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We study experimentally accessible lower bounds on entanglement measures based on entropic uncertainty
relations. Experimentally quantifying entanglement is highly desired for applications of quantum simulation
experiments to fundamental questions, e.g., in quantum statistical mechanics and condensed-matter physics.
At the same time it poses a significant challenge because the evaluation of entanglement measures typically
requires the full reconstruction of the quantum state, which is extremely costly in terms of measurement
statistics. We derive an improved entanglement bound for bipartite systems, which requires measuring joint
probability distributions in only two different measurement settings per subsystem, and demonstrate its power
by applying it to currently operational experimental setups for quantum simulation with cold atoms. Examining
the tightness of the derived entanglement bound, we find that the set of pure states for which our relation is tight is
strongly restricted. We show that, for measurements in mutually unbiased bases, the only pure states that saturate
the bound are maximally entangled states on a subspace of the bipartite Hilbert space (this includes product
states). We further show that our relation can also be employed for entanglement detection using generalized
measurements, i.e., when not all measurement outcomes can be resolved individually by the detector. In addition,

the impact of local conserved quantities on the detectable entanglement is discussed.
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I. INTRODUCTION

Entanglement plays a key role in understanding quantum
many-body phenomena [1]. In equilibrium, entanglement is
tightly connected to the characteristics of the phase dia-
gram. Out of equilibrium, the generation of entanglement is
key for understanding how a closed quantum system returns
to a thermal state after a quench. While quantum simula-
tion experiments enable the emulation of quantum dynamics
problems in a scalable way [2], the experimental quantifi-
cation of entanglement remains a challenge. What can be
accessed comparably easily are entanglement witnesses, pro-
viding a means to detect entanglement and nonclassicality [3].
Generally applicable procedures to measure or even bound en-
tanglement [4] have so far relied on either full density-matrix
reconstruction [5] or require some other form of measurement
that is very hard to scale up to large system sizes and to apply
to higher-dimensional systems [6—14].

The approach we follow in this work is rooted in the
connection between entanglement and quantum uncertainty
principles with side information. If access to one part of
a quantum system allows the accurate prediction of mea-
surement outcomes in the other part for two incompatible
measurements, this implies the existence of correlations be-
tween the parts which cannot be purely classical, and thus
entanglement must be present [15,16]. These arguments can
be formulated in terms of entropic uncertainty relations
[17,18], which relate the predictability of two incompati-
ble measurements with the coherent information —H (A|B)
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between subsystems A and B. Because the coherent infor-
mation serves as a lower bound on distillable entanglement
[19], entropic uncertainty relations allow one to bound this
entanglement quantifier using only the probability distribution
of the possible outcomes of two measurements [20]. This has
been successfully applied to experiments with pairs of entan-
gled photons [21,22]. The goal of our work is to apply entropic
uncertainty relations to quantify entanglement in quantum
many-body systems in experimentally realistic settings (see
also the companion paper [23]). The main challenge to be
addressed is the limited measurement choices due to experi-
mental constraints. These render mutually unbiased measure-
ments, which would lead to the maximal tightness of entropic
entanglement bounds, almost impossible to implement.

With the goal of making entanglement quantification pos-
sible also with a set of measurements far from mutually
unbiased, we derive a refined entropic uncertainty relation,
which allows us to tighten entanglement bounds compared
with previously known relations [24]. The crucial extension
is to use the measured joint probability distribution not only
for extracting conditional entropies but also for increasing
the complementarity factor which determines the amount of
detectable entanglement.

The key theoretical step for this is a slight change of per-
spective: Entropic uncertainty relations with memory quantify
the uncertainty about observables X4 and Z given that we
have access to an additional memory quantum system B.
Previous relations express this uncertainty through classical-
quantum conditional entropies H(Xs|B) = H(X4B) — H(B),
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where H (X4B) is the von Neumann entropy of the classical-
quantum postmeasurement state px,  after measuring X in A.
For the experimental application of entanglement quantifica-
tion, only fully classical entropies H(X4|X;) are accessible
since both subsystems are being measured. Therefore, one
needs to apply the data-processing inequality for the addi-
tional estimate H (X4 |Xj) > H(X4|B). Here we directly derive
an uncertainty bound for the measurable conditional entropies
H (X4]X};) which includes the measured bipartite probability
distributions into the complementarity factor and thereby im-
proves previously known bounds [24].

We demonstrate the strength of our new entanglement
bound by applying it to experimental setups realized in cold
atom experiments, namely, two distinguishable particles on an
optical lattice [25], and a spin-1 Bose-Einstein condensate in
a bipartite setting [26,27]. In both cases, our relation is shown
to successfully witness and bound distillable entanglement,
while previous similar relations fail to do so. The requirements
regarding the necessary detector resolution and the scalability
of the method in terms of the required measurement statistics
will likely limit its range of applicability to intermediate-size
systems. Nevertheless, given the rapid progress on various
quantum simulation platforms that meet these requirements,
we are convinced that the entanglement bounds derived here
will find ample applications for answering questions about
entanglement in quantum many-body systems in and out of
equilibrium and in many different experimental settings far
beyond those envisioned here.

Our paper is structured as follows: We start by introduc-
ing necessary concepts, notation and a selection of previous
results on the topic in Sec. II. We then show our improved en-
tropic uncertainty relations both for projective measurements
(Sec. III) and more generalized measurements in POVMs
(Sec. IV). Subsequently, we provide insights about the tight-
ness of our relation in Sec. V A and also investigate the limits
of entropic uncertainty relations in contexts where the mea-
surement set is further constrained by conserved quantities
(Sec. V B). Finally, we introduce two theoretical models of
cold-atom systems, in which the experimental preparation of
entangled states has been demonstrated recently (Sec. VI). For
both setups we present numerical simulation results which
demonstrate the strength of our relation.

II. PRELIMINARIES

In this section, for the presentation to be self-contained, we
briefly introduce the most important concepts and notation.
For a more detailed account of entropic uncertainty relations
and their applications we refer the reader to Ref. [18].

Throughout this paper, we employ the following notation
for objects of quantum mechanics: We write states in Dirac’s
bra-ket notation, so kets |y/) € H are elements of the Hilbert
space H, whereas bras (¢| € H* are elements of the dual
space. (¢|¢) € C is then equivalent to the inner product. We
denote the set of all bounded operators on H as

B(H):={A:H — H | Alinear and bounded }. (1)

If H is finite-dimensional (which we assume throughout)
B(#H) is just the set of all linear operators on . For elements

A € B(H) we write the operator norm with respect to the norm
of Has| - |-
We call an element A € B(H) positive, and write A > 0, if

(VIAlY) 20V |y) € H. 2)

Note that this definition (on complex vector spaces) implies
that A is Hermitian.
We further define

D(H) = {p € B(H)|Trp =1, p positive} 3)

as the set of density matrices on .

A. von Neumann entropy

Let H be a d-dimensional Hilbert space and p € D(H) a
density matrix. The von Neumann entropy of p is defined as
(28]

H(p) .= —Tr[plog (p)], 4

where log is the matrix logarithm. Throughout this paper,
log = log, refers to the logarithm to the base 2. Diagonalizing
p as p = Y, Aklk)k|, the von Neumann entropy becomes

H(p) == Alog i (5)
k

with the convention 0 x log(0) = 0. Equation (5) can also be
seen as the Shannon entropy of the eigenvalues of p: For a
discrete random variable X distributed on a set of outcomes 2
according to the probability distribution Py : Q2 — [0, 1] with
Y req Px(x) = 1, its Shannon entropy is given by

H(X) == Px(x)log Py (x). 6)

xeQ

B. Quantum relative entropy

For two density matrices p and o, the quantum relative
entropy is defined as

D(pllo) := Tr[plog (p)] — Tr[plog (o)], (7N

where we set D(p|lo) = oo if supp(p) ¢ supp(o). The quan-
tum relative entropy has a number of useful mathematical
properties [29]. Below we will make use of the following:

1. Positivity: D(pllo) >0V p,0 € D(H).

2. Joint convexity: For A € [0, 1] and py, p2, 01, 05 €
D(H):

D(@py + (1 = M)p2llroy + (1 — 1)or)
< AD(pillor) + (I = A)D(p2||02). ®)
3. Monotonicity: For any quantum channel A (i.e. a

completely positive trace preserving linear map on bounded
operators) and states p, o € D(H):

D(pllo) = D(AlpllAla]). €))

The monotonicity property (9) states that the relative en-
tropy between two quantum states is nonincreasing under the
application of quantum channels and is often referred to as
the data-processing inequality (DPI). Quantum channels are
a very large class of operations on density matrices including
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(generalized) measurements, unitary time evolution, and in-
teractions with an environment. For a general introduction we
refer to Ref. [29].

C. Bipartite systems and entanglement

Bipartite quantum systems are systems, for which the
Hilbert space can be decomposed into a tensor product H =
Ha ® Hp. They form the quantum analog of bivariate proba-
bility distributions. For such systems we can define additional
entropic quantities, the quantum conditional entropy,

H(A|B) := H(pap) — H(pp),
and the quantum mutual information,
I(A : B) = H(pa) + H(pp) — H(pap)- (11)

The quantum mutual information is always positive [29],
whereas the quantum conditional entropy H (A|B) can also be
negative.

Using the joint convexity of the quantum relative entropy,
one can show that the quantum conditional entropy H (A|B) is
positive for separable states and thus an entanglement witness.
Moreover, its negativity is a bound on distillable entangle-
ment, defined as the number of Bell pairs that can be extracted
from an asymptotically large number of copies [19,30]. Thus,
it constitutes a bound on an operationally relevant entangle-
ment measure.

(10)

D. Entropic uncertainty relations
1. Maassen-Uffink relation

One of the key properties of our description of quantum
mechanics is the concept of intrinsic uncertainty. Quantum
mechanics works in a way that there are certain pairs of ob-
servables which cannot both have deterministic (or arbitrarily
localized) measurement statistics, irrespective of the state.
This is usually demonstrated by the Robertson uncertainty
relation,

oxoz = (X, Z])l, (12)

1
2
where the uncertainty is quantified by the standard deviation
ox (o) for measuring an observable X (Z), respectively. Such
uncertainty relations can also be formulated with the entropy
as an uncertainty quantifier. The first entropic uncertainty
relation that is applicable to a wide range of measurements on
finite-dimensional Hilbert spaces was given in Maassen and
Uffink [31]:

Theorem (Maassen and Uffink, 1988). Let p be a quantum
state and X and Z be two measurements in orthonormal bases
{IX*)} and {|Z%)}, respectively. Let H(X) and H(Z) denote
the classical Shannon-entropy of the probability distribution
of measuring the state in these bases, and

gmu = —log(n)lca;x (ZF X)), (13)

then
HX)+HZ) =2 quu + H(p).

Since its original discovery, various proofs of this relation
have been found. A particularly nice one can be found in the
Appendix of Coles et al. [18].

(14)

The individual terms in the relation have the following
interpretation: The sum of the entropies corresponds to the
product of variances in Eq. (12), and the complementarity
factor gymu, the logarithm of the maximum overlap, quantifies
the degree of incompatibility of the two measurements. If the
original state is mixed [H(p) > 0] both our measurements
will become less deterministic and we can add this term on
the right-hand side.

With d the dimension of our Hilbert space, we have

max [(Z*|X"))* > 1. (15)
X,z

and two bases (or measurements with such eigenbases) that
fulfill

HZA XM > = L = const.

a (16)

are called mutually unbiased bases (MUBs).

2. Bipartite uncertainty relations

The entropic uncertainty relation (14) holds only if there
is no form of side information available that allows us to
(partially) predict measurement outcomes and thus reduce
uncertainty. One typical example of such side information
occurs when the measured system A is entangled with another
memory system B which can be measured at will. In that case,
correlations between the two systems can be employed to re-
duce uncertainty, and thus relation (14) needs to be modified.

For a subsystem A, possibly entangled to a memory system
B, Berta et al. [32] showed the following entropic uncertainty
relation:

Theorem (Berta etal. 2010). Let pap be a quantum state and
X and Z be two measurements in orthonormal bases {|X*),}
and {|Z%),} on the subsystem A. Let

pxp =Y XWX @ Tra(IX WX apap)  (17)

be the classical-quantum state after measuring X in A. Then
H(X4|B) = H(pxp) — H(pp) and similar for Z. Now the fol-
lowing relation holds:

H(Xs|B) + H(Z4|B) 2 quu + H(A|B), (18)

with gyy defined as in (13).

A proof can again be found in the Appendix of Ref. [18]
and also in Ref. [33].

In contrast with the relation for a system without memory
(14), now we bound not the entropy of the measurements, but
the conditional entropy, i.e., the uncertainty after taking into
account side information from B. This conditional uncertainty
is shown to be larger than the complementarity factor gyy plus
the quantum conditional entropy, which captures the entan-
glement between the two subsystems. If A and B are strongly
entangled, often H(A|B) < 0 and the conditional uncertainty
of both X and Z can become arbitrarily small. If the state
is separable, however, then H(A|B) > 0 and so even when
conditioning on B, some uncertainty always remains.

3. Bounding entanglement

As mentioned previously, —H(A|B) is an entanglement
witness and a lower bound on distillable entanglement.
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Equation (18) now gives a lower bound on —H (A|B):
—H(A|B) = quu — H(Xa|B) — H(Z4|B). 19)

Unfortunately, the classical-quantum entropies H (X4|B) and
H(Zp|B) cannot be measured directly. However, an upper
bound

H(X4|B) < i}I(l,fH(XA|X[/g) < H(X41Xp) (20)
B

can be obtained by applying the data processing inequality
with a measurement in an arbitrary basis X},. Combining equa-
tions (19) and (20), we have

—H(AIB) > quu — H(XalXp) — H(ZsZp), (21

where gyvu can be calculated and H(XalX}) + H(Z4|Zy)
quantifies experimentally measurable correlations. This equa-
tion summarizes the basic idea behind entanglement quantifi-
cation with entropic uncertainty relations. We want to obtain
a bound on an entanglement quantifier by extracting correla-
tions between measurements in two different settings.

4. Uncertainty relations for positive operator valued measures

Many measurements done in practice do not fall into the
category of measurements in orthonormal bases but have
to be described through positive operator valued measures
(POVMs). Uncertainty relations similar to (18) also exists for
such generalized measurements.

A POVM is a set of positive operators E; € B(H), k =
1,...,K that sum to the identity: >, E; = 1. Measuring a
state p in this POVM is then understood as obtaining outcome
k with probability Tr(Eyp). Let X* and Z* be the POVM
operators for two POVMs X and Z on subsystem A. An
entropic uncertainty relation that is analogous to those using
measurements in bases was proven by Frank and Lieb [34]:

H(X4|B) + H(Zx|B) > —log(crL) + H(A|B),

crr = max Tr(X*Z?%).
X,z

(22a)
(22b)

Although the complementarity factor — log(cgy) reduces to
(13) for the case of measuring in bases it is a rather weak
bound in general. Specifically, it is significantly weaker
than factors that can be achieved for POVM uncertainty
relations on only a single system without memory [18].
Tomamichel [35] and Coles and Piani [24] proved the follow-
ing alternative relation that uses a stronger overlap factor at
the cost of adding additional entropy terms on the right-hand
side:

H(Xa|B) + H(Zs|B) = —log(cr) + H(A|B) — H(A|XB),
(23)
with
cr = max
X

<max [VXWVZEL - (24)
X2

2

Z X 77X~
z
and the postmeasurement state

Pxan = [0xlx ® (X5 ® 1g)pan(X) @ 1s).  (25)

5. State-dependent complementarity factors

One of the big issues of the previously shown entropic
uncertainty relations is that they are tight only for measure-
ments in MUBs. This can be seen easily from the proof
in Ref. [18], which involves an application of the data-
processing-inequality and additionally an estimate

[(X¥1Z7) * < max |(X¥|Z7) . (26)
X,Z

If the measurement pair is far from mutually unbiased, this
estimate will be far from tight and the relation of very little use
for entanglement quantification. If the measurement pair is not
mutually unbiased, the two measurements are not maximally
complementary for all states, so any reasonably tight uncer-
tainty relation will likely require some information about the
occupation of problematic states in its complementarity factor.
A first step in this direction has been taken in Ref. [24] where
a relation with ¢ also depending on the marginal distribution
Px (x4) or P7(z4) has been shown:

H(X4|B) + H(Z4|B) > H(A|B) + qc,
qc =~ Z Py(xa) log(max e.c),

(27a)
(27b)

with ¢,. = [(X*|Z?)|?, and one can swap X and Z to get a
potentially better relation.

This relation is already a significant improvement in many
cases, yet there are still various pairs of measurements far
from mutually unbiased for which the row-maxima max; c,,
are very close to the overall maximum max, ; ¢,;, but ¢,
fluctuates strongly within these rows. In these cases, (27) does
not lead to a significant improvement.

Subsequently we show that, if we are only interested in an
uncertainty relation conditioned on measurement outcomes in
B, we can further improve on this result and find an uncer-
tainty relation that eliminates any maximization in c,, and still
only uses measurable quantities.

II1. FULLY-STATE-DEPENDENT UNCERTAINTY
RELATION FOR PROJECTIVE MEASUREMENTS

We are now ready to state the first main result of this
work, which is a more state-dependent entropic uncertainty
relation for bipartite systems, which gives strictly stronger en-
tanglement bounds than previously known relations. We call
it fully state dependent because it avoids any maximization
while calculating the complementarity factor from the indi-
vidual overlap elements c,, but instead uses maximal available
measured information about the state.

Theorem (Bipartite State-Dependent Uncertainty Relation).
Let H = Hs ® Hp be a bipartite Hilbert space. Let X and Z
be two measurements in the ONBs {|X*),} and {|Z%),} on
Ha, and Y be a measurement in the ONB {|Y”)z} on Hp. Let
¢ = [{ZF|X¥)|?. Then,

H(Xs|Yp) + H(Zs|B) = H(A|B)

— > Pyy(xa, y5)log (Z Ce:Pyy (24 |y3>>, (28)

Xy
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with Pxy(xa, yg) = P(Xa = x4, Yp = yp), and the condi-
tional distribution Pzy (z4|yg) = P(Zs = za|Yp = yB)-

Proof. This is a special case of a similar relation for
POVMs shown further below, but it is very instructive to look
at its proof independently. It is inspired largely by the proofs
of less-state-dependent relations in Refs. [18,24,33].

First, notice that

H(Zx\B) — H(A|B)
= H(pzp) — H(pp) — H(pap) + H(pp)

= H(pzp) — H(pap)

= D(pagllpzs). (29)

Now, let

Iy = XX @ [YNY] (30)
be the projector onto the eigenstates of the measurement out-
come (x, y). Define the channel A that measures X in A and Y
in B:

Apap) =) Ty pasTlyy. 31

x,y

Using the data-processing
A(pag), we obtain

inequality, defining pxy =

D(pallpzp) = D(A(pap)l| A(ozB))

= D(:OXY
= D(PXY
= D(PXY

Now both parts of the quantum relative entropy are diagonal
in the XY basis, so we can easily evaluate it to

D(PXY
- Z Pxy (x4, yp) log <Z CxzPzy (24, yB)) . (33)
xy z

With H(pxy) = H(X4Yg), the relation follows after adding
and subtracting H (Y) on the right hand side. |
By now estimating c,, < maxyc,y and using that
> . Pzy(zalys) = 1 as well as 3 Pxy(xa, yp) = Px(xa), we
can recover a B-measured version of (27). Thus, for the appli-
cation of bounding entanglement through measurements this
relation implies (27) and (18). Note however, that while using
previous relations for bounding entanglement required only
experimental knowledge of the joint probability distributions
Pxx and Pzz, our new relation without any further estimates
additionally requires the measurement of Py or Pzy.

R MyA YA |pAB|ZZ><ZZ|ny>

X, 02

D Myen (29 @ (Y 1panlZ) © IY"))>

X, 02

Z nycszZY (ZA» yB)) .

X, V.2

(32)

Z nycszZY (za, yB)> = —H(pxy)

X2

Example: Measuring in the Schmidt basis

Our new relation has a particularly clear interpretation if
the state is pure and one of the two measurements is in the
Schmidt basis of the state. In this case it is also qualitatively
more powerful than the standard relation (18) for any mea-
surement pair that is not mutually unbiased.

To see this, take a pure state psp and choose the mea-
surements Z and Z’ to be measurements in its Schmidt basis.
Explicitly, let

(34)

Wap =D VAili)a ® lidg

be a Schmidt decomposition of the state (such a decomposi-
tion always exists) and then take Z to be the measurement on
A in the ONB {|i)4} and Z’ to be the measurement on B in
{|7)5}. This implies

pas = Y ANl pzz = alidiil  (35)
ij i

and
H(A) = H(B) = H(Zy) = H(Zy)
= H(ZsZy) = H({\;}),
which leads to H(Zs|Z;) = 0. Also, we have Pzz (i, j) =
AiSij.

Now, let U = Uy ® Up be the unitary rotation that trans-
forms between the measurements (X4, Yz) and (Z4, Zj). We
take Uy = Up, and write its matrix elements as u;; := (i|Ua| ).
Then, we can calculate Pzy as

Py (i, ) = (Y| (li)a ® Us 1)) = I/ ki P = hiciy. - (37)
Thus,

(36)

(38)

Z cixPry (i, y) = Z CixCiyhi.
; ;

The key point is that this is the same as the probability dis-
tribution Pyxy of measuring the postmeasurement state pzz in
the XY basis:

Pxy(x,y)

Pzz!

= (xl, ® O U" me‘xn‘w )4 ® )5 9

2, 12
=Y MluiPluy? =) hicircyy.
i i

Now, our entanglement bound from the fully-state-dependent
entropic uncertainty relation reads

H(A|B) < H(X4|Yp) +ZPXY(XAayB)10g (Z CxiPZY(iA|yB)>
X,y i

= H(XaY) + Y _Pxy(xa.yp)log <Z CxiPzy (iayp ))

X,y i

= —=D(Pxy p,5 | Pxv p,, )- (40)

This has the following interpretation: Measuring in the
Schmidt basis shows perfect correlations between the two
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subsystems. Now, this alone does not demonstrate entangle-
ment since there is also a purely classical state that shows
exactly the same probability distribution, the postmeasure-
ment state pzz. The entropic uncertainty relation now tells
us that we can certify entanglement to the degree to which
we can distinguish our real state psp from the classical state
pzz by measuring in the XY basis. This distinguishability is
quantified by the classical relative entropy.

Note that, for pure separable states, measuring in the
Schmidt basis makes the relation tight. Also, we either cannot
distinguish psp from the classical state pzz by measuring
in the XY basis, in which case we get H(A|B) < 0, or we
can (possibly only to a very small degree) in which case
we already demonstrate entanglement. While it is intuitively
clear that for pure states any such observation demonstrates
entanglement, it follows from the previously known entropic
uncertainty relations only for the case of mutually unbiased
measurements.

IV. FULLY-STATE-DEPENDENT UNCERTAINTY
RELATIONS FOR POSITIVE OPERATOR
VALUED MEASURES

The previous fully-state-dependent relation can be natu-
rally generalized to POVMs by proving an equivalent tripartite
uncertainty relation and employing the duality between tripar-
tite and bipartite uncertainty relations.

A. Notation

For a POVM X we label the measurement operator cor-
responding to the measurement outcome x as X*. We then
implement such a POVM with K elements by an isometry
V adding two auxiliary Hilbert spaces for our measurement
result:

Vx : Hap — ck ® ck ® Hag, (41a)
Vi [Yag) = ) 10) ® [x) ® VX* [yug) . (41b)

This corresponds to adding two registers that hold the value
of the measurement outcome. The measurement outcome is
added twice, so that tracing out one of them removes the off-
diagonal terms and acts like performing the measurement. We
write

X == pxxas = Vx pasVy (42)

for the state after the isometry. The postmeasurement state is
then given as Pxap-

B. Tripartite relations

For many of the previous bipartite entropic uncertainty
relations there exists an equivalent formulation for tripartite
systems ABC. In this formulation, one of the two measure-
ments is conditioned on B and the other one on C, while
the right-hand side of the relation no longer has a term for
the quantum conditional entropy H(A|B) (see Lemma 2 for
a precise formulation). Tripartite uncertainty relations are
often intuitively related to the monogamy of entanglement:
a subsystem can show quantum correlations with one other

subsystem but not with both. In that sense tripartite uncer-
tainty relations generalize the notion of incompatibility of
measurements to cases where side information is available.

Especially in the framework of measuring in bases, the
relation between bipartite and tripartite uncertainty relations
has been known and used since the discovery of (18) by Berta
et al. [32]. In the case of “coarse grained” measurements
described by POVMs the correspondence is a bit more subtle,
as the bipartite relation acquires additional terms from the fact
that entanglement can persist in parts of the state that have not
been measured.

It appears that the best way to treat bipartite uncertainty
relations for POVMs is indeed with these additional terms,
for which one can then do worst-case estimates as desired.
Therefore, our strategy for deriving a fully-state-dependent
uncertainty relation for POVMs will be to first prove a tripar-
tite relation, and to then obtain a bipartite relation using the
following equivalence theorem.

Lemma 2. Assume that, for two POVMSs X and Z, we have
some tripartite uncertainty relation

H(X4|A(B)) + H(Z4|C) 2 q, (43)

where we allow for some measurement channel A to include
relations of the form H(X4|B) as well as H(X4|Y). ¢ can
in general be state dependent but should depend only on the
reduced state psp and not on subsystem C. Then, this implies
the bipartite uncertainty relation

H(Xs|A(B))+ H(Z4|B) = g + H(A|B) —H(A|ZB),z, (44)

with pZ similar to (42) and (41).

Proof. We give a simple proof of what we require for
the sake of completeness. For a more general statement of
this equivalence, see, €.g., Ref. [35]. Let papc = [ }| be a
purification of p4p, and ,OZ = Dz7z'ABC = Vz,OABCvZT. All sub-
sequent entropies apply to p? unless otherwise denoted. For
any bipartite splitting of the systems ZZ’ABC the two sub-
systems will have equal entropy by Schmidt decomposition
(since pzzapc is pure). In particular, H(ZZ'AB) = H(C) and
H(ZC) = H(Z'AB). Thus,

H(Z|IC)=H(ZC)—-H(C)
= —H(ZZ'AB) + H(Z'AB) = —H(Z|Z'AB)
= —H(ZZ'A|B) + H(Z'A|B)
= —H(ZZ'A|B) + H(ZA|B)
= —H(ZZ'A|B) + H(A|ZB) + H(Z|B), (45)
where we made repeated use of the chain rule H(AB|C) =

H(A|BC)+ H(B|IC). Now, note that H(ZZ'A|B),: =
H(A|B),, with p = p4p, and thus

H(Z|C) = H(Z|B) — [H(A|B), — H(A|ZB),z].  (46)

]

If the POVM Z actually is an orthonormal basis, then Z* is

a rank-1 projector and the postmeasurement state pz4p takes
the form

pzas = Y1202l ® Z° ® Tra(Z*pap), (47)

Z
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so H(A|ZB) =0. If Z* are not rank-1 projectors, then
H (A|ZB) will in general not be zero. Since pzp is classical in
the Z system we can write it as

H(A|IZB) =) pH(AIB) /7, /7=

z

(48)

Thus, H(A|ZB) has the interpretation of the average entangle-
ment left in the postmeasurement state.

C. Fully-state-dependent relation

We now prove a tripartite entropic uncertainty relation for
POVMs in order to subsequently apply Lemma 2 to obtain the
corresponding bipartite relation.

Theorem 3 (Tripartite State-Dependent Uncertainty Rela-
tion for POVMs). For any tripartite state pspc and POVMs X
and Z on subsystem A as well as a POVM Y on subsystem B,

H(X)|Y) + H(Zy|C) >
- Z Pxy (xa, yg) log (Z h(x, 2)Pzy (z4 |)’B)> , (49)

with
h(x, 2) = INZZXV |2 = |V Z3V/ X3

Proof. As in the case of Theorem 1, this builds on the proof
of a less-state-dependent relation in Ref. [24]. We start with

Z ZZIOABZZ> ,

which has been shown in Ref. [36] and again differently in
Ref. [24]. We define our measurement channel

Alpap) = pxy = Y 1x)x| ® [P)ITr(X* @ Y2 pan)  (52)

X,y

(50)

H(Z4|C) > D(PAB (51)

and, using the DPI, obtain

Z ZZPABZZ>
z

(Zem)

3 el @ I TH(XT ® Y")zzmzq).

X, 0,2

H(ZA|C) = D<pAB

Z D(PXY

=D (/OXY

‘We have

(53)

Tr[X* @ YY(Z* papZ*)]
= Tr[VZX VIV @ Y papyZ7)]
< IWZZXVLHLTHZE @ Y pas)
= h(x, 2)Pzy (za, yB), (54)

where we used that, for positive operators A and B, we have
(IA]121 — A)B > 0 and thus Tr(AB) < Tr(||A||2B). Putting ev-

erything together, we obtain

H(Z4|C) + H(XY)

Z— Z Pxy (x4, yp) log (Z Tr[(X* ® Y'V)ZZPABZZ])
X,y z

> =) Pyr(xa, yp) log (Z hx, z)sz(zA,yB)). (55)
X,y Z

Subtracting H (Y') on both sides gives the desired relation. W

Corollary 4 (Bipartite State-Dependent Uncertainty Rela-
tion for POVMs). For any bipartite state pqp and POVMs X
and Z on subsystem A as well as a POVM Y on subsystem B:

H(Xa|Yp) + H(Z4|B) = H(A|B) — H(A|ZB),z + qrspp
(56)
with

qrspp=— Y Pxy(xa, yp)log (Z h(x, 2)Pzy (2a |)’B)> .
Xy k4

(57
Proof. Apply Lemma 2 to Theorem 3. ]
Note that the given version does not directly imply the
state-independent Eq. (23) and a marginal-dependent version
similar to (27) for POVMs (see Coles and Piani [24] for an
explicit formulation). The key issue is that these less-state-
dependent relations can use a complementarity factor where
the matrix norm is applied to a larger sum of operators,
namely,

hx) = | Y X'ZXY| (58)
z 2
while bounding by the maximum in (56) yields
h(x,7") < max h(x, z) = max ||V Z:X*VZ?|,. (59)
Z Zz
Coles and Piani [24] showed
D OXZEXY| < max [VZEXWVEZE . (60)
4
z 2

with no equality in general.

D. Entanglement witnessing

When using the previously shown entropic uncertainty re-
lations for POVMs instead of those for orthonormal bases,
one has to deal with the issue that the entanglement quantifier
they use is not just the quantum conditional entropy but the
quantum conditional entropy minus the remaining quantum
conditional entropy in the postmeasurement state. Here we
show that this modified term is still an entanglement witness,
i.e. it remains positive for separable states.

Theorem 5 (Entanglement Witness for POVMs). For any
separable bipartite state psp and any POVM Z on subsystem

A, it holds that
H(A|B) — H(A|ZB), > 0. 61)

Proof. Again write pzzap = VZ,OABVZT. Then H(A|B), =
H(ZZ'A|B);. For any direct product state pap = ps ® pg we
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get H(ZZ'A|B) = H(ZZ'A) and H(A|ZB) = H(A|Z). Then,
by the Araki-Lieb inequality [37], we have

H(ZZ'A) > |H(ZA) — H(Z))| > H(ZA) — H(Z')
= H(ZA) — H(Z) = H(A|Z). (62)

For separable states pap = Y, Pk ,oﬁ ® ,0§ we can rewrite
our expression as a relative entropy and then use joint convex-
ity. We have

PzzAB = Zl’kﬁéz/AB = Z Pk:béz'A ® ,bg, (63)
k k

which leads to
H(ZZ'A|B) — H(A|BZ)
=H((ZZ'AB) + H(BZ) — H(ABZ) — H(B) (64)

1
® Pzap ® — ® ,53)
7

1
= ~D(pzzas ® s -
Pzz'aB ® PzB 4 p

+ 2log (dz).

Now, using the separability (63) and joint convexity of the
relative entropy, we obtain

H(ZZ'A|B) — H(A|BZ)

> pepj(H(Z|Z'AB)y + H(ZIB),)
k.j

=Y p(H(Z|Z'AB)y + H(Z|B) )
k

= p(H(ZZAIB)y — HAIBZ);) >0, (65)
k

where the p* are direct product states, so H (ZZ'A|B)y —
H(A|BZ)y > 0. |

V. PROPERTIES AND LIMITATIONS OF ENTANGLEMENT
QUANTIFICATION WITH ENTROPIC
UNCERTAINTY RELATIONS

In this section we investigate properties of our relation
and of entanglement quantifiers based on entropic uncertainty
relations in general. The first part of this section will deal
with tightness of fully measured relations, while the second
part answers what one can expect in scenarios where the set
of available measurements is restricted by some conservation
law.

A. Tightness

For an application of entropic uncertainty relations to en-
tanglement quantification, one needs to be aware that the
classical-quantum conditional entropies H(Z4|B) cannot be
measured. Experimentally, only classical-classical conditional
entropies H (Z4|Zy) with an arbitrary measurement Z' on B are
accessible. The data-processing inequality tells us that

H(Z4|B) < H(ZalZp) (66)

for any measurement Z' on B. Thus, all previously stated
entropic uncertainty relations imply a formulation with such
classical-classical entropies. If the measurement pair (X4, Z4)

is mutually unbiased, indeed all these relations are equivalent,
i.e., with d the dimension of H4,

gmu = grsp = qc = log(d). (67)

In this section we investigate what effect conditioning on
measurement results instead of the full quantum system B has
on the tightness of these relations. We will mostly be dealing
with pure states and measurement pairs that are mutually un-
biased. While one would expect that this should be somewhat
ideal circumstances, we will see that already there the set of
tight states is very limited.

For the relation by Berta ez al. (18) and with fixed measure-
ments X and Z related by a Fourier transformation, Ref. [38]
tried to find all tight states but achieved classification only
with some additional restrictions.

In this section we interest ourselves in a slightly different
question: For which pure states psp does there exist a pair
of mutually unbiased bases X4 and Z, of H, and arbitrary
measurements X}, and Zj of Hp such that

H(Xa|Xp) + H(Zs|Zy) = H(AIB) +log (d).  (68)

If we were to consider the relation conditioning on the quan-
tum system instead, i.e., if we look for states which satisfy

H(X4|Xg)+ H(Z4|B) = H(A|B) + log (d), (69)

answering this question is fairly straightforward: Choose
bases X4 and Xy such that psp has a Schmidt decomposition
in these bases. Then H(X4|X};) = 0. Furthermore, since psp
is pure, also Trs(|z)(z|pap) is rank one (and thus pure after
pulling out the normalization), and using that pzp is classical
in A we get H(Z4|B) = H(Z4) — H(B). Hence, the uncer-
tainty relation reduces to H(Z4) > log(d) which can only be
achieved with equality. Thus, for all pure states choosing one
measurement to be the Schmidt basis makes the relation tight.

This changes drastically if we consider (68) instead of (69).
Our key result is the following:

Theorem 6 (Tightness for Pure States and MUB Measure-
ments). Let pap be pure. If there exists a pair of mutually
unbiased bases (X4, Z4) on H, and arbitrary measurements
X}, and Zj on Hp such that

H(Xs|Xg) + H(Zp|Z) = H(A|B) + log (dim H4),  (70)

then all nonzero Schmidt coefficients of psp are equal.

Note that all nonzero Schmidt coefficients being equal is
equivalent to the following statement: There exist subspaces
Gs C Ha and Gy C Hp with the same dimension such that
pap 1s a maximally entangled state on G4 ® Gz embedded into
Ha ® Hp. In the case of dim Gy = dim Gg = 1 this “maxi-
mally entangled state” is just a product state.

Proof. Let X4, Z4 be mutually unbiased and X}, Z; be
arbitrary on Hp, such that (70) holds. It follows from the
relation by Berta et al. (18) that for equality in (70) three
conditions have to be met: First, the relation (18) has to
be tight, and additionally for the bases Xj; and Z; of Hp
the following two conditions must be fulfilled: H(X4|B) =
H(X41X};) and H(Z4|B) = H(Z4|Zy) (it follows from Lemma
8 in the Appendix that allowing Xy and Zj; to be POVMs is
not more general). We show that, if psp has two or more dis-
tinct nonzero Schmidt coefficients, then these three conditions

052412-8



ENTANGLEMENT DETECTION IN QUANTUM MANY-BODY ...

PHYSICAL REVIEW A 103, 052412 (2021)

cannot be met at the same time, which proves the claim that
Eq. (70) implies that all Schmidt coefficients have to be equal.

The relation (18) by Berta ef al. can be proven by using an
argument similar to our proof of Theorem 1 which invokes the
data processing inequality,

D(pagllpoz) = D(AlpaslllAlpzsl),

with A being the quantum channel that measures system A
in the X, basis. Thus, for the relation to be tight the data
processing inequality has to be tight in this specific instance.

(71)

1. Tightness of the data-processing inequality

For a quantum channel A : D(H) — D(H’) Petz [39]
showed that

D(A[p]llAlo]) = D(plio) (72)

if and only if there exists a CPTP recovery channel A :
D(H') — D(H) (which may depend on p and o) that inverts
A onboth pando,i.e.,

A[A[p]]l = p,

Furthermore, this recovery channel can (if it exists) always be
chosen of the form

Alo] = Vo A [(V/AloD) o/ Alo]) Vo,

with A* the adjoint of A with respect to the Hilbert-Schmidt
inner product on B(H). Since A is trace preserving, A* is al-
ways unital, so by construction this form ensures AlA[o]]l =
o. Note that D(p||o) is not symmetric in p and o, so p and o
can in general not be swapped in this expression.

Equation (74) implies that the DPI is tight for the two states
p and o if and only if

AlA[o]] = o. (73)

(74)

p = Vo NI/ Ao Alpl(v/Alo D)™ Vo (75)
Inserting o = pzp = ) 12}zl ® pg) we find
Alpzsl =y _ Ix)xll2)ellx)x| @ pf
X,z
1
== K@) oy
1
= EHA ® Tralpozs), (76)
and thus the condition reduces to
_1 _1
pas =d/pzs(1a ® B, *) pxp(1a ® B, *) oz,  (77)

1
where B,? = [TrA(pZB)]‘% and we used that, for measure-
ment channels, A* = A.

The strategy is now to show that all quantities on the
right-hand side are block-diagonal in blocks corresponding
to the values of Schmidt coefficients of psp, with block sizes
corresponding to the degeneracy of the respective coefficient
value. On the other hand, the left-hand side pap = [ ¥|
will always also contain off-diagonal terms. Thus, if there are
two or more distinct nonzero Schmidt coefficients, we get a
contradiction.

2. Zero quantum discord and Schmidt decompositions

The statement that there exists a basis X; such that
H(X4|B) = H(X4|Xp) is equivalent to pxp having zero quan-
tum discord, where quantum discord is defined as the
difference infy; H(X4|Xp) — H(X4|B). It is known [18,40-
42] that a state has zero quantum discord if and only if
it is classical in subsystem B (a proof of this statement is
given in Lemma 8 in the Appendix). This implies that there
exists a measurement X” on B [this will not necessarily be
any measurement X’ that satisfies H (X4|B) = H (X4|X3)] such
that pxp = pxx~. Since H (X4 |Xz) = H(Xs|Xy), also X" will
lead to a tight relation if X’ does, and thus we can assume
X’ = X" (this is just to simplify notation). If pap = |} V|
we can expand |) in the X4 ® X}, basis

W) = o lk)y, ® )y, . (78)
k.l
and find that
pxp = Y axey lk)klx, ® |IX!]x;- (79)
kLY
The condition that pxp = pxx’ then gives
Vi1 ooy o8 = Yk 1y < 8u,x), (80)
and thus |1) can be written as
(81)

V) =D o lk)y, @ lh()y, -
k

Here, (k) can still take the same value twice for different k
so this is not yet a Schmidt decomposition. However, we can
rearrange the sum as

W)= (Z o Ikm) ® 1,
l k

with A; and a,il) defined suitably. By absorbing complex
phases into a redefinition of the X} basis we can always chose
Ay to be real and positive. Thus, we see that |¢) has a Schmidt
decomposition consisting of vectors in the Xy basis on Hp.
Furthermore, since pxp = pxx’, the B part of pxp is diagonal
in this basis and thus pxp contains no cross terms of different
subspaces corresponding to different Schmidt coefficients.

The exact same argument can be applied to pzp to get a
different Schmidt decomposition of |y):

W)=Y M (Z & |k>zA> ® 1)z -
l k

Now, Schmidt decompositions are not unique, so pzg and pxp
having diagonal B part in two different decompositions does
not imply that also their product is diagonal in either of those
bases. However, the subspaces spanned by all the Schmidt
vectors of a specific Schmidt coefficient value are independent
of the chosen Schmidt decomposition. This corresponds to the
well-known statement that the singular value decomposition
is unique up to unitary rotations within the subspaces corre-
sponding to the degeneracies of the different singular values.
Thus pxp and pzp having no off-diagonal terms from these
different subspaces implies the same also for their product.

(82)

(83)
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1

Additionally, BZz is derived from Tra(pozg) and thus is also
block-diagonal. This establishes the contradiction in (77) if
there are two or more distinct nonzero Schmidt coefficients,
and thus completes the proof of Theorem 6. ]

The necessary condition of Theorem 6 is not obviously
sufficient. It is fairly easy to see that any product state will
be tight if one chooses either X, or Z, to contain one of
its product vectors. Similarly, a maximally entangled state
on Hy ® Hp will be tight even for arbitrary mutually unbi-
ased bases (X4, Z4) given an appropriate choice of X} and
Zjp. Furthermore, a maximally entangled state on a subspace
Ga @ Gg C Ha @ Hp, where dim G4 divides dim Hy, can be
made tight by having X, contain the vectors spanning G4 at the
right indices and choosing Z4 as its Fourier transformation.
However, for embedded maximally entangled states of sub-
spaces with arbitrary dimension this is in general not correct,
and it is not clear if there exists measurement choices which
make the relation tight in that case.

B. Limited measurements due to conserved quantities

In many practical applications the translation between
the two measurements X and Z is implemented by a uni-
tary operation generated through time evolution under some
Hamiltonian. If the system has conserved quantities, the set of
implementable unitaries will be limited, as all measurement
operators then also have to commute with this quantity. If,
furthermore, the state consists of a superposition of different
values of these conserved quantities, this can lead to en-
tanglement that is undetectable through entropic uncertainty
relations, because its correlations cannot be distinguished
from classical through the set of implementable measure-
ments. A typical example is local particle number, which
cannot be changed by local operations, but the system can be
prepared in a superposition of different particle number distri-
butions between two subsystems [43], e.g., through applying a
beam splitter. This leads to a form of bipartite entanglement of
the particle numbers in each subsystem, which is undetectable
with entropic uncertainty relations.

Quantitatively, one gets the following:

Theorem 7 (Bipartite State-Dependent Uncertainty Rela-
tion with Local Conservation Laws). Let H = Hy & Hp. Let
N4 ® Np be a Hermitian operator on 4, and T = Hﬁ{“) ®
Hg*) be the projectors onto its eigenspaces enumerated by
n = (ng, np). Let Xy, Z4 be generalized measurements (i.e.,
POVMs) on A such that their measurement operators X*, Z*
both commute with Ny . Let similarly Xj; and Zj; be generalized
measurements on B such that their measurement operators
commute with Ng. Then

H(XalXg) + H(Zs|Zg) > qrspp + H(A|B); — H(Z|AB) 4z,
(84)
with

p=) N%pyn®™ (85)

and ﬁz similar to (42). Furthermore, if X, and Z, are measure-
ments in orthonormal bases, then

H(XalXp) + H(ZalZy) > gqrsp + H(A|B);.  (86)

Proof. Since all observables commute with the projectors
1™, in the state p the probability of any outcome correspond-
ing to measurement operators A ® B is given by

Tr(pA  B) = Tr(Z N"WpM"WA ® B) (87)

n

=Tr <Z pITWA ® ]B) =Tr(pA ® B).

n

Thus, all measured conditional entropies and state-dependent
complementarity factors are equal for p and p. The claim then
follows from an application of (56) to p. ]

We call H (A|B)5 the configurational part of the conditional
entropy H(A|B), because it describes the correlations of the
configurations within the conservation-law sectors. Given that
the state p is related to p by the application of a quantum
channel that measures the conserved quantity, using the data-
processing inequality gives

—H(A|B); < —H(A|B),, (88)

i.e., the entanglement witnessed by the configurational part is
always less than the total entanglement.

As an example, consider again a system where particles
can fluctuate between two spatial regions which make up
the two parts of our bipartite Hilbert space. We assume
that the particle number within each subsystem is conserved,
and the total particle number is fixed to a single value N. If
the initial state is pure, one easily calculates [43]

—H(A|IB), =H(B), = —H(A|B); + H({p(n)}),  (89)

where p(n) is the probability distribution of finding »n par-
ticles in subsystem A (and thus N —n in B). So, the true
entanglement entropy separates into its configurational part
and a part coming from particle number fluctuations between
subsystems, which is undetectable using entropic uncer-
tainty relations. Similar relations between —H(A|B), and
—H (A|B)j can easily be shown if p is a mixture of pure states
with different particle numbers or is created from a (possibly
mixed) initial state through a beam splitter.

VI. APPLICATIONS

We show two examples of physical systems where the set
of easily accessible measurements is severely restricted and
does not include MUBs. We show that, for these systems,
our new uncertainty relation allows us to obtain meaningful
bounds on entanglement while all the previous relations with
less-state-dependent complementarity factors fail to do so.

A. Two distinguishable particles

The first system we consider, is a simple systems of two
distinguishable particles on a one-dimensional (1D) lattice.
This is inspired by Ref. [25], where entanglement of such
two particles on two lattice sites was quantified using density-
matrix reconstruction. We show that just using unitary time
evolution and occupation measurements we can use entropic
uncertainty relations to witness and bound (although not
tightly bound) entanglement between the two particles.
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FIG. 1. Entanglement entropy between two particles in the
ground state of a 1D Hubbard model in the highly attractive regime
(JU| » J and U < 0), compared with the entanglement entropy of a
maximally entangled state on the same Hilbert space.

1. Model

The system consists of two distinguishable particles, ex-
perimentally realized using different internal states, e.g.,
hyperfine states of °Li in Ref. [25], interacting on a 1D chain
of lattice sites. Introducing creation and annihilation operators
ai.i, a;i, a.i, a;.i for each particle and lattice site i, we can
write the Hamiltonian as

2 L-1 L

H=-J Z Z (a;,-ap,iﬂ +Hce)+U Zﬁl,iﬁz,i, (90)

p=1 i=1 i=1

with L lattice sites, hopping strength J > 0, interaction
strength U, and particle number operator 1, ; := a;’ ;ap,i- Note
that we do not use periodic boundary conditions. The system’s
Hilbert space is the tensor product of the Hilbert spaces of the
individual particles, so we study entanglement between the
two particles and not between spatially separated regions.

2. Ground state

For |U| > J and U < 0, it is energetically favorable for
the two particles to occupy the same lattice site, so the ground
state is approximately

W)~ eilini),
i
where c; are the coefficients of the single-particle ground state,

1Y) =Y cili).

Note that, since we did not employ periodic boundary con-
ditions, the single-particle ground state is not uniform but
will show decreased population towards the boundary. An
exception is the case of only two lattice sites (which was
implemented in Ref. [25]). Here every lattice site is on the
boundary, and the bipartite ground state is a maximally en-
tangled state. Figure 1 shows the entanglement entropy of the
two-particle ground state as a function of the number of lattice
sites.

oD

92)

of . . . . 1
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FIG. 2. Normalized complementarity factor — log(max,  c;) for
a measurement X in the site basis and a second measurement Z,
for varying number of lattice sites L. The second measurement is
implemented by letting the particles evolve independently under the
hopping Hamiltonian for time ¢ before measuring their positions on
the lattice. The normalization is chosen such that a value of one
corresponds to measuring in MUBs.

3. Measurement directions

The natural measurement in this system is the detection
of the positions of both particles on the lattice. We will label
the corresponding basis states as {|i)}-, for one particle,
and {|i;, 1'2)}5,.7:1 for the bipartite states, where each index i
corresponds to the lattice site the particle is on (site basis).
A measurement in a different basis can be performed by
letting the system evolve under a Hamiltonian with different
parameters J and U (essentially a quantum quench) before
detecting the atom positions. To be suitable as a second mea-
surement in our entropic uncertainty relations, the applied
time evolution must be local in the two Hilbert spaces Ha
and Hz, i.e., it must decompose as e’ = R = R4 ® R (with
h = 1). For the Hamiltonian in (90), this is only true if the
particles are noninteracting, so U = 0. Thus, we remain with a
one-parametric set of possible second measurement directions
which are related to the occupation basis by the unitary

R(t) — eitH(J:l,U:O). (93)
The overlap elements c,, are then given by the absolute values
squared of the entries in this unitary matrix (93).

Figure 2 shows the logarithm of the maximal value in
this matrix as an indication of how close this pair of mea-
surements comes to being mutually unbiased. For two lattice
sites, given the correct tunneling time, a MUB is actually
achievable, while for L > 2 the two measurements are never
maximally complementary. To implement two mutually un-
biased measurements using only position measurements after
some tunneling evolution one would have to engineer tunnel
couplings beyond-nearest-neighbor tunneling, which is exper-
imentally challenging.

Instead of looking only at the maximal overlap element,
Fig. 3 shows a histogram of all the elements of the overlap
matrix for a special case. One finds that most elements are
actually much smaller than the maximum, so using state-
dependent bounds should give a significant benefit.
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FIG. 3. Histogram of the individual overlap elements c,, for L =
30 lattice sites at tunneling time = 0.5L.

4. Numerical results

Given that the state is close to a maximally entangled
state, we expect correlations to be maximal when the two
particles are measured in the same basis. Thus, in our en-
tropic uncertainty relation we restrict ourselves to this case
and evaluate H(X4|Xp) and H(Z,|Zg). Since the Schmidt ba-
sis of the ground state for attractive interactions is close to
the site basis, the measured entropy H (X4|Xp) will turn out
to be effectively zero in the following simulations. The
measurable entanglement is thus determined by the relation
between the correlations in our second measurement and by
the complementarity factor g.

The detectable entanglement using our fully-state-
dependent relation (28) and the state-independent relation
(18) is shown in Figs. 4 and 5, respectively. It is immediately
apparent that, for everything which is not very close to a

1.4 T T T T T T T

o o N N

[ ™ o )
T
1

Bound on -H(A|B)

o
N

Jt/L

FIG. 4. Detectable entanglement in the ground state for attractive
interactions (U/J = —100) using the fully-state-dependent relation
(28) and independent tunneling as the transformation to the second
measurement basis. The abscissa shows tunneling time over the
number of lattice sites, which parametrizes all such transformations.
Even though the true entanglement entropy of the considered ground
state grows as —H (A|B) =~ log(L), the detectable entanglement using
this method is roughly constant.

o

VOV

Bound on -H(A|B)
1

—L=2
-2r —L=4 ]
L=10
-3} L =30 ]
0.0 0?2 0;4 0:6 018 110 1j2 1:4
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FIG. 5. Similar to Fig. 4 but using the state-independent un-
certainty relation (18). The detectable entanglement is significantly
lower and for high number of sites no entanglement can be detected.

MUB measurement (this includes all measurements with a
high number of sites), the state-independent relation never
detects any entanglement. Only for the special case of
two sites, a tight quantification can be achieved using the
state-independent bound. Our fully-state-dependent relation
detects entanglement for all possible lattice configurations and
tunneling times (even when the second measurement is very
close to the first one). However, the detected entanglement
seems to be limited to around 1.5 bits, whereas the true
entanglement grows approximately as log(L). Thus, even
though we can detect entanglement for all system sizes and
chosen bases (tunneling times), using this method we cannot
quantify entanglement accurately for many lattice sites in the
sense that the obtained bounds are not tight.

Using the marginal-dependent relation (27) gives almost
no benefit compared with the state-independent relation, as
the row-maxima of the overlap matrices max, c,, are all very
close to the global maximum (data not shown).

B. Spin-1 Bose-Einstein condensate

As a second system, we consider a spin-1 Bose-Einstein
condensate (BEC) that is initially prepared in one spatial mode
and subsequently split into two parts, which make up the two
components of our bipartite system.

Such systems have recently been used to demonstrate bi-
partite entanglement using a steering bound related to the
Robertson uncertainty relation [26,27,44]. While an applica-
tion of entropic uncertainty relations using the same readout
scheme fails, using different measurements our fully-state-
dependent relation can be used to obtain a bound on an
entanglement quantifier. The following system is modeled
closely after the experimental procedure in Ref. [26].

1. Model

All particles of a ¥Rb BEC are described as occupying
the same spatial mode. The relevant internal states of the
atoms, or spin states, are the three Zeeman sublevels of the
F =1 hyperfine manifold of the 5s electronic ground state,
labeled (1,0, —1). Spin mixing dynamics in this system are

052412-12



ENTANGLEMENT DETECTION IN QUANTUM MANY-BODY ...

PHYSICAL REVIEW A 103, 052412 (2021)

described within the Hilbert space spanned by the Fock states
|N1, Ny, N_1), labeled by the number of particles in each spin
component. This system can thus also be described as three
harmonic oscillators, with corresponding ladder operators

a_y,ap, a1, a' ,,a),al. 94)
These three different modes correspond to the spin compo-

nents in what we call the z direction, i.e.
Sz =N1 —]\7,1 =aia1 —Clildfl. (95)

We call the basis constructed out of the occupation number
states |Nj, Ny, N_;) the bare mode basis. Experimentally, one
can measure in this basis by applying a Stern-Gerlach pulse
to separate the three spin components and then measure the
number of particles in each mode by absorption imaging.
The set of possible outcomes x of a measurement will thus
consist of all possible mode occupations (N, Ny, N_;) con-
sistent with Zi N; = N, where N is the total particle number.
The probability distributions Px(x) = P(N;, Ny, N_1), or, in
the bipartite case discussed below, the joint distributions over
the outcomes in the local subsystems, are basic quantities
that need to be measured in order to obtain the conditional
entropies H (X4 |Xp) used in the entropic uncertainty relations.

The splitting into two subsystems is performed experimen-
tally by letting the system expand in space and then measuring
with spatial resolution, which allows us to split the measured
absorption signal into two spatial parts. We model this split-
ting by moving to a bipartite Hilbert space H = Hs ® Hp
with three spin modes in each subsystem. This gives six total
modes with corresponding operators

ap,—1, A0, AA1,  AB—1,4B,0,A4B,1, (96)

and similar for a’. The transition from the single spatial mode
to the two subsystems A and B can then be understood as
replacing
1
i T T
a, > —(a, , +ay,), o7
k 2 Ak T OBk
i.e., each particle has equal probability to end up in one of
the two subsystems. This is equivalent to the application of a
beam splitter to each mode.

2. Measurement in different bases

Measurements in bases other than the bare mode basis can
be realized by time evolving with some Hamiltonian before
measuring. Effectively, we apply the unitary rotation

R = exp (—itH). (98)

Here we consider local spin rotations, i.e., Hamiltonians that
consists only of pairs of creation and annihilation operators,
o)

R=exp|i) Cpdla (99)
jk

These form a representation of U(3) and can be implemented

experimentally by using external driving fields [26,45—47].
Since changing a state |{) only by a global phase has no

physical effect, for every U(3) element there is a physically

equivalent SU(3) element. In the following we restrict our-
selves to measurements which are related to the bare mode
basis by such a SU(3) transformation. This choice is a strong
restriction in terms of possible choices of measurement bases
but it appears reasonable from an experimental perspective,
since interacting Hamiltonians are typically harder to engineer
and control. It will not include MUBs, but one can still ask
which transformation R on a Hilbert space with fixed particle
number leads to a minimal max  x |R jx|*. It might be natural to
start with » € SU(3) such that its fundamental representation
on C? (which we write as r again) has minimal max ik |rjk|2.
1

The minimum of |r |> = 3 is achieved by the Fourier matrix

i 2mijk
(F3)j = Ve exp | —

where we put a leading i to make it an element of SU(3).
We call the transformation associated with its representa-
tion

>, j,k=0,1,2, (100)

Rpr = exp Zlog (F3)jka}ak
ok

(101)

the single-particle Fourier transformation, because it would be
the Fourier transformation for only a single particle.

In the regime where we can calculate representation matri-
ces R easy enough so that numerically optimizing over all of
SU(3) is possible, the single-particle Fourier transformation
indeed appears to be optimal, i.e., there appears to be no
other representation element R’ with smaller max 4 |R; " 2. An
analytical confirmation of this would be desirable but is not
straightforward to obtain.

3. Configurational and particle number entanglement

Since any such SU(3) operations preserve the particle num-
ber in each subsystem, Theorem 7 applies. As mentioned in
the previously shown example, for pure states with this setup
we have

—H(A|B) = H(ps)

=H({pm} + > _ pmH (pg") (102)

= H({p(n)}) — H(A|B)p,

where p(n) is the probability distribution of particle number
n in subsystem A (or B). We call the first term H({p(n)})
the particle number entanglement (or particle number con-
tribution to the entanglement entropy), and the second
term ), p(n)H (pp(n)) configurational entanglement (or con-
figurational contribution to the entanglement entropy), in
accordance with Ref. [43]. Our uncertainty relations can only
detect configurational entanglement, so we will always com-
pare our bounds on —H (A|B) with the configurational part of
the true entanglement entropy. Note that the particle-number
contribution does not actually depend on the details of the
state but only on the total particle number.

Ways to circumvent this undetectability of parts of the
entanglement entropy likely go through circumventing the
conservation law itself, for example, by interfering multiple
copies of the state together [9].
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4. Overlaps on one subsystem

The complementarity factor ¢ used in entropic uncertainty
relations quantifies the complementarity of the two measure-
ments on the subsystem A. For this setup, the fact that the
particle number in the subsystem is not fixed leads to some
peculiarities when applying entropic uncertainty relations.

Since the particle number in A is not fixed, H4 decomposes
into subspaces of particle number 7 in A:

N

Ha=EPH".

n=0

(103)
A representation R of a SU(3) element will then act on Hy4 as

N
k=@
n=0

where R™ acts on H®™. To calculate the maximal matrix
element we maximize over n as well, so

(104)

max |(Rq) j¢ = max max |(R®) . (105)
I n I

However, since R = (1) € C'! we have max; |(R4) x| =
1 and thus gpuy = — log(1?) = 0.

Thus, the state-independent relation (18) will never witness
any entanglement for states on Hilbert spaces that allow for
particle number fluctuation between subsystems. The key is-
sue is that the beam splitter allows for the possibility of all
particles ending up in subsystem B. Since the overlap element
of the uncertainty relation is state independent and does not
know anything about the beam splitter, it has to acknowledge
that there are states for which subsystem A is empty. For these
states, the measurement in A is deterministic irrespective of
any spin rotations applied, so there cannot be a nontrivial
uncertainty relation.

Thus, there has to be some state dependence in the com-
plementarity factor g. This can be achieved in various ways
with increasing degree of state dependence. The simplest
modification just includes the overlaps of the state with the
particle number sectors H™ of our Hilbert space H4 [this
is effectively the probability distribution Py, (n) of finding n
particles in subsystem A],

grn = = 3 Py () logmax [(R™)). - (106)

A relation with this ¢ is a simple corollary of (27). As an
alternative, we may also use (27) directly, which yields

gc == ) Px(x)log(max cy,). (107)

with Py (x) being the probability of measuring outcome x (of
measurement X) in A, and ¢, = |(Rs)x.|> in the previous
notation. Here we take into account not only the probability
distribution of finding a certain particle number in A, but
the whole marginal probability distribution in A (where the
measurement results also imply a certain particle number).
Finally, we may use the fully-state-dependent relation (28),

which becomes (after setting X = Y)

grsp = — Z Pxx (x4, xp)log <Z Cy:Pzx (ZA|XB)>- (108)

X,y

This takes into account the full bipartite probability dis-
tribution Pxx (x4, xp) and also requires knowledge of the
probability distribution Pzy, where we do a local rotation
in one subsystem only. Setting X =Y in this relation gives
an entropic uncertainty relation which has H(X4|Xp) on its
left-hand side. For this specific system, conditioning on the
same measurement on the other subsystem always appears to
be optimal. For g¢ and grsp we can get a potentially different
q by swapping X and Z. In practice we take the maximum of
the two.

For the purpose of entanglement quantification in experi-
ment, where we need to use measured entropies H (X4 |Xj) +
H(Z4|Zy) on the left-hand side of our uncertainty relations,
we seek to maximize the complementarity factor. Given that
gpN < gc < grsp, the fully-state-dependent relation implies
the other two relations. We will see below that the fully-state-
dependent relation is the only one which can realistically be
used to certify entanglement in this setup.

5. Two-mode-squeezed state

An interesting (and experimentally accessible) set of en-
tangled states is formed by the so-called two-mode-squeezed
states. These are created from a prepared state |0, N, 0) by
time evolution under a Hamiltonian that allows for spin-
changing collisions [26,27,47]:

H =g[aIaT_laoa0 + agagala_l + (1% — %)(IVI +N_1)]
+q(N 4+ N_y). (109)

The ratio between the parameters g and g can be tuned in
experiment. For the following sections on squeezed states we
set g = —g(N — %) with N the total particle number. This
ensures that for high occupation of the zero mode Ny & N the
g-dependent term cancels the second g-dependent term, and
we are left with

(110)

For short evolution times we can assume the zero-mode
population to remain constant (undepleted pump approxima-
tion) and thus replace the corresponding operators by constant
numbers, SO 1\70 ~ N and ag ~ ag ~ «/N. Then the Hamilto-
nian can be approximated as

H~ g(a;ailaoao + agagala_l ).

H =gN(aja' | +aa_y), (111)

which is solvable analytically. Introducing the squeezing pa-
rameter r = N gt one gets [26,48]
1
cosh (r)

(@) = > [—itanh ()] [n,N —2n,n). (112)

This holds only for small r but can give good insight into the
approximate structure of the state. For the following numer-
ical computations we still diagonalize the full Hamiltonian
(109) and calculate the time evolution explicitly. All subse-

quent results which depend on squeezing will be shown as a
function of r = Ngr.
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The reason this is called a squeezed state is that there ex-
ists a pair of observables with almost canonical commutation
relation so that, for increased squeezing, one becomes in-
creasingly localized while the other one becomes increasingly
delocalized (similar to squeezing of position and momentum).
With

S(¢) = Lz[e—"wag(a, —a_)+He],  (113)

7

we define the spin the squeezed direction as S(7) and the spin
in the antisqueezed direction as S (37” ). Then,

3 N
[S(%>, 5(7”)} = 2iNy — i(al +a’ )a +a_y)

~ 2iNy =~ const. (114)
for low squeezing [26]. Alternatively one can also characterize
these operators by the rotations which relate them to S,. These
read

Ry, = e 'iM0g=i55 (1152)

(115b)

Run isg =€ 4 e

6. Numerical results: Time-evolved state

All numerical results for the spin-1 BEC consider the pure
state prepared by unitary time evolution under Hamiltonian
(109) with a single fixed total particle number. In practice this
usually requires postselection of measurements.

Previous demonstrations of entanglement in these systems
[26] used the squeezed and antisqueezed direction as mea-
surement pairs, as the Robertson relation is tight for these
measurements. Entropic uncertainty relations are not tight
for these measurements however, and even our fully-state-
dependent relation fails to witness any entanglement in this
case.

For entropic uncertainty relations we find different pairs
of measurements by numerical optimization. In general we
would like to optimize the fully-state-dependent relation over
both measurement settings, i.e., over SU(3) x SU(3). How-
ever, doing this for a particle number that is not too small
to show similar behavior as the high N limit is practically
difficult. If we fix the single-particle Fourier transformation
as the transformation between the two measurements we can
minimize H(X4|Xp) + H(Zs|Zp) over the SU(3) set of all
measurements X . The optimal measurement then depends on
the state. For squeezed states we find two different optima at
different values of r.

In the short-time regime (at » = 0.5 for 15 particles) we
find a measurement for which a small violation [i.e., g >
H(X4|Xp) + H(Z4|Zp)] exists, as shown in Fig. 6. In terms
of parametrizations of SU(3), the numerical minimum is not
unique. However, all minimizers seem to be only rotating in-
dividual (spin) modes by a complex phase and do not perform
any mode mixing. Since this initial rotation actually does not
influence the first measurement results in of itself, it should
be understood as preparation for making the application of
the Fourier transformation more effective, and thus could also
be included into the transformation between the two mea-
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FIG. 6. Detectable entanglement for the time-evolved state of a
spin-1 BEC. Bounds on the entanglement entropy using a numer-
ically optimized first measurement and its single-particle Fourier
transform. Numerical optimization has been applied to maximize
detection at r = 0.5 for N = 15. The optimal basis choice was used
to produce the data for N = 50 shown in the figure.

surement directions, which would then be a slightly modified
Fourier transformation.
The minimum is attained for the three complex phases

(b1, ¢o, p_1) = (0.0957, —0.4957, 0.4007),  (116)

which add up to zero since we are implementing a SU(3)
rotation.

If we restrict ourselves to performing only such a U(1) x
U(1) rotation for the first measurement direction, we can
numerically minimize not only H(X4|Xp) + H(Z4|Zp) but
the bound on —H (A|B) through the fully-state-dependent en-
tropic uncertainty relation. It converges to the same minimum
as achieved by just optimizing H (Xs|Xg) + H (Z4|Zp).

Doing the numerical optimization in the over-squeezed
(long-time) regime (at r = 2.5 for 15 particles), it appears that
using the bare mode basis as the first measurement direction is
almost optimal. Slight improvements exists, but they do seem
to depend on the particle number and do not show any overall
different behavior. The bare mode basis and its single-particle
Fourier transform are shown in Fig. 7. At the maximum point
in the over-squeezed regime, we can witness a significant
amount of entanglement.

Numerical optimizations at squeezing parameters r in be-
tween the above two values always seem to converge to either
one of the two results shown above, or something which never
witnesses any entanglement. In any case, only the fully-state-
dependent relation is tight for the initial state (which contains
no configurational entanglement) and manages to certify some
entanglement for r > 0.

7. Numerical results: Ground states

Besides time-evolved states, we can also look at ground
states of the Hamiltonian (109). We only consider ferromag-
netic condensates, for which g < 0, as realized for the F' = 1
hyperfine manifold of #Rb [45]. In this case, in the limit N —
0o, the system shows two second-order phase transitions
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FIG. 7. Bounds on the entanglement entropy using a mea-
surement in the bare mode basis and its single-particle Fourier
transformation. The prepared state is the same as in Fig. 6.

at

q==*q., q.=2N|g| (117)

[45,49,50]. For g > q. the system is in the polar phase with
the polar ground-state |y,) = |0, N, 0). This state is separable
between the individual spins and will possess only particle-
number entanglement when split into two spatial parts. For
q < —q. the system is in the TF phase with ground state
Wre) = 15,0, %), or [yrr) = 15, 1, 15]) if N odd. For
small N, this difference between N odd and even has a sig-
nificant impact on the entanglement entropy. For |g| < ¢, the
ground state occupies modes |k, N — 2k, k), with k transition-
ing from 0 to N /2 as g decreases.

As in the case of the time-evolved states, we use mea-
surements in the bare mode basis and the single-particle
Fourier-transformed basis. For these two measurement di-
rections, Fig. 8 shows —H(A|B) and bounds on it through
entropic uncertainty relations as a function of the Hamiltonian
parameter g. The entanglement entropy shows a significant

ab Twin Fock Broken|axissym. Polar
| SRS g |
o true config.
< ent. entropy
£ using grsp
T
c 1F 5 -
5 T o N\
L S 8 N DO N
>
A
-1F _
-2F -
_3 - _
_2 _1 O 1 2

q/qc

FIG. 8. Bounds on —H(A|B) in the ground state of the spin-1
BEC using multiple complementarity factors as a function of the
Hamiltonian parameter g for N = 50 particles. Measurements are
performed in the bare mode basis and its single-particle Fourier
transform.

increase at the ¢ = g, phase-transition point, and also the TF-
ground state shows significant configurational entanglement.

Similar to what we saw for squeezed states, only the fully-
state-dependent relation is tight for the (configurationally
separable) polar state and can properly detect the increase
in entanglement at the phase-transition point. Also in the TF
ground state the fully-state-dependent relation yields a signif-
icantly larger amount of certified entanglement.

VII. CONCLUSIONS AND OUTLOOK

We derived an improved entropic uncertainty relation that
allows the quantification of entanglement based on measure-
ments in only two different local measurement settings, which
need not be mutually unbiased. As proof of principle we
demonstrated its use through two numerical studies of model
systems inspired by previously performed experiments. Our
method can potentially be implemented on any experimental
platform, provided the possibility of single-particle resolved
detection and measurements in two different suitable local
bases. These requirements are met by most of the currently
available quantum simulation platforms ranging from cold
atoms in optical lattices [51] or tweezer arrays [52] to trapped
ions [53] and superconducting qubits [54]. Entropic entan-
glement bounds may thus find applications ranging from
the quantum simulation of quantum statistical mechanics
problems [55,56] to high-energy physics [57], where quan-
tifying entanglement is crucial for addressing fundamental
questions.

A topic that will require further investigation when ap-
plying our method in experiments is the role of noise and
finite measurement statistics. In our example applications we
considered pure states that can be measured with arbitrary
precision, so that the full probability distribution over the
possible measurement outcomes is available. Realistic exper-
imental realizations have to deal with preparation and readout
noise and finite measurement statistics and can thus estimate
the conditional entropies only up to some experimental error.
The accuracy of entropy estimation in the presence of such
errors will in general depend on the state in question, and it is
unclear a priori how for some given situation a worst-case
estimate would look like. Also, the tightness of our entan-
glement bounds may depend on the purity of the prepared
states.

This leads to the question of scalability of our approach
to entanglement quantification. In the worst case, an accurate
estimate of the entropy requires O(dim ) measurement sam-
ples, but this can be significantly improved if the probability
distribution is highly localized [22]. Finding out to which de-
gree such localized distributions can always be found and used
for such a procedure is another question to be addressed. Also,
in general, the complementarity factors need to be calculated
numerically which scales at least as O(dim ). Analytical
expressions are only available for specific basis choices such
as MUBs. It will thus be important to obtain analytical results
for larger classes of bases pairs allowing for an efficient eval-
uation of complementarity factors or at least their asymptotic
behavior at large systems sizes.
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APPENDIX: ZERO QUANTUM DISCORD STATES

Let X be an orthonormal basis of Hp consisting of states
|x), and pap be a density matrix on Ha ® Hp. We write pax
for the state obtained after measuring subsystem B in the X
basis, i.e.,

pax =Y (14 ® [x)xDpas(la ® [x)xl), (A1)

and H(A|X) for the conditional entropy of this state. We say
the state psp has zero quantum discord, if there exists an
orthonormal basis X, such that

H(AIX) = H(AIB). (A2)

Lemma 8 (Zero Discord States). A state pap has zero quan-
tum discord if and only if it is quantum-classical, i.e., taking
Z as the orthonormal basis in which pp is diagonal, it holds
that

PAB = PAZ- (A3)

Proof. 1t is obvious that psp being quantum-classical im-
plies zero quantum discord. For the other direction we follow
the proof in Ref. [41].

Let X be an ONB such that H(A|X) = H(A|B). We intro-
duce a second copy of the Hilbert space Hp, which we call
Hc, and denote by V the isometry that acts as

V :Hg — Hp ® Hc, (A4)

VIg) =Y 0 xly) @ Lx). (A5)

This corresponds to the isometry that implements the POVM
of measuring in X. Similarly to what was done in Sec. 1V,
we write Baxx =V pagV", and get pax = Pax' = pax, Px =
Px = px, as well as H(Paxx') = H(pap) and H(pxx') =
H(pp) due to invariance under isometries. The equality
H(A|X) = H(A|B) then corresponds to equality in the strong-
subadditivity relation:

H(paxx') +H(px) < H(pax) + H(pxx).

In Ref. [58] it was shown that a state pspc satisfies equality
in strong subadditivity if and only if there exists a decomposi-
tion of the Hilbert space Hp

My =D Hy @ Hy
J

(A6)

(AT)

such that

PABC = @pijBi ® 'OB{(C' (AB)

J

Note that we can embed Hp into

J

Hp, ® Mg, = (@ Hy ) ® (@ My ) (A9)
J

and thus also write

pasc = €D pipls, ® Phyc: (A10)

J

where the ,01{; p, have support only in Ha ® H Bl and similarly

for péRC.

We apply this result to the tripartite state paxx+ which
achieves equality in strong subadditivity. This implies that Hp
has the given decomposition, and since Hp = H¢ the same
holds for H¢. Note that the state paxx: is fully symmetric
under exchanging X <> X’. Let us consider the objects

Z’/iXLxRxL’X,g = Z’/{XL ® p)j;RXL’x,g’ (ALT)
which, according to the theorem just stated, sum to
Paxx' = @pjlb/];xLx,ng’X,;' (Al12)
i
The exchange symmetry implies
ﬁixL = Z’/ixi = Z)/{XL = f),{; ® Z)JJ;L/’ (A13)
where we took partial traces of (A11) and thus we get
paxx = D PiPs ® P (Al4)

J

with p}y, = Py, ® Py x- Now, (A7) states that all the pyy,
have orthogonal support. We can invert the isometry V to get

pas =Y _ DiPi ® ph, (A15)

J

where all the pé then have orthogonal support, and so the
eigenbasis Z of pp can be constructed out of eigenvectors
of the ,oé. Thus all the ,oé are diagonal in Z, which implies
PAB = PAZ- n
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