N⊗

j=1

exp

(
−i

arcsin x

2
Ŷj

)
, (6)

leading to amplitudes that depend on the encoded variables as
cos[(arcsin x)/2] and sin[(arcsin x)/2]. Acting on the initial
state |Ø〉 this feature map encodes the variable as an N-th
degree polynomial formed by {1, x,

√
1 − x2} and their prod-

ucts [73]. The redundancy from many qubits thus forms a
basis set for function fitting [157].

The product feature map can be generalized to several lay-
ers of rotations � = 1, 2, . . . , L, various nonlinear functions

ϕ� and specific subsets of qubits N, written as

Ûϕ (x) =
L∏

�=1

⊗
j∈N�

R̂(�)
α, j (ϕ�[x]). (7)

Next, we show how the quantum feature map can be differ-
entiated. Let us use the example in Eq. (5) considering α = y
rotations and a full layer. The derivative for a unitary operator
generated by an involutory matrix (length-1 Pauli string in this
case) can be written as

d

dx
Ûϕ (x) = 1

2

(
d

dx
ϕ(x)

) N∑
j′=1

N⊗
j=1

(−iŶj′δ j, j′ )R̂y, j (ϕ[x])

= 1

2

(
d

dx
ϕ(x)

) N∑
j′=1

N⊗
j=1

R̂y, j (ϕ[x] + πδ j, j′ ), (8)

where Euler’s formula can be used to rewrite the deriva-
tive into the form of a sum of unitaries, where x-dependent
rotations are shifted one-by-one. Next, the formula can be
generalized to the expectation value of any observable 〈Ĉ〉 for
the encoded state, following the steps of a standard parameter
shift rule [73,103]. This reads

d

dx
〈Ø|Ûϕ (x)†ĈÛϕ (x)|Ø〉=1

4

(
d

dx
ϕ(x)

)
(〈Ĉ〉+−〈Ĉ〉−), (9)

where 〈Ĉ〉+ and 〈Ĉ〉− are the sums of shifted unitaries

〈Ĉ〉±=
N∑

j′=1

N⊗
j=1

〈Ø|R̂†
y, j (ϕ[x] ± π

2
δ j, j′)ĈR̂y, j (ϕ[x] ± π

2
δ j, j′ )|Ø〉.

(10)

The corresponding derivative quantum circuits (9) are shown
in Fig. 3(b), where differentiation of the cost function for
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feature map is performed using the chain rule (highlighted
rotations). A similar strategy can be applied for generic mul-
tilayer feature maps and a different choice of nonlinear map
ϕ(x). Finally, in the cases where the generator of the feature
map (encoding Hamiltonian Ĥ ) is not an involutory matrix we
can rewrite them as a sum of unitary operators, and measure
the derivative as a sum of overlap measurements using the
SWAP test [104,158,159].

2. Chebyshev feature maps

Next, we consider a distinct choice of nonlinear quantum
feature map that we name the Chebyshev feature map. Belong-
ing to the product feature map family, it drastically changes
the basis set for function representation. As a building block
we use a single qubit rotation R̂y, j (ϕ[x]), but with nonlinearity
introduced as ϕ(x) = 2n arccos x, n = 0, 1, 2, . . . , such that
the encoding circuit reads

Ûϕ (x) =
N⊗

j=1

R̂y, j (2n[ j] arccos x). (11)

Here we consider that the coefficient n[ j] may in general
depend on the qubit position j. Note that the seemingly small
change of factor two multiplication for ϕ(x) = 2 arccos x (as
compared to previously considered product map with ϕ(x) =
arccos x) goes a surprisingly long way. Namely, let us expand
the rotation using Euler’s formula, getting

R̂y, j (ϕ[x]) = exp

(
−i

2n arccos(x)

2
Ŷj

)

= cos(n arccos(x))1 j − i sin(n arccos(x))Ŷj

= Tn(x)1 j +
√

1 − x2Un−1(x)X̂ j Ẑ j . (12)

The resulting decomposition (12) corresponds to a unitary op-
eration with matrix elements defined by degree-n Chebyshev
polynomials of first and second kind, denoted as Tn(x) and
Un(x), respectively [160]. The low degree Chebyshev poly-
nomials of the first kind are written explicitly as T0(x) = 1,
T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, and higher de-
grees can be deduced using the recursion relation

Tn+1(x) = 2xTn(x) − Tn−1(x). (13)

Similarly, we can write second-kind Chebyshev polynomi-
als as U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x) − Un−1(x).
The crucial properties of Chebyshev polynomials are their
chaining properties, nesting properties, and simple differ-
entiation rules. The chaining properties for polynomials of
the first and second kind read as 2Tm(x)Tn(x) = Tm+n(x) +
T|m−n|(x) and Um(x)Un(x) = ∑n

k=0 Um−n+2k (x), respectively.
Derivatives can be obtained as dTn(x)/dx = nUn−1(x). Nest-
ing corresponds to the relation Tn(Tm(x)) ≡ Tnm(x). Finally,
polynomials of different kinds can be converted between
as Un(x) = 2

∑n
j even Tj (x) when n is even, and Un(x) =

2
∑n

j odd[Tj (x) − 1] when n is odd. Finally, we note that
Chebyshev polynomials represent oscillating functions de-
fined in the region x = (−1, 1), and their derivatives diverge
at the boundaries of this interval.

The power of the described representation can be inferred
from approximation theory. It states that any smooth function

y

FIG. 4. Fitting with Chebyshev polynomials. As an example we
show a fit of the function y(x) = exp(−1/25x2 )cos(20x) using differ-
ent number n Chebyshev polynomials up to degree n − 1. We note
here that the target function is oscillatoric and is decaying exponen-
tially. The thick solid curve denotes the desired function y(x) and the
dashed curves are the obtained fitting curves (see legend). Their fit
improves with n. The basis set with n = 2 is unable to represent the
function faithfully (only the linear fit is available). Increased basis set
size with n = 16 represents the desired function in some regions of
x, and n = 64 successfully provides an accurate fit.

can be represented as f (x) = ∑∞
n=0 AnTn(x), |x| � 1. An

example of fitting a set of Chebyshev polynomials of the first
kind to a function is shown in Fig. 4. As expected the more
basis functions we use, the more accurate of a fit we can
obtain. As shown in the Remez algorithm [161,162], Cheby-
shev polynomials form an optimal set of basis functions in the
sense of the uniform L∞ norm. This is why they are at the
foundation of spectral algorithms for solving ODEs [34], and
also give an edge in quantum simulation [10,163].

In the present study, we consider two types of Chebyshev
quantum feature maps. The first version corresponds to a
sparse Chebyshev feature map defined as

Ûϕ (x) =
N⊗

j=1

R̂y, j (2 arccos x), (14)

where the encoded degree is homogeneous and equal to one.
Here we make use of the chaining properties Tn(x) and Un(x),
noting that once we create states with Chebyshev polynomials
as prefactors, the basis set will grow further by concatenating
elements. Henceforth we drop the sparse distinction and sim-
ply refer to (14) as Chebyshev feature map. Importantly, the
unitary operators in Eq. (14) have nonlinear dependence on
variable x, leading to a harmonic feature mapping.

The second version we consider corresponds to a Cheby-
shev tower feature map defined as

Ûϕ (x) =
N⊗

j=1

R̂y, j (2 j arccos x), (15)

where the encoded degree grows with the number of qubits,
creating a tower-like structure of polynomials with increas-
ing n = j. Again, as polynomials chain together and morph
between two kinds and their degrees, the basis set is largely
enriched. This is the choice we exploit when large express-
ibility is needed without increasing system size and number
of rotations. Eq. (15) allows the representation of generic
functions, and can be improved further by using layers of
rotations as in Eq. (7).
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3. Evolution-enhanced feature maps

Product feature maps induce nonlinear mappings between
variable(s) x and quantum states described by tensor prod-
ucts of separate single-qubit wave functions. These states
are limited to the subspace of product states. To utilize
the power of the entire Hilbert space of the system, ap-
proaching the amplitude encoding case, we need to populate
independently distinct amplitudes, including the subspace
of entangled states. To make the described feature maps
even more expressive, we suggest enhancing product fea-
ture maps (and specifically the layered Chebyshev map) with
additional entangling layers represented by Hamiltonian evo-
lution. Namely, after the set of single qubit rotations we
consider another unitary exp(−iĤτ ) which acts for time τ and
is generated by the Hamiltonian Ĥ . The sketch of the circuit is
shown in Fig. 3(c). By choosing Ĥ as a complex many-body
Hamiltonian we ensure that exponentially many amplitudes
are generated. It is known that the quantum simulation of dy-
namics leads to a volume-like increase of entanglement. One
important choice is when Ĥ corresponds to a hard problem
from NP-hard complexity class, as proposed in Ref. [74].
Then using two layers of rotations plus evolution the em-
bedding becomes difficult to simulate classically, but can be
implemented as a unitary evolution on a quantum computer.
Additionally, we envisage an evolution layer that is parameter-
dependent, τ (x). In this case the evolution-enhanced feature
map can also be seen through the prism of the recently
proposed Fourier feature maps [155]. This class of quantum
feature maps is based on the evolution operator exp(−iĤdatax),
which is applied for some set of qubits. The Fourier map
lets functions be encoded as Fourier series defined by the
differences of the eigenvalues of Ĥdata. As it involves unitary
operators with phases being linear functions of x, this is a fully
harmonic mapping. The evolution-enhanced feature map then
joins the Chebyshev and Fourier basis sets, encoded in the full
Hilbert space for complex Ĥ .

4. Digital quantum feature maps

Another possibility for encoding the data using a feature
map is to transform a data instance into a computational basis
state, which we refer to as a digital quantum feature map.
This relates x, written in binary form, to the corresponding
state |x〉 in binary representation. The feature map circuit
Ûϕ (x) used to encode the binary variable x reads Ûϕ (x) =⊗N

j=1 exp(−i π
2 x jX̂ j ), where {x j} denote binary values for the

parameter x in jth digit. The differentiation of the digital
feature map then relies on the product rule for N rotations,
and also includes the binary derivative of the variable from
the product rule.

Another possibility is converting the variable into a
decimal representation as xint = ∑

j x j · 2 j . For the reverse
procedure, we can identify each binary digit x j by the re-
mainder of the repeated division x j = mod(xint, 2 j ). We can
thus rewrite Ûϕ (x) as a function of xint, and learn how to
differentiate circuits with this feature map with respect to
x = xint.

Digital quantum feature maps offer a potentially powerful
technique when dealing with functions of discrete variables.
Paired with expressive variational ansatze they may offer

function encoding with memory savings of the amplitude
encoding, while avoiding the input problem. The details of
digital feature map training will be discussed in future works.

B. Variational quantum circuits

To construct the solution of differential equations as a
quantum circuit we need to manipulate the latent space basis
function and bring both derivatives and function to the re-
quired form. This is achieved through the variational circuit
Ûθ , typically referred to as a variational quantum ansatz.
Below we detail architectures employed.

1. Hardware efficient ansatz

As a first choice of variational circuit Ûθ we consider
layers of parametrized rotations, followed by layers of CNOT
operations. This is known as a hardware efficient ansatz
(HEA), which was originally proposed for VQE for chemistry
applications [45]. The structure of a HEA quantum circuit cor-
responds to concatenated layers of single qubit rotations and
global entangling layers for all N qubits, shown schematically
in Fig. 5(a). Rotations are arranged in a R̂z-R̂x-R̂z sequence
parametrized by independent angles θ such that arbitrary
single-qubit operations can be reproduced. The entangling
layer is chosen as a network of CNOTs. We here consider
specifically a linear quantum device connectivity, but the en-
tangling layer can be generalized to other connectivities. The
block of rotations plus CNOTs is then repeated for a depth
of d times. As the number of layers d grows, the circuit’s
expressive power increases. Expressive power is the ability to
represent arbitrary N-qubit unitary gates. However, this comes
with an increased number of controlled parameters which can
complicate the search for an optimal θopt for the solution,
known as a problem in trainability. This can change depending
on the variational ansatz type and cost function choice [70].

2. Alternating blocks ansatz

A second option is to use the alternating blocks ansatz
(ABA), where instead of global entangling layers separate
subblocks are used, interleaved into a checkerboard form
[Fig. 5(b)]. Each subblock has a hardware efficient form
shown in Fig. 5(a) for the specified depth b. For the first layer
the width of the subblock (number of active qubits) is equal
to Nb such that �N/Nb� blocks are used (and is smaller than
Nb if N/Nb is not an integer). The next layer consists of the
same subblocks, but is shifted by 
Nb/2�, where subblocks
at the ends are adjusted to span the remaining qubits. The
described checkerboard-like structure is repeated for dlayers.
The motivation behind ABA is that we want to entangle qubits
locally first, and gradually form a correlated state by interleav-
ing subblocks. This helps to improve trainability of the circuit
together while maintaining high expressibility [70,164].

Here, several points are due. First, we note that the choice
of ansatz is sensitive to the choice of the cost function oper-
ator (see the next subsection), as dictated by the symmetry.
Namely, as a consequence of cost function choice we need to
choose noncommuting generators Ĝ j for the variational ansatz
such that [Ĉ, Ĝ j] �= 0. This ensures that the solution space
can be spanned. Also, we can account for the symmetries,
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FIG. 5. Variational quantum circuits. (a) A variational ansatz in
the hardware efficient form. It consists of a parametrized rotation
layer forming R̂z-R̂x-R̂z pattern, such that an arbitrary single qubit
rotation can be implemented. Variational angles θ are set for each
rotation individually. The rotation layer is then followed by an entan-
gling layer chosen as CNOT operations between nearest neighbours.
The blocks of “rotations-plus-entangler” are repeated d times to form
the full variational circuit Ûθ . (b) Alternating blocks ansatz. The
variational circuit consists of blocks of width Nb qubits (Nb/2 for
boundary qubits). Blocks are chosen in the hardware efficient form
shown in (a) with depth of b. The blocks are placed in a checkerboard
pattern, and repeated dlayers times. The goal is to entangle qubits
locally, while avoiding global entangling operations that can result
in vanishing gradients during θ optimization.

reducing the Hilbert space for the solution search. In many
cases generators can be chosen such that only real amplitudes
are generated, see for instance [70]. We can also use adaptive
strategies or a genetic search [54,55,165].

Second, to search for the optimal circuit parameters we
use stochastic gradient descent, and specifically its adaptive
version represented by Adam [166]. For this, the gradients
of the variational circuit ∇θÛθ are measured using the au-
tomatic differentiation approach, as performed in previous
studies [73,81,103]. The gradient is also weighted with a
learning rate, commonly referred to as α. Choosing an ansatz
parametrized by single-qubit rotations allows the application
of the parameter shift rule, while overlap measurement opens
up options for more general strategies [158].

Finally, we note that choosing the optimal ansatz is an
open challenge for improving DQC training. In comparison
to chemistry problems where the structure may be inspired by
physical reasoning [39,40], this is not the case for differen-
tial equation solvers and further studies in this direction are
needed.

C. Cost function

To read out information we choose a Hermitian cost oper-
ator Ĉ to measure as an observable. This allows relating the
expectation of Ĉ, parametrized by nonlinear variable depen-
dence and variational angles, to the scalar function f (x) as
〈 fϕ,θ (x)|Ĉ| fϕ,θ (x)〉. In general many possible choices of cost
operators are available. The simplest example corresponds to
the magnetization of a single qubit j, 〈Ẑ j〉. Note that this
choice allows representing functions in range [−1, 1], and
requires rescaling for other intervals. Other choices include
total magnetization in the system Ĉ = ∑

j Ẑ j with equal or
randomized weights.

Additionally, we can choose the cost as a quantum Hamil-
tonian that has a provably complex spectrum, and for instance
belongs to ergodic phase. This can be written as an Ising
Hamiltonian with additional transverse and longitudinal mag-
netic fields,

Ĉ =
∑

j

J j, j+1Ẑ j Ẑ j+1 + hz
j Ẑ j + hx

j X̂ j, (16)

where the Ising couplings Jj, j+1 and hz,x
j can be inho-

mogeneous. We note that for cost functions with several
noncommuting groups of observables we can use a Hamilto-
nian averaging procedure, where term-by-term measurement
is performed. Moving on from nearest-neighbour Hamiltoni-
ans, we can also exploit spin-glass type cost functions of the
form

Ĉ =
∑
i< j

Ji, j ẐiẐ j +
∑

j

hz
j Ẑ j . (17)

These are known to include NP-hard problem instances, and
they allow for high expressibility of the circuit describing the
DE’s solution. Finally, a generic cost function may contain a
large set of Pauli strings, similar to some instances in quantum
chemistry.

Together with measuring individual cost functions, we also
consider functions being represented by a classically weighted
sum of observables. This reads

Ĉ =
∑

�

α�Ĉ�, (18)

where α� ∈ R are weighting coefficients, and Ĉ� are cost
functions that can be chosen from the pool of operators de-
scribed above. Importantly, we consider the coefficients α�

to be tunable, such that the gradient descent (represented by
Adam in our case) can adjust the cost to have optimal form.
This procedure further harnesses the strength of the proposed
hybrid quantum-classical workflow.

D. Loss function

To solve the system of differential equations we need to
provide a way to quantify how well the DQC-suggested trial
function matches the conditions to represent the solution of
the problem being considered. The classical optimizer can
then update the variational parameters to reduce this “dis-
tance.” This distance corresponds to the difference between
a differential equation (all terms collected on one side) and
zero. The difference is evaluated at a set of points. We also
need to check if the solution matches initial and boundary
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conditions. This can be recast as an optimization problem for
a loss function of derivatives and functions evaluated at a grid
of points.

We can write a loss function parametrized by variational
parameters θ in the general form

Lθ[dx f , f , x] = L(diff)
θ

[dx f , f , x] +L(boundary)
θ

[ f , x], (19)

where we split the loss contribution from matching the dif-
ferentials L(diff)

θ
and the loss contribution from satisfying the

boundary conditions L(boundary)
θ

. The differential loss is de-
fined as

L(diff)
θ

[dx f , f , x] = 1

M

M∑
i=1

L(F [dx f (xi ), f (xi ), xi], 0) (20)

with L(a, b) being a function describing how the distance
between the two arguments a and b is being measured. The
loss is estimated on a grid of M points, and is normalized
by the grid size. Functional F corresponds to the differen-
tial equation written in the form F [dxu, u, x] = 0. It can be
evaluated by combining values of f and dx f at the training
grid points. We stress that the functional includes information
about all differential equations when we deal with the system,
such that contributions from all equations are accounted for.
The boundary loss contribution reads

L(boundary)
θ

[ f , x] = ηL( f (x0), u0), (21)

which includes the distance between the function value at the
boundary x0 and given boundary value u0. We note that x0

can be an initial point or a set of boundary points. We also
introduce η as a boundary pinning coefficient that controls the
weight of the boundary term in the optimization procedure. In
particular, larger η > 1 may be used to ensure the boundary is
prioritised and represented to higher precision.

We have considered several choices of the loss defined by
three distance definitions L. The first loss type corresponds to
the mean square error (MSE) introduced as

L(a, b) = (a − b)2. (22)

While being simple, we find the choice (22) intuitive
and performing sufficiently well in numerical simulations.
Additionally we also consider mean absolute error (MAE)
loss defined with distance L(a, b) = |a − b|. Finally, sev-
eral more complex metrics can be used, including variants
of Kullback-Leibler (KL) divergence and Jensen-Shannon
divergence. Being the loss functions routinely used in statis-
tical modeling, we expect them to perform well for specific
systems.

The choice of loss functions dictates how the optimizer
perceives the distance between vectors and therefore affects
the convergence. MSE places a greater emphasis on larger
distances and smaller weight on small distances, strongly
discouraging terms with large L. Both MAE and KL do not
place such an emphasis and may have slower convergence.
However, once close to the optimal solution they can achieve
higher accuracy than MSE.

E. Boundary handling

As our goal is to construct a quantum circuit that satis-
fies a system of differential equations, together with matched
derivatives we need to ensure that an initial value or boundary
value problem is solved. Generally this corresponds to fixing
the function value at a required initial point or a collection of
boundary points, thus resembling the quantum circuit learn-
ing tasks considered in Ref. [73]. At the same time, there
are several ways how the DQC-based function fθ (x) can
be constructed, leading to varying performance and specific
pros/cons when solving particular problems.

Information about the boundary can be included as part of
the loss function [Eq. (19)]. For the MSE loss function type
the boundary part (21) can be written in the form

L(boundary)
θ

[ f , x] = η( fθ (x0) − u0)2, (23)

where x0 represents the set of boundary points (or an initial
point), and u0 is a vector of boundary values, and η is a pinning
coefficient as described previously.

1. Pinned boundary handling

The first option is to include the information about the
boundary in the expectation of the cost function. This corre-
sponds to simply choosing a cost operator Ĉ, and representing
the solution in the form

f (x) = 〈 fϕ,θ (x)|Ĉ| fϕ,θ (x)〉. (24)

The initial value u0 is then matched via the boundary term
in the loss function. The strength of the pinned boundary
handling is in equivalent treatment of boundary and deriva-
tive terms, both being encoded in Ĉ. At the same time, the
weakness corresponds to the necessity of adjusting the bound-
ary value starting from the one represented by initial θinit ,
typically generated randomly. This can be adjusted by shift-
ing f (x) by a constant-times-identity term added to the cost
operator, Ĉ = α01 + ∑M

j=1 α jĈ j , where α0 is set such that

for θinit ∼ random[0, 2π ] the function 〈 fϕ,θinit (x)|Ĉ| fϕ,θinit (x)〉
typically lies close to u0 value when evaluated at x = x0.

2. Floating boundary handling

The second choice of the boundary handler corresponds
to iteratively shifting the estimated solution based on the
boundary or initial point. For this method the boundary in-
formation does not require a separate boundary loss term nor
is it encoded in the expectation of the cost function. Instead
it is set iteratively within the parametrization of the function.
As the function is parametrized to match a specific boundary,
information about the boundary is still contained within the
function and its derivatives. Therefore boundary information
is still present within the loss function despite there not being
a separate boundary loss term. We parametrize the function as

f (x) = fb + 〈 fϕ,θ (x)|Ĉ| fϕ,θ (x)〉, (25)

with fb ∈ R being a parameter adjusted after each iteration
step as

fb = u0 − 〈 fϕ,θ (x0)|Ĉ| fϕ,θ (x0)〉. (26)
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This effectively allows the solver to find a function
〈 fϕ,θ (x)|Ĉ| fϕ,θ (x)〉 which solves the differential equation
shifted to any position, then being shifted to the desired initial
condition as shown in Eq. (25). This method of boundary
handling guarantees exact matching to initial values given and
does not require a separate boundary term in the loss function,
thus the derivative loss term does not have to compete with the
boundary loss. Furthermore, as we allow the cost function to
match to the solution shifted by any amount, this simplifies the
choice for optimal angles and removes the dependence on ini-
tial θinit . However this method does require knowledge of an
exact initial value which can be an issue in specific situations.
This technique can be generalized for multivariable problems
which have an initial condition as a function of a subset of
the independent variables. Evaluation of the derivatives of the
initial condition function is required for encoding the partial
derivatives of the represented function.

3. Optimized boundary handling

Finally, we also propose a boundary handing technique
that relies on a classical shift of the solution, but defined by
the gradient descent procedure on par with variational angles
optimization. This removes the need to include boundary in-
formation in the cost expectation, but information still needs
to be included in the loss function. Namely, we seek for the
solution in the form

f (x) = fc + 〈 fϕ,θ (x)|Ĉ| fϕ,θ (x)〉, (27)

where fc ∈ R is a variational parameter alongside the quan-
tum ansatz angles and updated accordingly via the classical
optimizer. Therefore the gradients for fc have to be calcu-
lated additionally when using this boundary handler. One
strength of the described method is that, due to the classi-
cal shift, even if the random initial angles start such that
〈 fϕ,θinit (x0)|Ĉ| fϕ,θinit (x0)〉 is far from the initial value u0, the
optimizer can quickly and easily update fc to rectify this. A
weakness however is that the boundary and differential terms
in the loss may compete against one another.

F. Regularization

Given that our goal is to find a variational spectral rep-
resentation of the differential equations solution using large
basis sets, the optimization procedure benefits from having
a good initial guess, or “pre-trained” DQCs. We can achieve
this by introducing a regularization procedure [167,168], also
helping the optimizer to avoid getting trapped in local minima.
Variants of the regularization procedure include: (1) feeding-
in prior information about the potential solution; (2) biasing
the DQC-based solution into a specific form; and (3) searching
for a solution in a region close to the boundary values, and
feeding-in points from the first training into next sessions. The
input for procedures 1 and 2 consists of regularization points
for the variable(s) {xreg}R

r=1, together with corresponding func-
tion values {ureg}R

r=1 for R points. Similarly, we can consider
regularization based on the derivative values. We employ the
simplest strategy where an additional contribution to the loss
function comes from the regularization points, L(reg)

θ
[ f , x].

This loss is defined such that the DQC-based function matches
the regularization values at corresponding grid points. This

has a form analogous to the boundary loss contribution. Using
MSE loss as example, the regularization contribution reads

L(reg)
θ

[ f , x] =
R∑

r=1

ζ (n j )( fθ (xreg,r ) − ureg,r )2, (28)

where nj denotes the iteration step. ζ (n j ) is introduced as
an iteration step-dependent regularization weight, and thus
denoting an optimization schedule. In general, we require
higher emphasis on the regularization-based training at ini-
tial stages, which shall diminish to zero at higher iteration
numbers. This leads to the prior information being used at
first, setting a rough solution or preferred function behav-
ior, followed by precise derivative loss optimization at later
training stages. One possible choice of an optimization sched-
ule corresponds to linearly decreasing regularization weight,
ζ (nj ) = 1 − n j/niter, where n j is current iteration number and
niter is the maximum iteration number. This strategy works for
small learning rates and large number of iterations, such that
the optimizer has sufficient “time” to adjust to the constantly
changing loss landscape. Another choice corresponds to a
reverse sigmoid optimization schedule, where a smooth drop
of regularization weight is performed at pre-defined training
stages. We parametrize this schedule as

ζ (n j ) = 1 − tanh

(
n j − ndrop

δ jniter

)
, (29)

where ndrop denotes the iteration step number at which reg-
ularization weight drops, and δ j assigns the transition rate.
This allows the DQC to initially focus almost entirely on the
regularization optimization, later switching the focus towards
the gradient optimization.

G. Multifunction encoding

When solving a system of differential equations we need
to decide how multiple functions should be encoded simul-
taneously. There are several ways that this can be achieved.
The first approach we consider is to use the same quantum
register for all functions, thus compressing information about
the function vector using the same feature map circuit and
variational ansatz. The functions are then defined through
the choice of different cost operators at the readout stage.
This method is resource-frugal, and is suitable for certain
systems. However, the choice of suitable cost operators be-
comes complicated, as in some cases shared register encoding
may exhibit competition between the optimization of differ-
ent functions. This concerns the question of expressibility
of the set of cost operators, and may potentially be solved
using a weighted sum of operators with optimized weights.
A second option is to use separate quantum registers, and
correspondingly a different feature map and variational ansatz
for each function. This removes the issue of choosing the cost
operators, and avoids the related direct competition due to
independent parametrization. While requiring more resources
we note that function and derivative evaluation can be done in
parallel. However, we note that as a combined loss function is
considered care must be taken when timing the circuit runs.
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H. DQC-based solver: the workflow

Finally, using the elements and strategies described above,
we present a workflow for constructing the differential equa-
tion solver based on derivative quantum circuits. This is
summarized in Fig. 1 showing the flowchart. We start by
specifying the input for the solver. This comprises the problem
in hand, specified as a set of nonlinear differential equa-
tions of various types, together with their respective boundary
conditions. Additionally, a set of regularization points may
be added to ensure the optimized solution is chosen in the
desired qualitative form. Next, we set up the schedule for
derivative quantum circuit optimization and choose the quan-
tum circuit composition. For this we choose (a) the type of
quantum feature map; (b) the ansatz of variational quantum
circuit, including its depth; (c) the cost function type, also
choosing if variational weights are considered; (d) the type of
the loss function; and (e) the strategy to match the boundary
terms and derivatives. We also need to specify the classical
optimizer for variational angles and weights (with associated
hyperparameters), including the number of iterations and exit
conditions. Finally, we specify whether the loss function uses
a specific optimization schedule, where it is changing during
the training.

Once the DQC structure and optimization schedule are
defined, we need to specify a set of points X for each equation
variable. This can be a regular equidistant grid, Chebyshev
grid, or a randomly drawn grid. The variational parameters
are set to initial values θ ← θinit (e.g., as random angles). The
expectation value over variational quantum state |uϕ,θ (xi )〉 for
the cost function is estimated using the quantum hardware for
the chosen point xi. Then a potential solution at this point
is constructed, accounting for the boundary handling proce-
dure. Next, the derivative quantum circuits are constructed
and their expectation value is estimated for the specified cost
function, at point xi. Repeating the procedure for all xi in
X we collect function values and derivatives, and compose
the loss function for the entire grid and system of equations
(forming required polynomials and cross-terms by classical
post-processing). Regularization points may be also added,
biasing the solution to take specific values at these points. The
goal of the loss function is to assign a “score” to how well the
potential solution (parametrized by the variational angles θ)
satisfies the differential equation, matching derivative terms
and the function polynomial to minimize the loss. With the
aim to increase the score (and decrease the loss function),
we compute the gradient of the loss function with respect to
variational parameters θ. Using the gradient descent procedure
(or in principle any other classical optimization procedure)
we update the variational angles from iteration nj = 1 into
the next one n j + 1, θ(n j+1) ← θ(n j ) − α∇θL (with α being
here a “learning” rate), and repeat the steps outlined before
until we reach the exit condition. The exit condition may be
chosen as (1) the maximal number of iterations niter reached;
(2) loss function value is smaller than pre-specified value;
and (3) loss gradient is smaller than a certain value. Once
we exit the classical loop, the solution is chosen as a circuit
with angles θopt that minimize the loss. Finally, we extract
the full solution by sampling the cost function for optimal
angles 〈uϕ,θ (x)|Ĉ|uϕ,θ (x)〉. Notably, this can be done for any

point x, as DQC constructs the solution valid also beyond (and
between) the points at which loss is evaluated originally.

IV. RESULTS

A. Differential equation example

Now let us see how the algorithm performs in practice. For
this, we choose a differential equation with a known analytical
solution, and compare it to the one obtained by the derivative
quantum circuit. We choose a single ODE for the initial value
problem which reads

du

dx
+ λu(κ + tan(λx)) = 0, u(0) = u0, (30)

where λ and κ are real parameters, and u0 sets the value of the
function u at x = 0. Equation (30) has a solution in the form
of a damped oscillating function,

u(x) = exp(−κλx)cos(λx) + const, (31)

where “const” is determined by the initial condition. While
the problem is fairly simple being a single ODE, reproducing
the damped oscillating solution requires a rich basis of fitting
functions, that needs to include both oscillatoric and increas-
ing/decreasing functions. As λ and κ grow the function starts
to oscillate and decay even more rapidly, and the solution
becomes harder to express.

To show how the proposed method works, we use deriva-
tive quantum circuits to solve Eq. (30) using optimization of
differentiable quantum feature maps. Specifically, we choose
two cases with parameters λ = 8 and 20, and fixed κ = 0.1,
u0 = 1. These problem parameters are chosen to make DQC
construction challenging, with λ = 20 being a complex case
as the resulting solution is highly nonlinear and oscillatoric.
We consider an equidistant optimization grid of 20 points,
starting from x = 0, with maximal time of 0.9 (dimensionless
units are used). This is chosen such that the region with di-
verging derivative of the nonlinear feature function dϕ(x)/dx
is avoided, and we note that x can be rescaled to match
required boundaries. To find the solution we use a quantum
register with N = 6 qubits, and the cost function is chosen as
total magnetization in the Z direction, Ĉ = ∑N

j=1 Ẑ j . For the
variational circuit, we choose the standard hardware efficient
ansatz described in the Methods section, setting the depth to
d = 5. To search for optimal angles θopt we perform adaptive
stochastic gradient descent using ADAM [166] with automatic
differentiation enabled by analytical derivatives. Specifically,
we code the workflow using YAO.JL package [81,169,170] for
Julia, which allows fast and efficient implementation. A full
quantum state simulator is used in a noiseless setting. In this
example, we use the floating boundary handling.

We search for the circuit-based solution using three
different feature maps described in the Methods section, and
compare their performance. These correspond to the product
feature map [Eq. (6)], the sparse version of the Chebyshev
feature map [Eq. (14)], and the tower Chebyshev feature
map, as defined in Eq. (15). We label results for these feature
maps as Prod, Cheb, and ChebT, respectively. To assess the
performance we use several metrics. The first metric is the full
loss (denoted as LF ). It refers to the loss calculated from the
differential equations and any boundary or regularization
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FIG. 6. DQC-based solution for the single ODE example. (a) Results from the circuit trained to solve Eq. (30) for u0 = 1, λ = 8, and
κ = 0.1. We present DQC solutions fϕ,θ (x) obtained using three different quantum feature maps ϕ(x) labeled as Prod, Cheb, and ChebT.
Corresponding DQC solutions are shown by dashed curves and labeled for clarity (see legend). Analytical solution u(x) is shown by the thick
solid curve (label 1). (b) Same as in (a), but for λ = 20 example. [(d) and (e)] Full loss LF (dashed curves) and quality of solution LQ (solid
curves) are shown as functions of iteration number nj for optimization results displayed in (a) and (b), respectively. (c) DQC-based solution of
Eq. (30) shown for four different ansatz depths d = 3, 6, 12, and 24, with the analytical solution u(x) presented by the solid curve. The case
of d = 3 is labeled for clarity. (f) Full loss (dotted curves) and quality of solution (solid curves) shown as a function of iteration number for
the solution in (c).

terms, in this case Lθ[dx f , f , x] = L(diff)
θ

[dx f , f , x] +
L(boundary)

θ
[ f , x] +L(reg)

θ
[ f , x]. The second metric corresponds

to differential loss (LD), being a part of the full loss excluding
regularization contribution. Finally, the third metric is the
quality of solution (LQ). The quality of the solution is the
distance of the current DQC-based solution from the known
true solution. This is calculated by evaluating the DQC-based
solution and true solution at a set of points and using the MSE
loss type, being equal to LQ = (1/M )

∑M
i=1[ f (xi ) − u(xi )]2.

Quality of solution gives us a useful way to compare how
two different training setups perform, especially if they are
training to solve the same differential equations.

The results of DQC training are shown in Fig. 6. In
Figs. 6(a) and 6(b), we show the solutions of Eq. (31) for
λ = 8 and 20, respectively, where solid curve (with label 1)
represents the analytical solution u(x) in Eq. (31). The dashed
curves (curves 2, 3, 4) represent the final DQC-based solu-
tions sampled from the cost function at approximation points
(niter = 250 is used). In Figs. 6(d) and 6(e), we show the rele-
vant training metrics as a function of iteration number, where
solid curves denote the quality of solution (curves 2, 4, and
6) and dashed curves represent the full loss (curves 1, 3, and
5). We observe that for λ = 8 both Chebyshev feature maps
converge closely to the true solution [Figs. 6(a) and 6(d)]. The
more expressible Chebyshev tower feature map (curves 5, 6)
takes longer to converge but reaches a solution closer to the

true solution. The less powerful product feature map fails to
converge with the loss quickly plateauing (curves 1, 2). For
λ = 20 the true solution is more oscillatoric and has stronger
damping, making the solution harder to represent [Figs. 6(b)
and 6(e)]. The product feature map still fails to converge
(curves 1, 2), but now also failing to converge is the simpler
Chebyshev feature map (curves 3, 4). The full loss for both
cases plateaus rapidly. The more expressible ChebT feature
map continues to perform well (curves 5, 6). This supports
the hypothesis that choosing a feature map expressible enough
for the problem is important, and more simulations with more
qubits offers a way to increase the power drastically.

Next, we compare the effect of ansatz depths for the vari-
ational circuit Ûθ . We use d = 3, 6, 12, 24, λ = 20 and the
Chebyshev tower feature map, and the rest of the training
setup remains the same as previously considered. These re-
sults are presented in Figs. 6(c) and 6(f). We observe that for
lower depths the solver is slower to converge and does not
reach as high accuracy as it does for higher depths. As depth
increases more layers of parametrized gates are included in
the variational ansatz and so the number of variational angle
parameters increase. This causes an increase in the number
of gate operations needed in each iteration and how many
parameters the classical optimizer needs to update, raising the
time taken per iteration. As the depth of the ansatz continues
to increase eventually the problem of barren plateaus could
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be encountered [171]. Then vanishing gradients would cause
the solver to struggle to improve the parameters, however at
d = 24 we had not yet ran into this with over 400 variational
parameters. We also note that the alternating blocks ansatz is
designed in the way that vanishing gradients can be avoided
for certain conditions [164].

B. Differential equation with highly nontrivial dynamics

To highlight the importance of powerful feature maps for
solving differential equations, we provide another example
with a rapidly oscillation nonperiodic solution. We consider
an initial value problem

du

dx
− 4u + 6u2 − sin(50x)

−ucos(25x) + 1/2 = 0, u(0) = u0, (32)

for the function u(x). This differential equation has a solution
that is hard to represent since it involves both oscillatoric
terms with high frequency and nonoscillatoric terms repre-
senting growth and decay. Therefore a feature map with high
expressibility is vital for this problem. To illustrate this point,
we solve Eq. (32) using DQCs with both the regular Cheby-
shev tower feature and an evolution-enhanced version of that
feature map. As shown in Fig. 6, the Chebyshev tower feature
map was the most expressible of the three considered for that
example. In this example the evolution-enhanced feature map
we consider consists of an application of the Chebyshev tower
feature map followed by the unitary evolution exp(−iĤτ )
with Hamiltonian Ĥ . Specifically, we have chosen a nearest-
neighbor Ising Hamiltonian Ĥ = −J

∑
j Ẑ j Ẑ j+1 + h

∑
j X̂ j .

The evolution time τ is fixed, and we consider couplings J
and magnetic field h to be drawn uniformly from (0,1]. Note
that the type of Hamiltonian is not crucial, and may depend
on hardware implementation.

For the training regime we consider u0 = 0.75, 100 train-
ing points, and set evolution time τ = 2. We check that results
remain consistent for different J and h generated randomly.
We use Adam optimizer with learning rate 0.01 and 200 iter-
ations. The rest of the training setup is the same as considered
for problem Eq. (30) in Sec. IV A with a six-qubit register,
cost choice of total magnetization in the Z direction, and a
hardware efficient variational ansatz with depth d = 5.

The results are shown in Fig. 7. First, the circuit is trained
with the Chebyshev tower feature map. Being expressive in
itself, it manages to come close to the true solution but misses
some details for getting a precise solution [Fig. 7(a), red
dashed curve labeled as 2]. The angles this training results in
are then passed as initial angles for training with the evolution-
enhanced feature map. The circuit is now further trained for
another 200 iterations to improve upon the solution obtained
from the initial training. As can be seen, after this second
stage of training, we are able to capture the intricate details
of the solution [Fig. 7(a), blue dashed curve labeled by 3], and
both the full loss and quality of solution are improved upon
[Fig. 7(b)]. The expressive power of the evolution-enhanced
map can be increased for more complex Ĥ and larger τ ,
though at the expense of trainability. The full discussion of the
evolution-enhanced feature map will be the subject of separate
work.
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FIG. 7. DQC-based solution for highly nontrivial dynamics ex-
ample. (a) Results from the circuit trained to solve initial value
problem in Eq. (32) with u0 = 0.75. We show solutions obtained
using two different feature maps: Chebyshev tower feature map
(ChebT) and evolution-enhanced Chebyshev tower feature map
(EvEn). Corresponding DQC solutions are shown by dashed curves
(labeled by 2 and 3, respectively). The true solution is shown by a
solid curve (labeled by 1). (b) Full loss LF (dashed curves 1 and
3) and quality of solution LQ (solid curves 2 and 4) are shown as
functions of iteration number nj for optimization results in (a).

We note that by adding a quantum evolution we increase
expressibility of the circuit. This helps to represent highly
oscillatoric functions. At the same time, DQCs in this case
are more difficult to train, as keeping track of the gradients
for oscillatoric function requires a finer training grid and has
a slower convergence. We envisage that τ [nj] can be set as a
flowing parameter of the feature map that increases from zero
as iteration number n j grows (similar to annealing procedure
as in adiabatic quantum computing). This will ensure easy
trainability at the start, followed by adjusting θ’s for a larger
fitting function set providing extra precision. Another ap-
proach is to take τ (x), adding variable-dependent amplitudes
directly through the evolution. While in this case parameter
shift rule is not applicable, the circuit differentiation can be
done numerically [172], with wave-function overlaps mea-
sured with the SWAP test [158].

C. Strongly coupled equations

Building up on the single ODE example, we proceed
to consider a system of differential equations, taking two
strongly coupled differential equations as an example. This
describes the evolution of competing modes u1(x) and u2(x)
as a function of variable x, which in this case corresponds to
time. The associated rate equations read

F1[dxu, u, x] = du1

dx
− λ1u2 − λ2u1 = 0, u1(0) = u1,0,

(33)

F2[dxu, u, x] = du2

dx
+ λ2u2 + λ1u1 = 0, u2(0) = u2,0,

(34)

where λ1,2 are coupling parameters, u1,0, u2,0 are initial con-
ditions. The larger |λ1| is in comparison to |λ2| the more
strongly coupled the two equations will be. This can be
intuitively seen considering |λ1| � |λ2|, leading to larger
contribution of u2 into the equation for du1/dx derivative than
u1, and vice versa.
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FIG. 8. DQC-based solution for the strongly coupled equations example. (a) Results from the circuit trained to solve the system of
differential equations Eqs. (33) and (34) for u1,0 = 0.5, u2,0 = 0, λ1 = 5, and λ2 = 3. We present DQC solutions f1(x) and f2(x) obtained
using three different boundary evaluation techniques: pinned boundary (labeled as Pin), floating boundary (Float), and optimized boundary
(Optim). Corresponding DQC solutions are shown by dashed curves. Analytical solutions u1(x) and u2(x) are shown by thick solid curves.
(b) Full loss LF (dashed curves 1, 3, 5) and quality of solution LQ (solid curves 2, 4, 6) are shown as functions of iteration number nj for
optimization results displayed in (a).

To move from considering one differential equation to a
system of equations, we need to encode multiple functions us-
ing quantum registers as described in the Sec. III Methods. For
this specific example we choose a simple parallel encoding,
where separate cost functions and ansatze are considered.
In this case, each function has a separate set of parame-
ters to be optimized. The loss is changed accordingly to
include information on separate contributions from two cou-
pled differential equation that are optimized simultaneously.
We encode each function using the differentiable feature map
combined with individual variational ansatz parametrized by
the set of angles θ1 and θ2 and before deciding on the bound-
ary evaluation type we have

f1(x) = 〈Ø|Û†
φ (x)Û†

θ1
Ĉ(1)Ûθ1Ûφ (x)|Ø〉, (35)

f2(x) = 〈Ø|Û†
φ (x)Û†

θ2
Ĉ(2)Ûθ2Ûφ (x)|Ø〉, (36)

where Ĉ(1,2) are in principle different cost functions for each
equation. For the loss function, we consider the sum of the
MSE losses for the first and second differential equation. This
loss is written asLθ[dx f , f , x] = ∑M

i=1 L(F1[dx f , f , xi], 0) +∑M
i=1 L(F2[dx f , f , xi], 0) with F1 and F2 as written in

Eqs. (33), (34), and L depends on the loss choice as detailed
in the Methods section. There can be additional boundary loss
terms depending on boundary evaluation method chosen. If
present, they contribute to the loss function as a sum of the
boundary terms for u1 and u2. Note that we consider the loss
as a sum of individual contributions coupled together we are
trying to minimise both simultaneously with equal weight.
Due to the coupling between the two equations this could
lead to competition between the two loss terms (a parameter
update which causes a loss decrease for one DE’s loss may
lead to an increase in the other). This may result in increasing
the chance of converging to a local minima rather than the
global minimum; however, this effect can be mitigated if loss
contributions are weighted in some way. Another solution is
to use quantum kernel methods, where loss corresponds to the
overlap between quantum feature states. Choosing a suitable
loss function in this case is an important point to consider in
the future.

We define the problem setting parameters to λ1 = 5,

λ2 = 3 and initial conditions to u1,0 = 0.5, u2,0 = 0. We set
up the training scheme as in Sec. IV A using a six-qubit
register, cost choice of total magnetization in the Z direction
for both u1 and u2, hardware efficient variational ansatz with
depth d = 5, Adam optimizer with learning rate 0.02, and
feature map choice of the Chebyshev tower feature map. We
test the performance for the three boundary evaluation types:
pinned boundary, floating boundary, and optimized boundary.
The results are shown in Fig. 8. The pinned and optimized
boundary handlers perform similarly, slowly converging to
the analytical solution u1,2(x) within 250 iterations [Fig. 8(a)].
The two approaches have similar convergence in terms of the
full loss [Fig. 8(b), dashed curves labeled by 1 and 5], but
differ in terms of quality of solution [Fig. 8(b), dashed curves
labeled by 2 and 6]. When using floating boundary type a
function close to the true solution is obtained [with LQ value of
approximately 10−5, see curve 4 in Fig. 8(b)]. This difference
in convergence rate is a result of boundary information having
an impact on the loss, demanding the matching for pinned and
optimized boundary handlers, whereas the floating boundary
automatically matches the initial condition and no loss bound-
ary term is needed. The consequence of competing terms in
the loss function can be seen in the early oscillations of the
full loss in Fig. 8(b).

D. Fluid dynamics applications

An area where solvers for complex differential equations
are much required is fluid dynamics [2]. In this case, several
outstanding models are hard to tackle due to their nonlinear
nature. Examples include Burger’s equation and Navier-
Stokes equations. We concentrate on the latter and show how
one can approach them with the DQC solver. Navier-Stokes
equations describe a flow of incompressible fluids. This highly
nonlinear set of partial differential equations is used to model
fluids, magnetoplasma, turbulence etc. It is heavily used in the
aerospace industry and weather forecasting. It can be derived
from general principles. Namely, we consider fluid motion
that obeys Newton’s law and we simply track the fluid mass
passing through a (infinitesimal) volume.
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FIG. 9. Quasi-1d fluid dynamics. (a) We consider an example of fluid dynamics problem corresponding to a convergent-divergent nozzle.
The air flows from converging part of the nozzle (x < 0.5), passes through the throat placed symmetrically in the middle, and exits to diverging
part (x > 0.5). (b) System variables [density ρ(t ), temperature T (t ), and velocity V (t )] are shown as functions of time, near the center of the
nozzle at x0 = 0.4. For clarity, we label the corresponding curves by 1, 2, and 3. (c) Steady state solutions are plotted as functions of the spatial
dimension x, with the same labeling.

The general form Navier-Stokes equation can be presented
in the form

∂ (ρvx )

∂t
+ ∇ · (ρvxV) = −∂ p

∂x
+ ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+ ρ fx,

(37)
∂ (ρvy)

∂t
+ ∇ · (ρvyV) = −∂ p

∂y
+ ∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z
+ ρ fy,

(38)
∂ (ρvz )

∂t
+ ∇ · (ρvzV) = −∂ p

∂z
+ ∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
+ ρ fz,

(39)

where (vx, vy, vz ) are instantaneous velocities in the (x, y, z)
directions, τ is the stress tensor, f the body force per unit mass
acting on the fluid element, ρ the density, and p the pressure.
Here V is a velocity field.

The building blocks for the Navier-Stokes equations de-
scribed above are the continuity equation for the density ρ

subjected to energy conservation and the momentum conser-
vation rules. Finally, as we use energy conservation, we can
rewrite equations in terms of one of the thermodynamic state
functions, being temperature, or pressure, or enthalpy etc.

While general by itself, Navier-Stokes equations are usu-
ally solved in relevant limiting cases. Specifically, this
can correspond to space reduction (2D, quasi-1D, 1D),
isotropic/anisotropic media properties, and fluid properties
(viscous or inviscid flow). The specific example we choose
to start with is the flow through a convergent-divergent
nozzle, being a paradigmatic task in the aerospace indus-
try [Fig. 9(a)] [2,142]. The Navier-Stokes equations can be
rewritten for the inviscid fluid in quasi-1D approximation.
They read [2,142]

∂ρ

∂t
= −ρ

∂V

∂x
− ρV

∂ (ln A)

∂x
− V

∂ρ

∂x
, (40)

∂T

∂t
= −V

∂T

∂x
− (γ − 1)T

(
∂V

∂x
+ V

∂ (ln A)

∂x

)
, (41)

∂V

∂t
= −V

∂V

∂x
− 1

γ

(
∂T

∂x
+ T

ρ

∂ρ

∂x

)
, (42)

where Eq. (40) corresponds to the continuity equation,
Eq. (41) describes the energy conservation, and Eq. (42) stems
from momentum conservation. A(x) corresponds to the spatial
shape of the nozzle, and is a function of the lateral coordinate
x. γ describes the ratio of specific heat capacities, and is
equal to 1.4 for the relevant case of air flow. Here we used
nondimensional variables [2].

We set the problem with nozzle shape

A(x) = 1 + 4.95(2x − 1)2, 0 � x � 1, (43)

and for simplicity specify boundary conditions as

ρ(x = 0) = 1, T (x = 0) = 1, V (x = 0) = 0.1, (44)

when solving the initial value problem for the steady-state
flow. We also need to specify the initial conditions if solving
the dynamical problem. These are chosen as [2]

ρ(x, t = 0) = 1 − 0.944x, (45)

T (x, t = 0) = 1 − 0.694x, (46)

V (x, t = 0) = (0.1 + 3.27x)T (x, t = 0)1/2. (47)

Let us consider the stationary state problem represented
by Eqs. (40)–(42) with conditions above and equate the time
derivatives to zero. Interestingly, when trying to solve the
system for the steady state solution using various classical
methods as, for example, implemented in MATHEMATICA’s
NDSOLVE, the calculations do not converge. This proves to
be challenging as the system is stiff. Solutions may become
unstable depending on initial values, and specifically the input
velocity. To understand the problem, it is instructive to rewrite
the system of stationary Navier-Stokes equations in the form

dρ

dx
= ρV 2dx(ln A)

T − V 2
, (48)

dT

dx
= TV 2(γ − 1)dx(ln A)

T − V 2
, (49)

dV

dx
= −TV dx(ln A)

T − V 2
. (50)
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FIG. 10. DQC-based solution for the Navier-Stokes convergent-divergent nozzle problem. (a) Intermediate solution in training where
dashed curves correspond to solutions drawn from trained DQC and solid curves to the true solution. Circuits are trained over twenty points
in range (0, 0.4). (b) Final solution. Solid curves with labels 1, 2, and 3 show the true solutions for the density, temperature, and velocity,
respectively. Dashed curves with labels 4, 5, and 6 show the DQC solutions for the density, temperature, and velocity, respectively. The DQC
solution matches the known solution and also what would be physically expected. As the air goes through the nozzle it accelerates and cools
down. (c) Full loss (LF , curve 7), quality of solution (LQ, curve 8), and differential loss (LD, curve 9) are shown as functions of the iteration
number nj for the training resulting in solution (b).

Immediately we observe that each function at the RHS di-
verges at the point x s.t. T (x) = V (x)2. This leads to singular
behavior and breaks classical solvers, including the ones with
stiff handling. At the same time, full dynamical solution and
its t → ∞ extrapolation are possible, shown in Figs. 9(b)
and 9(c) once the well-suited initial conditions (45)–(47) are
chosen allowing to avoid instability, as usually done in com-
putational fluid dynamics [2,142].

E. DQC solution

We proceed to solve the stationary system of Navier-Stokes
equations for the convergent-divergent nozzle by constructing
optimized DQC. We consider the case of subsonic-supersonic
transition, where flow velocity increases after the center of
the nozzle and the qualitative behavior of other state variables
(temperature and density drop) is known. However, getting
the quantitative results is difficult. We show that derivative
quantum circuits can find solutions despite the challenge for
the classical solution for the continuous grid.

To construct the solution we employ a two-stage optimiza-
tion approach, where the solution is first obtained at smaller
x, and later generalized until the end of the nozzle. For the
circuit we again consider a six-qubit quantum register with a
Chebyshev quantum feature map, keeping in mind that x ∈
[0, 1). We choose the cost functions as a total magnetization
Ĉ = ∑N

j=1 Ẑ j . As we consider three functions {ρ(x), T (x),
V (x)}, three equations contribute to the loss function in the
combined manner. We use floating boundary handling, where
each curve is adjusted according to starting values, chosen as
ρ(0) = 1, T (0) = 1, and V (0) = 0.1. The variational ansatz
is taken in the standard hardware efficient form with d = 6
depth. ADAM is used as a classical optimizer, and the learning
rate is set to 0.01.

At the first stage we train DQC in the region (xmin, xmax) =
(0., 0.4), such that the circuit represents the region close
to initial point x = 0. As expected, in the subsonic region
flow velocity grows towards the middle of the nozzle, while
temperature and density drop slowly [see Fig. 10(a), dashed
curves 4, 5, 6]. The training is set for 20 equally distributed

points of x, with no prior regularization and using floating
boundary. We optimize DQC for niter = 200 iterations for
Adam with the learning rate of α = 0.01. We find a high-
quality solution based on the gradient information in the
imposed solution region x < 0.4 shown in Fig. 10(a).

We proceed to search for the full solution that includes the
divergent nozzle part for x > 0.5 at the second training stage.
At this session we choose the grid of 40 points, where two
regions of (0, 0.4) and (0.6, 0.9) with 20 points each are used.
As we discussed before, the key problem of the convergent-
divergent nozzle in the subsonic-supersonic transition case is
the divergence around the middle of the nozzle. This causes
a major problem to classical solvers, that are unable to find
a steady state solution directly. Divergent contributions from
this region also impact the loss function, and makes train-
ing complicated. However, by excluding the region around
the nozzle throat, (0.4, 0.6), in the training we alleviate this
problem. Proceeding with the use of the same ansatz and
boundary handing, we feed the variational angles from stage
1 as initial parameters for stage 2 training. We employ weak
regularization to ensure that the required subsonic-supersonic
solution is made. Namely, we use 20 points in the (0, 0.4) re-
gion benefiting from the previously found solution (in general
we have access to as many points as we need), and also add
5 points in the x ∈ (0.6, 0.9) region representing weak bias
towards supersonic solution type. The training is performed
for niter = 600, learning rate of α = 0.005, and regulariza-
tion switch-off function ζ (n j ) set to be removed smoothly
around n j = 150. The full solution is shown in Fig. 10(b). It
converges to the expected long-time behavior for the system,
where function derivatives from DQC match the nonlinear
contributions. The increase of speed for the air flow in the
convergent part and decrease of temperature and density is
reproduced quantitatively. The details of the optimization run
can be inferred from the loss plotted in Fig. 10(c). This shows
a distinct region in the presence of regularization (n j < 150),
where quality of solution LQ remains low [Fig. 10(c), curve
8], while the full loss LF improves [Fig. 10(c), curve 7] thanks
to regularization contribution and weakly improved derivative
contribution LD [Fig. 10(c), curve 9]. For the region with
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switched off regularization we observe steady improvement
of all metrics, showing that DQCs are efficiently trained to ap-
proach true solution, also evidenced by LQ decrease. Notably,
as compared to many methods relying on sparse discretization
of x, we have found the solution along the full nozzle length.

V. SUMMARY AND OUTLOOK

We presented a general framework for solving general
(systems of) nonlinear differential equations using differen-
tiable quantum circuits on gate-based quantum hardware. The
method makes use of quantum feature map circuits to encode
function values into a latent space. This allows us to consider
spectral decompositions of the trial solutions to differential
equations. We showed how our method can accurately repre-
sent nonlinear solutions, using the high-dimensional Hilbert
space of a qubit register. For this we exploit as an example a
large spectral basis set of Chebyshev or Fourier polynomials.
We also showed how analytical circuit differentiation can be
used to represent function derivatives appearing in differen-
tial equations, and constructed loss functions which aim to
improve the prepared trial solution. This method opens up a
new way of solving general, complex, (non)linear systems;
as an example we presented solutions to the Navier-Stokes
equations, but the same method can be applied across all disci-
plines where differential equations arise. Although we showed
how the method works explicitly for a spectral (global) treat-
ment, the scheme is general and one may instead consider a
digital quantum feature map which allows a grid-based (local)
treatment. We did not yet consider the impact of noise on
the algorithm performance; however, it is well-known that
the analytical gradients, which are used here, are much less
susceptible to noise than numerical gradients evaluated on
variational quantum circuits. We expect recent developments
in noisy black-box optimization algorithms for NISQ appli-
cation would perform well in this method, as well as error
mitigation techniques. The presented quantum feature maps
are a good start, but could be improved upon further, where
the goal is to find efficient representations of functions. This
choice will likely be problem-specific and in some cases
problem-motivated, allowing to make optimal use of (quan-
tum) resources. A good choice of variational ansatz is crucial
to loss function convergence success and speed. We presented
some examples, but an active area of research is to improve
upon these using for example adaptively growing circuits or
stronger interplay with intelligent classical optimization pro-
tocols, such as Bayesian optimization.

An important question to discuss is the potential of achiev-
ing a quantum advantage, specifically for solving differential
equations with a hybrid workflow. Similarly to classical ML,

variational quantum machine learning uses quantum circuits
as universal function approximators [173]. While VQA inher-
ently remains a heuristic, similarly to machine learning-type
approaches, they are highly suitable to problems where tra-
ditional methods fail or are inefficient. For instance, classical
neural networks based on Fourier representation were recently
shown to outperform traditional PDE solvers by three orders
of magnitude [147]. This can be pushed further by quantum
variational protocols. For expressive feature maps, the repre-
sentation power of quantum circuits grows superpolynomially
with the number of qubits. In classification tasks this leads
to increased accuracy even for small networks [174]. For
differential equations, rich basis sets allow for accurate solu-
tion representation in a memory-frugal form—a saved list of
optimal circuit parameters for a given DQC structure. Having
the expressibility advantage, the success of operation then de-
pends on (1) trainability of quantum circuits and (2) absolute
operation rates. The former is well-known to suffer from a
phenomenon commonly referred to as barren plateaus. That
can be mitigated by a carefully chosen circuit structure, as
recently shown for convolutional quantum circuits [115,175].
The latter requires quantum hardware specifications with high
sampling rates and a low-latency hybrid operational mode.
In the pre-FTQC era with large-scale quantum devices, yet
limited by noise, parallel operation may offer this possibility.

Finally, differential quantum circuits can enjoy another
type of computational advantage related to training. In this
paper we considered capturing the function similarity through
a loss function based on a cost Hamiltonian suitable for
near-term operation. Anticipating the appearance of quantum
devices with deep quantum circuits and problems with mul-
tidimensional functions, we consider possible strategies for
parallel DQC training at different nodes of the training grid.
One possibility is training of differential equation solutions
as a superposition of quantum circuits (feature maps applied
for different values of variables). The DE is then solved
by matching differentiated version at all points (using linear
combinations of unitaries), and loss can be measured from
quantum kernel estimation. This was used recently to speed
up generative modeling with quantum batch training [124].
We will further investigate that approach in future work.
To conclude, we suggest that the DQC method could be a
potential contender for exploring the boundaries of quan-
tum advantage in industrially relevant problems, and expect
many improvements can be made building on the presented
idea.
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